ATTACK & DEFE

Attacking with HTML5

By,

Lavakumar Kuppan

www.andlabs.org
October 18, 2010

Attacking with HTML5

Introduction:

HTMLS5 is redefining the ground rules for future Web Applications by providing a rich set of
new features and by extending existing features and APIs. HTML5 Security is still an
unexplored region because HTMLS5 features are not yet adopted by web applications (apart
from experimental support) and it is assumed that until that happens the end users have

nothing to worry about.

This paper would prove this assumption wrong by discussing a range of attacks that can be
carried out on web users ‘right now” even on websites that do not support or intend to
support HTMLS5 in the near future. Browser vendors have been trying to outdo each other in
supporting the latest features defined in the HTML5 spec. This has exposed the users of

these browsers to the attacks that would be discussed in this paper.

The initial sections of this paper cover attacks and research that have been published by me
and other researchers earlier this year. The latter sections covers attacks that are completely

new and exclusive.
The list of attacks covered:

1) Cross-site Scripting via HTML5
2) Reverse Web Shells with COR
3) Clickjacking via HTML5

a. Text-field Injection

b. IFRAME Sandboxing

4) HTMLS5 Cache Poisoning
5) Client-side RFI

6) Cross-site Posting

7) Network Reconnaissance

a. Port Scanning
b. Network Scanning
c. Guessing user’s Private IP
8) HTMLS Botnets
a. Botnet creation
i. Reaching out to victims
ii. Extending execution life-time
b. Botnets based attacks
i. DDoS attacks
ii. Email spam

iii. Distributed Password Cracking

)
\1_’; © Attack & Defense Labs, http://www.andlabs.org

Attacking with HTML5

Cross-site Scripting via HTMLS5:

HTMLS5 introduces new elements that contain event attributes and new event attributes for
existing tags. These event attributes can be used for executing JavaScript by bypassing
blacklist based filters designed blocking Cross-site Scripting attacks.

A filter that only looks for known malicious tags can be bypassed using the new HTML5
Audio and Video tags.

Example:

<video onerror="javascript:alert(1)"><source>

<audio onerror="javascript:alert(1)"><source>

Filters that block ‘<" and “> can prevent tag injection in most cases. XSS could still be
possible in such cases if the attacker is able to inject script inside an existing event attribute
or add a new event attribute. A filter that blocks existing event attributes can be bypassed by
the new event attributes added in HTMLS5 like ‘onforminput” and ‘onformchange’.

Example:
<form id=test onforminput=alert(l)> <input> </form> <button form=test

onformchange=alert(2)>X

Apart from aiding in bypassing filters some new features can be used to automate script
execution like the HTML5 ‘autofocus’ attribute. When this attribute is set an element

automatically gets focus.

Cases where data injection is possible inside the attribute section of an Input tag is common.
In such cases traditionally the injected JavaScript would be placed inside the ‘onmouseover’
or ‘onclick’ tag and user interaction would be required to execute the script. With HTML5
the “onfocus’ tag can be used for injecting script and then by setting the autofocus attribute

we can trigger the script execution automatically.

Example:
Before HTML5:

<input type="text" value="-->Injecting here" onmouseover="alert('Injected value')">
With HTMLS5:
<input type="text" value="-->Injecting here" onfocus="alert('Injected value')" autofocus>

Mario Heiderich maintains a list of all such new HTML5 vectors in the HTML5 Security
CheatSheet [,

© Attack & Defense Labs, http://www.andlabs.org

Attacking with HTML5

Reverse Web Shells with COR:

HTML5's Cross Origin Request allows browsers to make cross domain Ajax calls from a.com
to b.com and read the response as long as b.com allows it. This feature can be used to tunnel

HTTP traffic over cross domain Ajax calls and set-up a browser equivalent of a reverse shell.

By doing this an attacker can hijack a victim’s session using XSS even if anti-session

hijacking measure like Http-Only cookie and Session ID-IP address binding are used.

Once the JavaScript payload is injected to the victim’s browser either through Cross-site
Scripting or by convincing the victim to paste the scripting in the browser’s address bar, the
script starts talking to the attacker’s server through Cross Origin Requests. Using this
connection the attacker can browse the victim’s affected session by tunneling his requests

through the victim’s browser.

Earlier this year I had released an open source tool named ‘Shell of the Future’? which is an
implementation of this idea. It is extremely easy to use as it automates the entire attack and

comes with two default JavaScript payloads.

Architecture of Shell of the Future

Shell of the Future i
GET http://www.google.com

Send the request to the Shell

Pentester’s |:> ﬁ of the Future Web server

e | \
Send theh Web

body to the proxy Server

Send the Google home page
to Pentester’s browser

Send the response bady to the

Shell of the Future web server Send the request to

the victim’s browser

Google web server responds
with the HTML for its homepage

www.google.com

Victim's
Browser

Request the Google web server
for http://www.google.com

.‘
\1: © Attack & Defense Labs, http://www.andlabs.org

Attacking with HTML5

Clickjacking via HTML5:

Text-field Injection:

ClickJacking can be used to submit forms across domains by bypassing the CSRF protection.
Though it is very easy to click links or buttons through Click]Jacking, populating the Input
fields of the target form is relatively harder to do.

HTML5’s Drag and Drop API can be used to fill the target forms simply by convincing the
victim to perform a Drag and Drop action. The attacker’s site can camouflage the attack as a
game that requires the player to drag and drop items while invisibly attacker controlled data
is populated in to the input fields of the target form.

Example:
<div draggable="true" ondragstart="event.dataTransfer.setData('text/plain’, 'Evil data')">
<h3>DRAG ME!!</h3>

</div>
This method was introduced by Paul Stone at BlackHat Europe 20100 .

IFRAME Sandboxing:

There is a general misconception that including Framebusting code in each page of the site is
the best way to defend against Clickjacking attacks. This approach appears to be the most
popular solution as well even though the OWASP guidelines clearly mention its
disadvantages.

If a websites” only defense against ClickJacking attacks is FrameBusting then this protection
can be bypassed in a few different ways. One of them is to use the IFRAME ‘sandbox’
attribute which is part of HTML5.

Example:

<iframe src="http://www.victim.site" sandbox></iframe>

Setting this attribute disables JavaScript within the iframe. Since ‘framebusting’ relies on
JavaScript, this attributes effectively neutralizes the defense. Popular sites like eBay,
WordPress, PayPal rely only on ‘framebusting’ for protection and are hence open to this
attack.

*
\1’; © Attack & Defense Labs, http://www.andlabs.org

Attacking with HTML5

HTML5 Cache Poisoning;:

HTML5 introduces a new type of caching system called as the Application Cache or the
programmable cache. While traditional caches are meant to improve page load times, the
Application Cache is designed to enable Offline web browsing. Hence this cache is more

persistent than traditional cache.

By poisoning HTML5 caches an attacker can have his cached pages alive for longer

durations and use it to steal the user’s credentials!!.

Earlier this year I released a new version of Imposterl®l that can be used to poison HTML5

caches.

Client-side RFI:

Websites that perform Ajax requests to URLs mentioned in the location hash and include the
response in the HTML of the page can be exploited using COR. By getting the victim to click
on a link that includes the URL of an attacker controlled page in the Location hash, it is
possible to perform client-side RFI resulting in a Cross-site Scripting attack. This attack was
discovered by Matt Austin in July this year”l. Mobile.facebook.com and other many other

websites including the JQuery library was found to be vulnerable to this.

Cross-site Posting:

This is a variation of the Client-side RFI attack discussed earlier. If the URL of the Ajax
request can be controlled by an attacker, like in the case of location hash then an attacker can
redirect legitimate requests to his site and steal sensitive session information. Even though
the response of the Ajax request might not be processed by the requesting site this attack

would work.

‘
\1’; © Attack & Defense Labs, http://www.andlabs.org

Attacking with HTML5

Network Reconnaissance:

Cross domain XMLHttpRequests and WebSockets can be used for performing reliable port
scans. The latest version of Firefox, Chrome and Safari support both these features and can

be used for intranet reconnaissance.

Cross domain XHR has five possible readystate statuses and WebSocket has four possible
readystate statuses. When a new connection is made to any service the status of the
readystate property changes based on the state of the connection. This transition between
different states can be used to determine if the remote port to which the connection is being
made is either open, closed or filtered.

Port Scanning:

When a WebSocket or COR connection is made to a specific port of an IP address in the
internal network the initial state of WebSocket is readystate 0 and for COR its readystate 1.
Depending on the status of the remote port, these initial readystate statuses change sooner
or later. The below table shows the relation between the status of the remote port and the
duration of the initial readystate status. By observing how soon the initial readystate status

changes we can identify the status of the remote port.

Behavior based on port status:

WebSocket (ReadyState 0) COR (ReadyState 1)
Open (application type 1&2) <100 ms <100 ms

~1000 ms ~1000 ms

>30000 ms >30000 ms

There are some limitations to performing port scans this way. The major limitation is that all
browser’s block connections to well known ports and so they cannot be scanned. The other
limitation is that these are application level scans unlike the socket level scans performed by
tools like nmap. This means that based on the nature of the application listening on a

particular port the response and interpretation might vary.
There are four types of responses expected from applications:

1. Close on connect: Application terminates the connection as soon as the connection is
established due to protocol mismatch.

2. Respond & close on connect: Similar to type-1 but before closing the connection it
sends some default response

3. Open with no response: Application keeps the connection open expecting more data
or data that would match its protocol specification.

4. Open with response: Similar to type-3 but sends some default response on

connection, like a banner or welcome message

A A © Attack & Defense Labs, http://www.andlabs.org

Attacking with HTML5

The behavior of WebSockets and COR for each of these types is shown in the table below.

Behavior based on application type:

Application Type WebSocket (ReadyState 0)/ COR (ReadyState 1)

<100 ms
<100 ms
>30000 ms
<100 ms (FF & Safari) | >30000 ms (Chrome)

Network Scanning:

The port scanning technique can be applied to perform horizontal network scans of internal
networks. Since both an open port and a closed port can be accurately identified, horizontal
scans can be made for ports like 3389 that would be unfiltered in the personal firewalls of

most corporate systems.

Identification of an open or closed port would indicate that a particular IP address is up.

Guessing User’s Private IP Address

Most home user’s connected to WiFi routers are given IP addresses in the 192.168.x.x range.
And the IP address of the router is often 192.168.x.1 and they almost always have their

administrative web interfaces running on port 80 or 443.
These two trends can be exploited to guess the private IP address of the user in two steps:
Step 1: Identify the user’s subnet

This can be done by scanning port 80 and/or 443 on the IP addresses from 192.168.0.1 to
192.168.255.1. If the user is on the 192.168.3.x subnet then we would get a response for
192.168.3.1 which would be his router and thus the subnet can be identified.

Step 1: Identify the IP address

Once the subnet is identified we scan the entire subnet for a port that would be filtered by
personal firewalls, port 30000 for example. So we iterate from 192.169.x.2 to 192.168.x.254,
when we reach the IP address of the user we would get a response (open/closed) because the
request is generated from the user’s browser from within his system and so his personal

firewall does not block the request.

“v © Attack & Defense Labs, http://www.andlabs.org

—

Attacking with HTML5

HTML5 Botnets:

Every time a user clicks on a link he is giving a remote website an opportunity to execute
code (JavaScript) on his machine. The window of this opportunity is widened by the
concept of tabbed browsing. Most users have multiple open tabs and most tabs remain open

through the entirety of their browsing session which could stretch for hours.

This enables an external entity to utilize the user’s processing power and bandwidth for his
malicious needs. Spammers, especially on sites like Twitter, have been able to get thousands
of users to click on their links in very short durations. But JavaScript has serious
performance constraints and is severely handicapped by the browser’s sandbox which has

limited such abuse.

HTMLS5 introduced WebWorkers which is a threading model for JavaScript. This lets any
website start a background JavaScript thread unknown to the user and execute code without

slowing down or making the browser unresponsive.
Botnet Creation:

An HTML5 botnet would include thousands of systems that have the attacker controlled
page open on their browsers for an extended duration allowing continued execution of the

attacker’s JavaScript.
There are two phases in building such a botnet:

1) Reaching out to victims

2) Extending execution lifetime
Reaching out to victims:

This involves getting the victim to visit an attacker controlled website. This can be done in a

number of different ways:

1) Email spam

2) Trending topics on Twitter

3) Persistent XSS on popular websites, forums etc
4) Search Engine Poisoning

5) Compromised websites

These are methods used by current JavaScript malware authors to attack victims to their
website and can draw thousands of victms. While traditional malware spreading website
can be quickly identified due to automated crawlers looking for signatures of browser
exploits, HTML5 based payloads are less likely to be identified since its regular JavaScript
working within the constraints of the sandbox and does not perform any exploitation

against the browsers.

© Attack & Defense Labs, http://www.andlabs.org

Attacking with HTML5

Extending execution lifetime:

Once a victim visits the attacker controlled page it is essential to keep this page open in the
victim’s browser for as long as possible. This can be done by using a combination of

Clickjacking and Tabnabbing.

When the page is loaded, it would contain an invisible link with the target attribute set to
‘_blank’. This link is always placed under the mouse pointer using the
‘document.onmousemove’ event handler. This way, when the victim clicks anywhere on the
page a new tab opens and grabs the victim’s attention. With multiple tabs open the

likelihood of the victim coming back to the main tab and closing it is reduced.

To add to this effect Tabnabbing can be used to refresh the page after the user leaves it, to
update the favicon and appearance to seem similar to popular websites like YouTube,
Google or Facebook so that the page blends in with the other tabs the victim would usually
have open.

Botnets based attacks:
The following attacks can be performed using an HTMLS5 botnet:

1) Application-level DDoS attacks
2) Email Spam
3) Distributed password cracking

DDoS Attacks:

Application-level DDoS attacks on websites are becoming increasingly common with even
sites like Twitter being affected. Usually these attacks involve large number for HTTP
requests to specific sections of the website that could potentially be resource intensive for

the server to process.

Background JavaScript threads that were started using WebWorkers can send cross domain
XMLHttpRequests even though the remote website does not support it. The Cross Origin

Request security restriction is only on reading the response.

A website that does not support Cross Origin requests will also process these request
thereby creating load on the server. A simple request like

http://www.target.site/search product.php?product id=% when sent in large numbers can

create serve performance issues on the server.

A browser can send surprisingly large of GET requests to a remote website using COR from

WebWorkers. During tests it was found that around 10,000 requests/minute can be sent from

© Attack & Defense Labs, http://www.andlabs.org

http://www.target.site/search_product.php?product_id=%25

Attacking with HTML5

a single browser. With even a very small botnet of just 600 zombies we would be sending
around 100,000 requests/sec, depending on the nature of the page being requested this could
be enough to bring a website down.

Email Spam:

Spam mails are largely sent using open-relay mail servers and botnet zombies. Though it
would not be possible to a regular open-relay mail server from JavaScript still it would be

possible to send such spam mails through the web equivalent of open-relay mails servers.

Many websites have feedback sections which ask the user to enter their name, email ID,
subject and feedback. Once these are entered and the form is submitted, the server would
craft this in the form of an email, with hard-coded from and to mail addresses and send it to

the internal mail server.

Poorly designed websites would contain the from and to mail addresses in hidden form
fields on the browser and by overwriting them to external addresses it should be possible to
send mails with spoofed addresses if the company’s mail server is also configured to operate

in an open-relay mode.

Since only GET requests can be sent through COR, the feedback form should either be
sending all data in QueryString or it should be be differentiating between QueryString and
POST parameters. Alternatively if it is JSP page then HTTP Parameter Pollution can be used
to submit forms over GET.

Distributed Password Cracking and Ravan:

Password cracking has always been a task assigned for programs written in native code with
performance enhancement by writing some sections in Assembly. With its relatively slower
execution rate JavaScript has never been considered for performing such resource-intensive

tasks.

Things however have changed, JavaScript engines in modern browser are becoming
increasingly fast and the concept of WebWorkers allows creation of dedicated background
threads for the purpose of password cracking. During our tests it has been possible to
observe password guessing rates of 100,000 MD5 hashes/second in JavaScript.

This figure is still slow compared to native code which can easily loop through a few million
MD?5 hashes/second on a machine with similar configuration. The JavaScript approach has
been found to be on an average about 100-115 times slower than that of native code but it
more than makes up for it in scalability. ~100 machines running the JavaScript password
cracking program can match the cracking rate of one machine running a similar program

written in native code.

© Attack & Defense Labs, http://www.andlabs.org

Attacking with HTML5

As shown in the previous sections it would be very easy to build a botnet of a few thousand
zombies executing our JavaScript password cracker in the background. Even with 1000
zombies our cracking rate would be equivalent to that of having 10 machines of similar
configurations running a password cracked written in native code. An effective botnet
creation effort could potentially get hundreds of thousands of such zombies to crack

password hashes providing unimaginable computing capability.
Ravan:

Ravan, is a JavaScript distributed password cracker that uses HTML5 WebWorkers to
perform password cracking in background JavaScript threads. The current implementation
supports salted MD5 and SHA hashes.

At present it cracks password in pure brute force mode, there is another mode being worked
on which would be an intelligent variation of brute force attack where combinations that
have statistically been proven to be used more often by users are tried before the less

probable combinations.

Though plain MD5 and SHA-1 hashes can be cracked at eye-blinking speeds using Rainbow
tables, salted-hashes are resistant to Rainbow table based attacks and brute force is often the

only option left.

Ravan is a web based tool that has three components:
Master: The browser that submits the hash

Worker: The browsers that performing the cracking

Web Interface: The central medium that proxies messages between the master and the

workers

When a master submits a hash on the web interface for cracking, a unique hash ID is

generated by Ravan along with an URL containing this ID.

This URL must be sent to all the workers that would be performing the actual cracking from

their browsers.

The cracking process is broken down in to smaller chunks of work. Each chunk or slot refers

to 20 million combinations.

As new workers join they are allotted certain slots of work and on completion and
submission of results more slots are allotted to them. The process of co-coordinating the
slots amongst the workers and monitoring the cracking process is done in JavaScript in the

master’s browser.

© Attack & Defense Labs, http://www.andlabs.org

Attacking with HTML5

The web interface acts as proxy between the master and the workers by relaying messages

both ways.

This system is meant to be used for legitimate reasons and requires the explicit permission

of workers before beginning execution on their machine.

\1; © Attack & Defense Labs, http://www.andlabs.org

Attacking with HTML5

References:

1. HTMLS5 Security CheatSheet - http://code.google.com/p/html5security/
Shell of the Future - http://www.andlabs.org/tools.html#sotf

3. Next Generation Clickjacking - http://www.contextis.co.uk/resources/white-

papers/clickjacking/Context-Clickjacking white paper.pdf
OWASP ClickJacking Guide - http://www.owasp.org/index.php/Clickjacking
5. Chrome and Safari users open to stealth HTML5 AppCache attack -
http://blog.andlabs.org/2010/06/chrome-and-safari-users-open-to-stealth.html
6. Imposter - http://www.andlabs.org/tools.html#imposter
Hacking Facebook with HTMLS5 - http://m-austin.com/blog/?p=19

“? © Attack & Defense Labs, http://www.andlabs.org

http://code.google.com/p/html5security/
http://www.andlabs.org/tools.html#sotf
http://www.contextis.co.uk/resources/white-papers/clickjacking/Context-Clickjacking_white_paper.pdf
http://www.contextis.co.uk/resources/white-papers/clickjacking/Context-Clickjacking_white_paper.pdf
http://www.owasp.org/index.php/Clickjacking
http://blog.andlabs.org/2010/06/chrome-and-safari-users-open-to-stealth.html
http://www.andlabs.org/tools.html#imposter
http://m-austin.com/blog/?p=19

