
A Simpler Way of Finding 0day

Robert Graham
David Maynor
Errata Security

Abstract: Instead of reverse engineering vulnerabilities to find 0day, hackers can
now reverse security products. More and more companies are buying and
commercializing 0day vulnerabilities and exploits. This includes offensive hacking
toolkits, and also defensive products like vulnerability assessment appliances,
intrusion detection systems, and intrusion-prevention systems. In this paper, we will
demonstrate that it’s possible to crack open a defensive product in order to get its
0day information. While we focus on one particular example here, the techniques
are directly applicable to most other security products.

0Day – Early Protection and Competitive Differentiation
Buying and selling vulnerability information is not new in the underground, but it’s new
in the legitimate corporate world. Companies who specialize in vulnerability brokering
have emerged from the shadows and are rapidly becoming a legitimate part of a good
security strategy. Well known security vendors like IBM-ISS1, Symantec2, 3Com-
TippingPoint, and eEye3 all have groups of researchers who find 0day4 flaws in the
hopes that this edge will help sell products or services. Vulnerabilities are digital
munitions and their brokers share a lot in common with arms dealers.

Undisclosed vulnerabilities have benevolent and malevolent value in a number of ways:

Benevolent

• Companies who buy vulnerabilities can show their product protecting against a
vulnerability longer than their competitors

• Companies who discover vulnerabilities can show that their expertise is as good
as any hacker by the quality of the vulnerabilities they find

• Companies can use their vulnerabilities in advanced penetration tests to
demonstrate what a well-funded, determined attacker can do

o Some companies like ImmunitySec and CORE sell offensive toolkits for
use in “cyber warfare5” by “cyberoperators6” for reconnaissance or to
attack and perhaps cripple critical infrastructure components of their
adversary.

• Customers who subscribe to 0day information can find other ways of mitigating
the threats without relying upon vendor solutions

Malevolent:

• Vulnerabilities can be used to spread malware, help increase botnets numbers, and
to steal information

The 0Day Risk
However, making 0day information available for a price can result in a serious problem
for vulnerability brokers. How do you tell a secret without letting the wrong people
know? In the case of vulnerability commercialization it is almost impossible.

Take for example an Intrusion Prevention System (IPS) vendor buying 0day
vulnerabilities to produce signatures. Those signatures contain information about the
vulnerability and/or exploit. If these signatures are “open” to customers, the customers
could potentially use those signatures to reverse engineer the 0day vulnerability and
create their own 0day weaponized exploits.

Therefore, vulnerability brokers must do their best to hide the information, such as by
encrypting signatures or giving vague research reports. However, as the DRM industry
has shown, anything that a company does to encrypt information can be reverse
engineered. When companies ship encrypted rules to their customers, hackers can
intercept and decrypt that information, find the vulnerability, and develop weaponized
exploits.

Further, hackers can develop new exploits based upon a signature that mutate that exploit
so the signature doesn’t catch it. Thus, shipping 0day signatures can endanger both the
market as a whole, as well as a company’s own customers.

Should we eliminate 0day in products?
Not necessarily. Everything that helps the defender has the potential of helping the
attacker, 0day in defensive products is no different.

While it’s theoretically impossible to ever protect secrets in products, vendors can do
more to protect their information. The DRM vendors provide a good example. While
DRM in both Windows and Apple products has been broken, their latest version haven’t
been broken recently. Unfortunately, most security products we have looked at have not
taken this level of effort and 0day is easily retrieved from products.

Product with 0day
Many network security products claim to provide protection against 0day vulnerabilities.
These vendors make attractive targets for hackers parties who to find 0day with as little
effort as possible. Some of these vendors are ISS-IBM7, eEye, 3Com-TippingPoint,
McAfee, and Symantec. 3com is one of the best know vendors to target because of their
Zero Day Initiative8 (ZDI). This public program purchase vulnerability information from
a larger community of external researchers.

Examination of advisories published by ZDI show there are often significant periods of
time between their protection and a vendor’s patch. Below is a random sample of
advisories produced by the ZDI in 2007 that illustrate how long an hacker would have to
make use of information reverse engineered from TippingPoint:

• 3Com-TippingPoint ZDI-07-038 Microsoft Internet Explorer Prototype
Dereference Code Execution Vulnerability

o Digital Vaccine released: October 10th, 2006
o Patch issued by vendor: June 12th, 2007
o Exposure time (roughly): 7 months

• ZDI-07-010 Apple Quicktime UDTA Parsing Heap Overflow
Vulnerability

o Digital Vaccine released: May 23rd, 2006
o Patch issued by vendor: March 7th, 2007
o Exposure time (roughly): 8 and a half months

• ZDI-07-013 Kaspersky AntiVirus Engine ARJ Archive Parsing Heap
Overflow Vulnerability

o Digital Vaccine released: December 12th, 2006
o Patch issued by vendor: April 5th, 2007
o Exposure time (roughly): 4 months

Because the ZDI is one of the largest buyers of 0day, and there is a long lag before
vendors ship patches, they are the most attractive target for harvesting 0day information.
In addition to being able to reproduce the vulnerability, seeing the signatures will tell the
hacker how to evade the IPS.

Intrusion-prevention products have a wide-range of architectures. Some products, such as
the one we worked on at ISS-IBM, use binary state-machine protocol-parsers. Other
products, such as Snort, store regex patterns within text files. A text file containing
patterns is much easier to read than binary state machines.
3Com-TippingPoint’s rules are stored in a flat XML based file. All we need to do in
order to retrieve the rules is to reverse engineer the encryption protecting that file.

TippingPoint is therefore an attractive target. The ZDI program buys a lot of 0day, there
is a long lag before vendors fix the 0day, and their technology presents the 0day
information in an easy-to-read format.

Analyzing the Target
We start by viewing the rule file in a hex editor. Normally TippingPoint rule files are
named with a number scheme so it is easy to tell what version the rule set is. The scheme
looks like SIG_2.2.0_5733.pkg or SIG_1.4.2_1522.pkg. Our example file has been
named tp_rules.sig so that exact versioning cannot be identified. Below is a
screenshot of tp_rules.pkg loaded in a hex editor9.

Figure 1 Hex editing the TippingPoint signature rule update file.

Several things are noticeable in this file. It is not a regular compressed archive and after
offset 0xb4 the byte distribution looks random enough to suggest it is encrypted. There is
what looks like two tags in the file, TPPA. Since one of the tags is the first 4 bytes of the
file it is safe to assume this is some sort of magic number. There is also a string
payload.data which may indicate that a process reads the signature file in, parses
some type of file header, extracts a certain amount of the file and decrypts the rest of the
data (that contains the signatures). The size of the file can also give clues. This file is
891KB, which could be a few different things. It could mean that the file contains the
entire rule set and is compressed or that TippingPoint only does incremental updates by
sending just the rules that have been added or changed. The file extension is generic
enough, .pkg, that it does not actually help in the evaluation.

Since it is unlikely any more information can be gained from just the rule file moving to
an evaluation of the actual TippingPoint hardware and file system is the next step. Since a
TippingPoint box is pretty much a basic PC with a custom network processing board
attached, no complex methods will be required to read the disk image. This means that
the OS is installed on a standard IDE hard drive that can be cloned or analyzed by any
forensics tool. At this stage a copy of the TippingPoint hard drive is made using a Linux
machine and the “dd” command.

The TippingPoint IPS runs on VxWorks10, an embedded operating system, but the file
system can still be read by most Linux distributions and Mac OS X. (Many products,
such as McAfee’s Intruvert, is similarly based on VxWorks, while other product, such as
ISS-IBM Proventia, are based on Linux). After the copy 4 partitions are discovered each
containing somewhat familiar looks files and directories. The partitions are /boot,
/opt, /usr, and /log. The most obvious thing to do at this point is to search the

partitions for keywords that could reveal where the signatures are kept. Words like
“signature”, “rules”, “*.pkg”, “message”, and “logs”. Most of these searches will yield
nothing but a message file is found on the 4th partition and the rule file is found on the 3rd
partition. The rule file is found in /usr/vaccine/dv/ but it is still encrypted. On the same
partition a likely location is found, /usr/usdm/ver2/base, that contains files that would
support the signature file but none actually contain any signatures.

Figure 2 Possible location of signature file

Analysis of the log file reveals more information that will be used in disassembly later. It
shows the logging information for an update including the extraction of
payload.data, its verification, processing of the rules, and deleting of the
intermediate files. There are plenty of logging strings that can be used to step through a
binary and trace what is being done to the file at what point. VxWorks has a single binary
that contains all of the executable code for the operating system and applications. This
binary can be found in the /boot directory in the current version directory and called
vxWorks. This file needs to be disassembled and analyzed. IDA Pro11 is the tool used
for this as it can support many different processors and binary types. IDA Pro does not
have a specific target for VxWorks so a lot of the automated analysis will not be
performed so a lot of the binary will have to be analyzed by hand.

Figure 3 /log/sys/message.log

When the vxworks file is initially loaded a choice is given between loading it as a
binary file or an a.out file. Loading it as an a.out file will get a lot of analysis but it
will also get a lot of things wrong because a lot of guesses are being made. In order to
help IDA analyze as much as possible the correct loading offset for the VxWorks image
must be found. The offset can be found by examining the file in a hex editor and looking
for a file header.

Figure 4 IDA Pro binary load screen

Figure 5 IDA Pro incorrectly disassembling strings and assembly

After examining the boot loader, called bootrom in /boot/<current version>/rom the
loading offset appears to be read from offset 0x14 of the VxWorks file. The value found

there is 0x108000. This is used to rebase the image in IDA Pro and start another analysis
of the binary with increased accuracy in the results. The results are still far from optimal
with problems like strings not being detected correctly. Searching through the binary will
reveal strings for standard C programming function names, located adjacently. After
these strings is what looks like a symbol table. IDA Pro is flexible enough to support a
scripting language called IDC which can be used to automate a lot of the cleanup tasks.

Figure 6 IDC script to fix strings and symbol table

In addition to the symbol table the auto-analysis misses detection of numerous functions.
Since this VxWorks software was designed to run on a Intel x86 processor it has a
standard function prologue of 0x55/0x89/0xE5 in hex or push ebp, mov ebp, esp in
assembly. Creating another IDC script that can recognize the prologue and mark
functions accordingly will shorten the analysis time. The scripts created for this
demonstration are simple with hardcoded offsets for the strings and symbol table. These
hardcoded offsets need to be changed for new versions of the image.

When the VxWorks image has undergone as much analysis and cleanup as possible
locating the strings from the message.log file will be possible allowing for a trace of
the update process. The first string that looks like it is exclusively part of the installer is
“calling install with –<file name>--“. This string is used in the function _upPkgTask.
Understanding what this function does with the rule file, how the information is
processed, and what values are important in the file header is essential in decrypting the
rule set.

Figure 7 A structure definition of the TippingPoint rule file header for Hex Workshop

Using a new found understanding of the rule file header a type library can be built for a
hex editor that shows what variables have what values. This is similar to defining a
structure in C programming. Some of the interesting things about the file header include
the payload.data string being used as the name of the output file. The three
important static offsets are at fixed locations in the file. These offsets are for the position
of the encryption key, its length, and the position of payload. The actual
encryption/decryption is handled by OpenSSL and requires a certificate called
signer.pem which can be found in the /boot/ssl directory of the disk image.

Figure 9 A decompilation of reading a key from the signature update file using Hex
Rays12

The actual extraction, decryption, and decompression happens in a specific function.
Calling this function from a standalone program will yield the ability to decrypt and untar
the resulting archive. The archive contains a directory structure of usdm/ver2/base that
contains a number of files, one of them is signatures.xml.

Figure 10 _pkgVerify and _pkgPayloadOpen being called from _pkgPayloadExtract

Signatures.xml is a flat text file containing all the current rules for TippingPoint.
Rules that contain 0day information are marked with a ZDI number so searching for the
string “ZDI” will yield rules that have been disclosed and rules that have yet to be
disclosed.

Figure 11 decrypting the rules and extraction

Figure 12 A canned description for an undisclosed ZDI rule.

Snippet Information for Accessing 3Com-TippingPoint
ZDI filters
TippingPoint IPS signatures have many parts and are in a XML format. Most of the
options do not matter and are used for informational purposes for interactions with the
GUI and providing information when a rule is tripped. The two pieces of information that
matter are enclosed in the triggers and tests tags. The TippingPoint approach is to reduce
the amount of computationally expensive matches as possible. This is accomplished by
having traffic pre-analyzed with a simple pattern match, then post-analyzed with a more
complicated regular expressions (using PCRE).

Below is a picture of the rule for MS03-026 DCOM vulnerability that was used in the
Blaster work. Note the trigger is just a subset of the payload.

Figure 13 TippingPoint’s MS-03-026 DCOM Rule

Case Study: The Apple 0day
In April of 2007, the CanSecWest security conference sponsored what they called the
“PWN 2 0WN” contest. Attendees were given a chance to prove their skills. If they could
break into fully patched Apple notebooks, they would win the notebooks as a prize.
TippingPoint’s ZDI also offered $10,000 to the winner.

Din Dai Zovi won the contest through an 0day in QuickTime that he discovered through
fuzzing. After the contest, TippingPoint updated their product with a signature. After
decrypting the signature, we were able to find some interesting strings.

TippingPoint triggered on a number of interesting items. Two strings in particular were
“QTPointerRef” and “getSize”.

Googling these strings leads us to a lot of explanations about where the vulnerability is.
One interesting page is this one from Apple. Notice all the buffer copy operations.
http://developer.apple.com/documentation/Java/Reference/1.4.1/Java141API_QTJ/quickt
ime/util/QTPointerRef.html

What we see here in the vulnerability is that QuickTime has a Java wrapper around
internal QuickTime functions written in C. While Java protects against overflows in its
own buffers, it cannot protect against overflows in the C functions that it calls. The
underlying functions that it calls provide little or no protection against buffer overflows.

Google also gives us a number of code fragments to work from. We can take those code
fragments. The TippingPoint signature also gives us the value 0x7fffffff, which is also a
strong hint to us that we should we should be creating integer overflows in values sent
into copyToArray.

Some curious things come out of this. The first is that the TippingPoint signature is
specific to the exploit. Changing one character in the exploit, for example, will bypass
detection. Second, it appears that this signature could easily trigger on a lot of QuickTime
objects that contain Java code. That’s probably a good thing, though, because, it appears
that the Java interface is too powerful. Indeed, Apple appears to have shipped multiple
patches after the CanSecWest contest.

Other 0day nexuses
We’ve had a chance to look at many defensive security products.

Some products are “flat” pattern-match systems (they do little decoding of protocols
other than the TCP/IP stack), and others are based on protocol-parsers. They still often
look for regex patterns, but those patterns are tightly restricted to a certain context. In
other words, whereas Snort has the “uricontent” for searching for a pattern in the context
of an HTTP URL, these products
 will have potentially hundreds of contexts within which to search for patterns.

The Intruvert product from McAffee is itself interesting. Their protocol parsers are
expressed in an XML-based state-machine language. This gives more accurate detection
than a pattern-matching product using regex, but at the same time, it more accurately tells
the hacker how to build a packet that will trigger a vulnerability.

This work has interesting implications for an open-source product like Snort. A long
standing criticism of Snort was that vendors could provide “private” content that hackers
could not see, in advance of official announcement of vulnerabilities. Instead, since all
vendors can have their signatures cracked, the openness of Snort’s signatures is less of a
disadvantage.

http://developer.apple.com/documentation/Java/Reference/1.4.1/Java141API_QTJ/quicktime/util/QTPointerRef.html
http://developer.apple.com/documentation/Java/Reference/1.4.1/Java141API_QTJ/quicktime/util/QTPointerRef.html

We have also spent some time with anti-virus vendors. Most provide their signature
updates either as an unencrypted file, or a file that is simply obfuscated. Unfortunately,
we haven’t found anything useful to do with that information. AV vendors trigger on
patterns found within malware, unfortunately, those patterns can’t be used for much of
anything other than identifying that malware.

There are three popular hacking toolkits: CORE Impact13, ImmunitySec CANVAS14, and
HD Moore’s Metasploit15. The first two are commercial, and last is open-source. The
commercial vendors develop and buy 0day exploits. Other people sell their own 0day
exploits as plug-ins for these tools.

These toolkits are quite large, including a lot of library code (such as RPC stacks) as well
as interpreted languages like Ruby and Python. They are too large for malware hackers,
such as those who create botnets. However, we have found cases where botnet writers
have extracted exploits from the toolkits and rewritten them in a small C module (such as
capturing the packets, then blindly replaying them over TCP).

How to protect your signatures
We feel a good technique for protecting signatures is to “pre-compile” them.

Many products, such as the one shown above, send PCRE regular expressions to the
customer. The customer’s product then compiles them. Instead, the vendor can run the
PCRE compilation step at the factory, then send the binary “blob” to the customer.
Techniques for doing this are published on http://www.pcre.org.

Again, hackers could defeat this in theory, but it would be much, much harder.

Conclusion
In this presentation we have shown that 0day exploit information can easily be harvested
from security products. Many defensive vendors include 0day information as part of their
offerings. While security vendors attempt to encrypt or obfuscate such information,
standard reverse engineering tools can be used to decrypt it. Once decrypted, that
information can often be turned into weaponized exploits. While we use TippingPoint as
an example, any vendor who ships 0day has the same type of risk. With broader
knowledge of this problem, we hope that all vendors will take additional steps to prevent
disclosure
.

1 IBM Internet Security Systems - http://xforce.iss.net/
2Symantec -
http://www.symantec.com/enterprise/security_response/weblog/security_response_blog/vulnerabilities_exp
loits/
3 eEye - http://research.eeye.com/
4 0day - A undisclosed or unpacthed flaw in software that can cuase unintended consequences like
additional levels of access or higher privileges
5 Cyber warfare - http://en.wikipedia.org/wiki/Cyber-warfare

6 Cyberoperator - http://taosecurity.blogspot.com/2007/06/hope-for-air-force-cyberoperators.html
7 Disclosure: We used to work for ISS.
8 3com Zero Day Initiative - http://www.zerodayinitiative.com/
9 Hex Workshop - http://www.hexworkshop.com/
10 VxWorks - http://www.windriver.com/vxworks/
11 IDA Pro - http://www.datarescue.com/idabase/
12 Hex Rays - http://hexblog.com/2007/04/decompilation_gets_real.html#more
13 Core Security - http://www.coresecurity.com/
14 Immunity Sec - http://www.immunitysec.com/products-canvas.shtml
15 Metasploit - http://www.metasploit.com/

	0Day – Early Protection and Competitive Differentiation
	The 0Day Risk
	Should we eliminate 0day in products?
	Product with 0day
	Analyzing the Target
	Snippet Information for Accessing 3Com-TippingPoint ZDI filters
	Case Study: The Apple 0day
	Other 0day nexuses
	How to protect your signatures
	Conclusion

