Windows 7/2008 Event Log forensic and reversing analysis
eseugutroP Reversed
2011/03/16 by arivr

This text refers to the 32bit version of Windows, unfortunately | don't have access to a
64bit development environment.

Opening an .evix log is pretty straightforward, the only problem is that the eventlog
service opens this files exclusively and if we try to make a copy, we'll get "Access is
denied" error. So, we need to get them with the machine offline.

One of the reasons beyond the handles to this files being exclusively open, is that the
eventlog service memory maps chunks of this files, holding and manipulating some
housekeeping metadata information directly in the memory mapped files.

Performance and security issues also come to the discussion: the files aren't always in
sync with the data in memory for example, and each file has an associated timer that
CRCs the headers and flushes the mapped views. Also this metadata information
allows for file recovery in case of unexpected shutdown or crash.

What this means for a "interested" person, is that we need to be careful if trying to
change the logs content online, because not everything is what it seems. But it is indeed
possible to manipulate the logs directly in memory: remove and change log entries,
insert new entries, stealthily clear the logs, add log garbage, etc.

| wrote a small POC tool that shows this being done, | called it Elchomp. Elchomp
basically clears the last log record entry in the event log of choosing. Elchomp is
available with this document or at
https://www.filesanywhere.com/fs/v.aspx?v=8a6b66865967747da3a5 .

The .evix files are binary files, to where the eventlog service streams log records

using XML templates to format each entry. This makes easier switching between the
Event Viewer general and details panels.

These binary files are structured as follows:

- The file starts with a file header that describes the chunks used by the file. The
stored information pertains to the number of chunks, the chunk size, and some
duplicated information for failover purposes. A chunk is a container block of event
records.

- N Chunks serialized. Each chunk points to a set of event log entries.

- N records. Each record represents an event log entry.

Let's view in more detail each of these structures. I'll cover only the most important data,
so keep this in mind while reading. I'll open a real .evix log for analysis. Figure 2 shows
the first bytes of the file.

Figure 1: Event log layout

File Header }
)3*

i

‘Vr
[Record 1
Chunk 1

Record 2

C

'l\h (Fecord 3

<r’r (Record 1
(

)
Racord 2)

Chunk 2

A\

As can be seen, there are a couple of signatures in the file, the first signature "ElfFile" at
position zero in the file, marks the beginning of the file, and is used to detect if this is an
event log file type.

Figure 2: File Header
oo ol 02 03 04 05 08 07 05 09 0a Ob O0Oc 0d 0Oe OE

aoooaaoao I-’-15 gc 66 46 6% 6C 65 EIEII o0 00 0o a0 00 00 00 oo El1fFile]........

ooopoolo |{fe o0 OO 00 00 00 00 00 ea 0d 00 oo o0 00 00 00 [
aooo0ozs rEHZI oo oo 0o 01 a0 03 o0 IlIII 1d oo oo oo o0 0o £....... T
a0o0aosao qoioo 0o o0 o0 oo o0 oo 0 00 00 00y 00 00 00 00 .c.ieevennsnmnnnns

aoooao4a 00 o0 00 o0 00 0 00 oo §Ood 00 00 00f o0 g0 00 00eeeieeeeeaas
aoooaasa o0 00 00 00 00 0 00 oo o0 00 00 00f 00 00 00 00 ..e.eeeeiennuns
aoooaasn oo &0 00 o0 00 00 o0 oo g00 00 00 00% a0 g0 00 00 L....aeeeeeeeaas
aoooaova I oo 03 00 o0 o0 oo o0 oo I 0l 00 00 00 74 8a 51 72 eeennnennns Yo

fleHeader Hizelffeader Hllmberthunks

At offset 0x10 we have the CurrentChunkCount. This DWORD value doesn't show up in
the eventlog file, | just mention it here because | wanted to enforce the differences
between the offline and online layouts. When the log is opened by the eventlog service,
the CurrentChunkCount is set to the chunk that the NumberOfChunks references, a
new chunk is created and the ChunkOffset is updated accordingly.

At offset 0x28, NumberOfChunks, a WORD value, indicates how many chunks are in
the file.

At offset 0x30, SizeOfHeader a WORD value, sets the size for the file header.
Positioning to the end of the File header, value 0x1000, we can see the first chunk

signature. (Figure 3)

Figure 3: First Chunk
00 01l 02 03 04 05 06 07 08 09 0a Ob Oc 0d Oe OF

pufulalukaat] oo 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ... eieeeeeaaas
aoonlaoo DEC 66 43 63 6e 6b 00 01 00 00 OO0 00 00 00 o0 PleChnk.........
oooololo 76 00 00 00 00 00 00 60 01 00 00 00 00 00 00 oo Woooooooooooooaao

It's time to say that the chunks are fixed sized 0x10000 = 65536 bytes. The last chunk is
always memory mapped in the eventlog service process.

Multiplying size of chunk by NumberOfChunks we get 0x10000*0x001d = 0x1d0000,
sum the FileHeader and we get to last valid chunk header: 0x1d0000+0x1000 =
0x1d1000. (Figure 4)

Figure 4: Last Chunk Header Data
ooldiooo 45 6c 66 43) 65 6e 6b 00 ee 0d 00 0O 0O QO 00 OO0 ElfChnk.i.......

00141013 5 0e o0f) oooo 0000 ee 0d OO OO 0O OO 0O OO0 |:|:T.
0o0ldlozo S 0e 00 O00f) 00 00 o0 oo 50 00 00 00 40 &5 00 OO L....... €., . [e..

oo1dioso bd 66 00 DOM 9d eo c9 22 oo Qoo 00 0o 00 00 00 oo Af..l:la“_f!"
Chunk Header RecordsCount

lastValidfzet = EChnk-+hisValue

"EIfChnk" at position zero in the ChunkHeader, validates the chunk beginning.

At offset 0x10 and 0x20 we've got the same value, for failsafe purpose. It's a DWORD

(0x00000e15) that represents the number of records contained in the chunk. Actually, if

a new record is written it will use this value as Record counter, so the Number of

records can be calculated by subtracting one to this value.

At offset 0x30 a DWORD that indicates the last offset position in the chunk that can be

written to.

Figure 5: Last valid position in log
ug UL UL U4 ud us Ue Uy Ug U4 Ua uUb Uc Ud Ue UL

ooldiaso Ja Sc 57 6% ge 64 6L Y7 T3 Sc T3 7R Y3 T4 65 64 4 IMindowsh aysten
oo01d7%a70 33 32 5Sc e 7373 M6 63 Ze 65 T8 65 20 Z0 20 24 JZ\wasvo. exe =
oo01d7as0 20 55 73 65 Y2 3a 20 42 61l 64 65 3a 20 4= 54 20 Tzer: Name: NT
00147690 41 55 54 43 4f 52 4% 54 59 5c 53 59 53 54 45 44 AUTHORITY 3¥VRTEM
o0ldiaadl gc 20 53 49 44 3a 53 24 31 24 35 24 31 38 =20 00 ; AID:5-1-5-13 .
001d7abs oo 00 0o 0o Y& 01 00 oo DDD oo 00 o0 oo oo oo :-:D
oold7aco 00 00 00 00 Qo 00 00 00 00 40 00 00 00 a0 00 00 ... eeeeennannns
001d476dao o0 00 00 Q0 0o o0 00 00 00 00 00 00 00 a0 00 00iieeeeeeieeas
oo0ldiaed 00 00 00 00 400 00 00 00 00 40 00 00 00 a0 00 00 cuveweesnnsnnnas
oold7ato 00 00 00 00 Qo 00 00 00 00 40 00 00 00 a0 00 00 ... eeeeennannns
oo1477ao 00 00 00 00 Qo 00 00 00 00 40 00 00 00 a0 00 00 ... eeeeennannns
00147710 o0 00 00 Q0 0o o0 00 00 00 00 00 00 00 a0 00 00iieeeeeeieeas
o0143 720 00 00 00 00 400 00 00 00 00 40 00 00 00 a0 00 00 cuveweesnnsnnnas

antTA?72n an nn NN onan an nn NN nn no N nn o nn an nn nn nn

LastChunkStart = 0x001d1000
LastValidOffset = 0x000066b8

LastValidPosition = 0x001d1000 + 0x000066b8 = 0x001d76b8

From position 0x001d76b8 forward, there are only zeros. (Figure 5)

The last valid position also gives us the last valid record end. going backwards, we
reach the signature (position 0x1d7438 in figure 6) for the last event record "*' or
0x2A2A.

Figure 6: Event Record Data

10147420
10147430
10147440
10147450
Jold74a0
10147470
10147450
10147490
10147 4a0
10147 4h0
101474e0
101474435
101d74e0
1014740
10147500
10147510
10147520
101475350

0t
oo

o0&
oo
01
oo
21
g0
oo
oo

ec
oo

oL
oo
oo
oo
oo
oo
oo
oo
oo
oo

la
aa

H

00 74 00 65 00 73 00 74 00 65 00 00 (0 00 003G
00 00 00 00 08 ol
14 0= 00 00| 00 00
0l 00 oOc ol
0l 00 04 00
0Z 00 06 00
04 00 08 00
lc 00
0o oo
02 00
80 9 b2 ce 58 da cb 01f 00 o0 oo oo oo oo
14 00 00 00 00 00 00 oofol 05 oo ooloo
,ﬁnnun oo sz
B 00 o0 0f 0l 0l 00 dc 0l 0l 46 43
0 00 00 03 00 00 00 20 00 81 00 04 00 03
OO 00 00 &% 00 73 00 74 00 6 00 20 00 &5
oo zofoo 75 oo ed oo 2o o0 74 00 65 00 73 00 74
00 00 00 00 00 00 00 08 01 00 00

h

RecardCount

0o ﬁslnu oo oo

Recardsil

. oEecIvE, .. .

||

e ey S
....... ..11%.b.E
BRHE. s v e er e Fo
s A .O..

EvertData

Liestatp

eventll

At offset 0x6 we find the current record count Oxe14 (being this the last valid record in
the chunk this value is equal to the chunk's number of records minus one).
At offset Oxe and 0x86 the timestamp in file format. Corresponds to the event viewer's
"Logged" time field.

At offset Ox7a the Event Id.
At offset 0x7e the Keywords field.

At offset 0x96 the record Id.
At offset 0x9e the SID.
At offset Oxda we've got the log message.

Figure 7: Event Viewer log entry

testel
Log Mame: Application
Source: EventCreate Logged: 15-03-2011 20:48:38
Event ID: 049 Task Category: Mone
Level: Error Keywords: Claszic

Hope you enjoyed

