A Simpler Way of Finding Oday

Robert Graham
David Maynor
Errata Security

Abstract: Instead of reverse engineering vulnerabilities to find Oday, hackers can
now reverse security products. More and more companies are buying and
commercializing 0Oday vulnerabilities and exploits. This includes offensive hacking
toolkits, and also defensive products like vulnerability assessment appliances,
intrusion detection systems, and intrusion-prevention systems. In this paper, we will
demonstrate that it’s possible to crack open a defensive product in order to get its
Oday information. While we focus on one particular example here, the techniques
are directly applicable to most other security products.

ODay — Early Protection and Competitive Differentiation

Buying and selling vulnerability information is not new in the underground, but it’s new
in the legitimate corporate world. Companies who specialize in vulnerability brokering
have emerged from the shadows and are rapidly becoming a legitimate part of a good
security strategy. Well known security vendors like IBM-ISS*, Symantec?, 3Com-
TippingPoint, and eEye® all have groups of researchers who find Oday* flaws in the
hopes that this edge will help sell products or services. Vulnerabilities are digital
munitions and their brokers share a lot in common with arms dealers.

Undisclosed vulnerabilities have benevolent and malevolent value in a number of ways:

Benevolent
e Companies who buy vulnerabilities can show their product protecting against a
vulnerability longer than their competitors
e Companies who discover vulnerabilities can show that their expertise is as good
as any hacker by the quality of the vulnerabilities they find
e Companies can use their vulnerabilities in advanced penetration tests to
demonstrate what a well-funded, determined attacker can do
0 Some companies like ImmunitySec and CORE sell offensive toolkits for
use in “cyber warfare®” by “cyberoperators®” for reconnaissance or to
attack and perhaps cripple critical infrastructure components of their
adversary.
e Customers who subscribe to Oday information can find other ways of mitigating
the threats without relying upon vendor solutions

Malevolent:

e Vulnerabilities can be used to spread malware, help increase botnets numbers, and
to steal information



The ODay Risk

However, making Oday information available for a price can result in a serious problem
for vulnerability brokers. How do you tell a secret without letting the wrong people
know? In the case of vulnerability commercialization it is almost impossible.

Take for example an Intrusion Prevention System (IPS) vendor buying Oday
vulnerabilities to produce signatures. Those signatures contain information about the
vulnerability and/or exploit. If these signatures are “open” to customers, the customers
could potentially use those signatures to reverse engineer the Oday vulnerability and
create their own Oday weaponized exploits.

Therefore, vulnerability brokers must do their best to hide the information, such as by
encrypting signatures or giving vague research reports. However, as the DRM industry
has shown, anything that a company does to encrypt information can be reverse
engineered. When companies ship encrypted rules to their customers, hackers can
intercept and decrypt that information, find the vulnerability, and develop weaponized
exploits.

Further, hackers can develop new exploits based upon a signature that mutate that exploit
so the signature doesn’t catch it. Thus, shipping Oday signatures can endanger both the
market as a whole, as well as a company’s own customers.

Should we eliminate Oday in products?

Not necessarily. Everything that helps the defender has the potential of helping the
attacker, Oday in defensive products is no different.

While it’s theoretically impossible to ever protect secrets in products, vendors can do
more to protect their information. The DRM vendors provide a good example. While
DRM in both Windows and Apple products has been broken, their latest version haven’t
been broken recently. Unfortunately, most security products we have looked at have not
taken this level of effort and Oday is easily retrieved from products.

Product with Oday

Many network security products claim to provide protection against Oday vulnerabilities.
These vendors make attractive targets for hackers parties who to find Oday with as little
effort as possible. Some of these vendors are 1SS-IBM’, eEye, 3Com-TippingPoint,
McAfee, and Symantec. 3com is one of the best know vendors to target because of their
Zero Day Initiative® (ZDI). This public program purchase vulnerability information from
a larger community of external researchers.

Examination of advisories published by ZDI show there are often significant periods of
time between their protection and a vendor’s patch. Below is a random sample of
advisories produced by the ZDI in 2007 that illustrate how long an hacker would have to
make use of information reverse engineered from TippingPoint:



e 3Com-TippingPoint ZDI-07-038 Microsoft Internet Explorer Prototype
Dereference Code Execution Vulnerability
o Digital Vaccine released: October 10", 2006
o Patch issued by vendor: June 12", 2007
0 Exposure time (roughly): 7 months
e ZDI-07-010 Apple Quicktime UDTA Parsing Heap Overflow
Vulnerability
o Digital Vaccine released: May 23", 2006
o Patch issued by vendor: March 7", 2007
0 Exposure time (roughly): 8 and a half months
e ZDI-07-013 Kaspersky AntiVirus Engine ARJ Archive Parsing Heap
Overflow Vulnerability
o Digital Vaccine released: December 12", 2006
o Patch issued by vendor: April 5, 2007
0 Exposure time (roughly): 4 months

Because the ZDI is one of the largest buyers of Oday, and there is a long lag before
vendors ship patches, they are the most attractive target for harvesting Oday information.
In addition to being able to reproduce the vulnerability, seeing the signatures will tell the
hacker how to evade the IPS.

Intrusion-prevention products have a wide-range of architectures. Some products, such as
the one we worked on at ISS-IBM, use binary state-machine protocol-parsers. Other
products, such as Snort, store regex patterns within text files. A text file containing
patterns is much easier to read than binary state machines.

3Com-TippingPoint’s rules are stored in a flat XML based file. All we need to do in
order to retrieve the rules is to reverse engineer the encryption protecting that file.

TippingPoint is therefore an attractive target. The ZDI program buys a lot of Oday, there
is a long lag before vendors fix the Oday, and their technology presents the Oday
information in an easy-to-read format.

Analyzing the Target

We start by viewing the rule file in a hex editor. Normally TippingPoint rule files are
named with a number scheme so it is easy to tell what version the rule set is. The scheme
looks like SIG 2.2.0 5733.pkg or SIG_1.4.2 1522.pkg. Our example file has been
named tp_rules.sig so that exact versioning cannot be identified. Below is a
screenshot of tp_rules.pkg loaded in a hex editor®.



H Hex Workshop - [tp_rules.pka]

File Edit Disk Options Tools indow Help s
E=EHE ¥ B m@m BISLOFD BE =

S »ED2E2 a | &+ - o= oz D araa]||E | e B

00000000 (5450 5041 0000 0003 0000 OOEB4 0OOOO OOEBO OOO4 0000 0202 0000 4415 (IPPA......... ... . ..., D. »

0000001A[B334 0000 1625 7061 796C BFel 642E k461 7461 0000 0000 0OOOO 0000 .
00000034 (0000 0000 0000 0000 0000 0000 OOOD 0000 0000 0000 0000 oooo oooo
0000004E (0000 0000 0000 0000 0000 0000 OOOO 0000 0000 0DOO OOE4 OOOO 0018
00000068 (0000 OOCC 000D ED28 OOBC EBO0 OOOO OOOOQ 0000 0000 0000 oooo oooo
00000082 (0000 0000 0000 0000 0000 0000 OOO1 0000 0000 0000 0000 OOOD EDEF4
0000002C (0000 0080 0202 0040 1625 0004 BAZ0 2969 C12F 4EAZ 5450 5041 A2A2)....... @.%... J)i./M.TPPA..
00000086 [9AA3 16C9 7745 735B SFDE SFFC 9FR8 2242 FOC3 3554 CD27 BOFO D305|....wEs[.._..h"...5T.'....
00000000 (SEFE C35E 36DS 2D3B 00FA 323F 1FS8 A80A 5D22 FSYD e7D7 3D77 E797|...[6.-:

000000EA [B04F FE24 866D 3509 03DB Z228F SeDC DED2 9A40 DAODS 827D ABEC 3E0S5)|.0.%5.

00000104 (4D25 BOSY 114C 6206 FDOF 60ED BF3B 8759 177D Be0S 0DAGB3 FO43 FF1F e N .
0000011E [ODEC DESA 4415 7E11 0F13 EEF1 4EZE 72DC 4F33 AF19 EFAZ 4429 074F|....D.".....N.r.

00000138 [CA93 AC3C 06DA A461 FEES E35C 6491 9028 BFA6 A3Y0 BEZ10 C8FE DOFF|..

00000152 [FA32 EF37 9E99 Fe97 IFFE 1ECS 9Ce5 9E1A 1EE3 Z1A1 D7AS B37C SF36|.2.

0000016C [1E1C 8088 9460 0877 277F 6940 9358 0642 7C9A 3AZ4 EREA 1CO0D DY9DA|..... Cuw'Li@KUBl LS. ...
000001686 [EECY 3DAS 6168 9BBE 8F38 F540 7852 0131 2C3C EES6 DRAF 214B 0AF9|n.=.ah...8.@xR.1.<.V..lK.. »

SigAyz ] SIG_1.42 .. tp_rules.pkg
ﬁ Pffset: _’;JJ anpare Results |AI\ jJ

9B Sigred Byte a4 e Source Count Target Count:

8B Unsigned Byte 54
15811 Signied Short 20564

15BIT 1 Iiored Shevk _2ricde bt & >
\Data Inspector j{ Skructure Yiewer / \Eompare A Checksum ;?\Find }\ Baokmarks }\ Cukput f
Ready Offset: 00000000 Valug: 20564 913012 bytes QYR

Figure 1 Hex editing the TippingPoint signature rule update file.

Several things are noticeable in this file. It is not a regular compressed archive and after
offset Oxb4 the byte distribution looks random enough to suggest it is encrypted. There is
what looks like two tags in the file, TPPA. Since one of the tags is the first 4 bytes of the
file it is safe to assume this is some sort of magic number. There is also a string
payload.data which may indicate that a process reads the signature file in, parses
some type of file header, extracts a certain amount of the file and decrypts the rest of the
data (that contains the signatures). The size of the file can also give clues. This file is
891KB, which could be a few different things. It could mean that the file contains the
entire rule set and is compressed or that TippingPoint only does incremental updates by
sending just the rules that have been added or changed. The file extension is generic
enough, . pkg, that it does not actually help in the evaluation.

Since it is unlikely any more information can be gained from just the rule file moving to
an evaluation of the actual TippingPoint hardware and file system is the next step. Since a
TippingPoint box is pretty much a basic PC with a custom network processing board
attached, no complex methods will be required to read the disk image. This means that
the OS is installed on a standard IDE hard drive that can be cloned or analyzed by any
forensics tool. At this stage a copy of the TippingPoint hard drive is made using a Linux
machine and the “dd” command.

The TippingPoint IPS runs on VxWorks'®, an embedded operating system, but the file
system can still be read by most Linux distributions and Mac OS X. (Many products,
such as McAfee’s Intruvert, is similarly based on VxWorks, while other product, such as
ISS-IBM Proventia, are based on Linux). After the copy 4 partitions are discovered each
containing somewhat familiar looks files and directories. The partitions are /boot,
/opt, Zusr, and /log. The most obvious thing to do at this point is to search the



partitions for keywords that could reveal where the signatures are kept. Words like
“signature”, “rules”, “*.pkg”, “message”, and “logs”. Most of these searches will yield
nothing but a message file is found on the 4™ partition and the rule file is found on the 3"
partition. The rule file is found in /usr/vaccine/dv/ but it is still encrypted. On the same
partition a likely location is found, /usr/lusdm/ver2/base, that contains files that would

support the signature file but none actually contain any signatures.

AO® Default (108,22) L
= A ~<° - “a
. QU K L <
Mew Info | Customize Close Execute Bookmar<s

Defaull | Drefault

Figure 2 Possible location of signature file

Analysis of the log file reveals more information that will be used in disassembly later. It
shows the logging information for an update including the extraction of
payload.data, its verification, processing of the rules, and deleting of the
intermediate files. There are plenty of logging strings that can be used to step through a
binary and trace what is being done to the file at what point. VxWorks has a single binary
that contains all of the executable code for the operating system and applications. This
binary can be found in the /boot directory in the current version directory and called
vxWorks. This file needs to be disassembled and analyzed. IDA Pro*! is the tool used
for this as it can support many different processors and binary types. IDA Pro does not
have a specific target for VxWorks so a lot of the automated analysis will not be
performed so a lot of the binary will have to be analyzed by hand.



-

Yol Default (108,22) =

0O = J

New Info  : Customize Close Execute Bookmarks
—| & Default | Default

data fram pk

oad/ image,

Figure 3 /log/sys/message.log

When the vxworks file is initially loaded a choice is given between loading it as a
binary file or an a.out file. Loading it as an a.out file will get a lot of analysis but it
will also get a lot of things wrong because a lot of guesses are being made. In order to
help IDA analyze as much as possible the correct loading offset for the VxWorks image
must be found. The offset can be found by examining the file in a hex editor and looking
for a file header.



Load a new file

Load file C:A\Documents and SettingshdavehD eskiopsTF-auditvsmworks as

b ar impure [ aout Idw

Binany file

Proceszor type

Intel B30=86 processors metape w Sel

Chnalsis
| Enabled
| Indicatar enabled

Loading segrent |=:

Loading offzet

—[Option 1
Lieat seqments [ K.ernel optionz ]
[] Load resources
Rename DLL entriez
[[] Manual load [
Fill segment gaps

Loading options [ Processaor options ]
Creats FLAT group

K.ermnel optionz2 ]

System DLL directory | C:WINDOWS |

File ew  Options  Windows  Help

=H B 01 [ vl W 4] =% x|B3m]| 2 =|
ERAEA Y ASFH [ @B N | T

Boen [BB v w NX| #--w SHK=~ 7| ;

BEe IRE | £ AL

:B89CB39C

-text:009CB39D outsh zeOTN._nplnitial

_text:BO9CB39E jnb short loc_9CBA41L izelImapRule._npl

-text:B09CB3AB popa nitializeHTTPRul

.text:-889CB3A1 insb e. npInitializeF

.text:089CB3A2 insb tpRule. nplnitia

text:889CB3A3 add [edi+&En], bl lizeDnsRule. npl

text:B09CB3AG jo short near ptr loc_9CB3F8+1 nitsoftLinx._npI

tex 9CB3A8 insd nitList._npInitl

-text:08A9CB3AY popa 64 65 08 S5F 6E 70 49 6E 69 PTreeMode._nplni

.text:0O9CB3AA | 88 5F 6E 70 49 6E 69 74 45 tIPTree. npInitE

.text:BO9CB3AR loc 9CBIAR: ; CODE XREF: sub 291CC8+7396971j 70 49 SE 69 74 42 60 6E 61 ntry. npInitBina =
.text:089CB3AA jo short loc_9CB3F@ 65 4E 6F 64 65 88 5F 6E 78 rylIPTreeNode. np U@
.text:AA9CB3AC db 65h 61 72 70 49 58 54 72 &5 65 InitBinaryIPTree

-text:AA9CB3AC insh 78 54 6F 6B 65 6E 69 7R 65 ._npImapTokenize o |
.text:BO9CB3AE db 65h 78 53 74 61 74 73 00 5F 6E ._npImapStats._n = -
-text:08A9CB3AE jz short near ptr loc_9CB415+1 65 50 6F 73 74 49 6E 73 74 pImapPrePostinst al
.text:B09CB3B1 push edx 49 6D 41 78 &4 65 6C 65 74 alfl._npImapDelet e
.text:009CB3B2 jnz short near ptr loc_9CBYIE+2 6E 63 43 68 61 69 6E 80 5F  eRuleFuncChain._

.text:@09CB3BY db 65h - 65 6C 65 74 65 52 75 6C 65 npImapDeleteRule cl
e tavt-ABAPRARK ine aci | 7A  hh A5 AR AF A4 A5 5B 72 | nnTmanDecndeTe I i
Assuming __cdecl calling convention by default ~
Marking typical code sequences... =
Flushing buffers. please wait...ok 5

FI:0010DCCC | Down | Disk: 22GB

Figure 5 IDA Pro incorrectly disassembling strings and assembly

After examining the boot loader, called bootrom in /boot/<current version>/rom the
loading offset appears to be read from offset Ox14 of the VVxWorks file. The value found



there is 0x108000. This is used to rebase the image in IDA Pro and start another analysis
of the binary with increased accuracy in the results. The results are still far from optimal
with problems like strings not being detected correctly. Searching through the binary will
reveal strings for standard C programming function names, located adjacently. After
these strings is what looks like a symbol table. IDA Pro is flexible enough to support a
scripting language called IDC which can be used to automate a lot of the cleanup tasks.

B vxworks2 - Notepad

File Edit Format Yiew Help
start=0xh394h0; ~
end=0xh%cd0d ;
7 Cht=5creenEAf);
loop=0;
Message("CHNT=%xYn", <ntl;
cnt=start;
whilefent < end){
s while(loop!=100){
Messaged Currently on: %xhn', <nt);
make_\:xoffset(cntg;
make_wvxoffset{cnt+47;
name_offset=Dword{cnt);
func_off=bDword(cnt+47;
func_off=func_off-0x108000;
Messagef "Nameoffsetl=0n", name_offset);
name_offset=name_offset-0x108000;
Messagel"Name_offset2=%An", name_offset);
name=Setstringtname_offset, -1, 03;
Message("Makename at=%x with=%s“n",func_off, name);
Makename(func_off, name);
cht=cnt+0x10;

4]
Messagel"'Doneyn'l;

5

static main )

pelHotkey("z");

addHotkey("z", "Cleanup_strings"J;
pelHotkey(", "J;

AddHotkey(", ", "sym_table"];

return;

Figure 6 IDC script to fix strings and symbol table

In addition to the symbol table the auto-analysis misses detection of numerous functions.
Since this VxWorks software was designed to run on a Intel x86 processor it has a
standard function prologue of 0x55/0x89/0XE5 in hex or push ebp, mov ebp, esp in
assembly. Creating another IDC script that can recognize the prologue and mark
functions accordingly will shorten the analysis time. The scripts created for this
demonstration are simple with hardcoded offsets for the strings and symbol table. These
hardcoded offsets need to be changed for new versions of the image.

When the VxWorks image has undergone as much analysis and cleanup as possible
locating the strings from the message . 1og file will be possible allowing for a trace of
the update process. The first string that looks like it is exclusively part of the installer is
“calling install with —<file name>--“. This string is used in the function _upPkgTask.
Understanding what this function does with the rule file, how the information is
processed, and what values are important in the file header is essential in decrypting the
rule set.



I pka_hdr.hsl - Notepad

File Edit Format Yiew Help

#pragma byteorder (hig_endian)
?truct pkg_hdr

DWORD Magic:
DWORD Version;
DWORD Size;
DWORD unknwl ;
DWORD unkmws;
DWORD uUnknw3;
DWORD unknwd ;
DWORD unkmwd_m;
int name[l6];
DwWoORD key_offset;
DWoRD key_Ten;
DWoORD payload_data_start;
DWORD  unknwé;
DWORD unknw?;
DWORD unkhws;
DWORD unknwg;
DWORD unknwlo;
DWORD unknwll;
DWORD unknwlz;
DWORD unkiwl3;
DWORD unkrwld;
DWORD unknwls;
DWORD unknwla;
DWORD unknwl?;
DWORD unknwld;
DwWORD unknwl9;
DWORD Unknw20;
DWORD unknwzl;
DWORD unknw22:
DWORD Magic_tail;

Figure 7 A structure definition of the TippingPoint rule file header for Hex Workshop

Using a new found understanding of the rule file header a type library can be built for a
hex editor that shows what variables have what values. This is similar to defining a
structure in C programming. Some of the interesting things about the file header include
the payload.data string being used as the name of the output file. The three
important static offsets are at fixed locations in the file. These offsets are for the position
of the encryption key, its length, and the position of payload. The actual
encryption/decryption is handled by OpenSSL and requires a certificate called
signer .pem which can be found in the /boot/ssl directory of the disk image.



&, IDA - C:\Documents and Settings\David Maynor\Desktop\Worklaudit\WwaworksWwooworks\wxWorks-5-7.idb (wxWorks) - [Pseudoc

- EBX

- | X

signed int _ cdecl get_key_to_xor_with{int Odd_Struct,int file_des_key,int amount_returned_from_fread) -~
i
int v3; // edi@l

signed int result; // eax@5

signed int w5; // ebx@6

signed int v6; // esi@?

char *u7; ff [sp+1Ch] [bp-4h]@1

int v8; // [sp+18h] [bp-16h]@6
signed int vw?; // [sp+18h] [bp-8h]E6
int v18; // [sp+14h] [bp-Ch]@7

vy &a_tptsphinxhashbufferget[12];
u3 ={ DWORD =)&a_tptsphinxzhashbufferget[8];
if ( *={_DWORD =)(0dd_Struct + 28) *= 3 || ={(_DWORD =){0dd_Struct + 32) *= 262147 )
{
u7 = &a_tptsphinxzhashentrypreviousdata[23];
u3 = =( DWORD =)&a_tptsphinxhashentrypreviousdata[19];

¥
if
{

-

amount_returned_from_fread == 24 )

file_des_key;
8;
file_des_key + 24;

<
Ll
nmonon

IAU:ide Down | Disk: 52GE

Figugg 9 A decompilation of reading a key from the signature update file using Hex

The actual extraction, decryption, and decompression happens in a specific function.
Calling this function from a standalone program will yield the ability to decrypt and untar
the resulting archive. The archive contains a directory structure of usdm/ver2/base that
contains a number of files, one of them is signatures.xml.



IDA - C:\Documents and Settings\David Maynor\DesktopiWo rklau dithwoworksWwooworks\WwxWorks-5-7.idb (vxWor... E@E|

=] File Edit Jump Search  Wiew Options Windows Help el
S - [t BT B _ Hs=-+X|B80 ,=
EEe|EE 2 AS +H BN @7 vEeE °

Ben o0 - = NX|g- 8- SUHK-~-#|: B2 W | B&FAE
o SRB | F AL
LN
=) D4 View | [ Hex Views | 5B Evpons | BB Impors| N Names | ) Functions | *+ Stings | i Stuctwes | En Erums)
.text:088BDDAL2Z push ebx ; 0dd_Struct ~

* .text:9688BDDA43 call _pkgUerify
* .text:@08BDDY48 mov esi, eax
* .text:B808BDDY4A add esp, BCh
* .text:B@88BDDY4D test esi, esi
* .text:988BDDAF jnz loc_8BDEGB
* .text:@888BDD55 push 8aanh
* .text:@088BDD5A call _malloc
* .text:BB88BDDSF mouv [ebp+Buffer_888h], eax
* _text:@88BDD6Z add esp, 4
* .text:@OBBDD6S test eax, eax
* .text:0088BDD6T jnz short loc_8BDD7Y%
* .text:B88BDD6Y mouv esi, 66h ; "F"
* .text:BO8BDDSE jmp loc_8BDEGB
LEeRtIBBBBDDGE ; —— -
* .text:@8688BDD73 align &4
-text:A08BDD7Y
.text:008BDD74 loc_8BDD7A4: ; CODE XREF: _pkgPayloadExtract+
* .text:@08BDD7Y lea eax, [ebp+uar_AC]
* .text:B808BDD77 push eax ; int
* .text:BO88BDD78 push ebx ; 0dd_Struct
* .text:@B8BDD79 call _pkgPayloadOpen
b
< | *

00640093 | Q0BBDD73: _pkgPayloadExtract+98
Database for file 'weworks' is loaded.
Fomnilinn File 're\Eraonram Eilech Thavddehida dde!

Al idle Down  Disk: 52GB

Figure 10 _pkgVerify and _pkgPayloadOpen being called from _pkgPayloadExtract

Signatures.xml is a flat text file containing all the current rules for TippingPoint.
Rules that contain Oday information are marked with a ZDI number so searching for the
string “ZD1” will yield rules that have been disclosed and rules that have yet to be
disclosed.



# - ftp-audit

up
ing until de

»an now untar the f£ile
fri nd tp-andit] §

a zero—day vulnersbilicy

ure

For more information on the Zero Day Initia

Figure 12 A canned description for an undisclosed ZDI rule.




Snippet Information for Accessing 3Com-TippingPoint
ZDl filters

TippingPoint IPS signatures have many parts and are in a XML format. Most of the
options do not matter and are used for informational purposes for interactions with the
GUI and providing information when a rule is tripped. The two pieces of information that
matter are enclosed in the triggers and tests tags. The TippingPoint approach is to reduce
the amount of computationally expensive matches as possible. This is accomplished by
having traffic pre-analyzed with a simple pattern match, then post-analyzed with a more
complicated regular expressions (using PCRE).

Below is a picture of the rule for MS03-026 DCOM vulnerability that was used in the
Blaster work. Note the trigger is just a subset of the payload.

=] signatures - WordPad g@

File Edit Yiew Insert Format Help

DEH & # [ic) =
[Courier New | 10 v [westem v B 7 U S
;"“"'1‘“""2“"“‘3""‘"""“"'5“"'.“0""“‘7'

<triggers>
<trigger version="5500+" confidence="50">
<payloads:
<payloads
<strmatch offser="0" depth="-1">|ad 01 00 00 00 00 oo OCHNNNNNNNNE | </ strmatch>
</ payload>
</ payloadss>
</triggers
</triggerss

<“Lests>
<test version="6024+" confidence="97Mms
<protocol types"top's
<ipy
<saddr><eqe<parsm refid="ip.saddr"/></eqr</saddr>
<daddrs<eq><param refid="ip.daddr"/></eqr</daddr>
<tep>
<sport:<eqr<param refid="tep.sport"/»</egr</sports
<dport><ecg><param refid="tcp.dport”/></eq></dport>
«<established/>
<flags>A +</Lflags>
</ topsr
</ip>
</protocoly
<payloads>
<payloads
<strmatch offset="0" depth="-1">|a0 01 00 00 00 00 0O D_UU 00 00 46 00 00 00 OO 04 54 88 8a eb_lD 48 60| </=
</ payloads
<payloads
<strmateh offset="0" depth="-1">|01 10 08 00 [N </ strmatchs
</ payload>
<payloads
<strmatch offser="0" depeh="-17> | [N </ strwatch>
</ payload>
<payloads
<regex offset="0" depth="-1">(?s) "N 00 [\ x5c] {44} </ regex>
</payload> v
< E
For Help, press F1

Figure 13 TippingPoint’s MS-03-026 DCOM Rule

Case Study: The Apple Oday

In April of 2007, the CanSecWest security conference sponsored what they called the
“PWN 2 OWN?” contest. Attendees were given a chance to prove their skills. If they could
break into fully patched Apple notebooks, they would win the notebooks as a prize.
TippingPoint’s ZDI also offered $10,000 to the winner.

Din Dai Zovi won the contest through an Oday in QuickTime that he discovered through
fuzzing. After the contest, TippingPoint updated their product with a signature. After
decrypting the signature, we were able to find some interesting strings.



TippingPoint triggered on a number of interesting items. Two strings in particular were
“QTPointerRef” and “getSize”.

Googling these strings leads us to a lot of explanations about where the vulnerability is.
One interesting page is this one from Apple. Notice all the buffer copy operations.
http://developer.apple.com/documentation/Java/Reference/1.4.1/Javal41AP1_QTJ/quickt
ime/util/QTPointerRef.html

What we see here in the vulnerability is that QuickTime has a Java wrapper around
internal QuickTime functions written in C. While Java protects against overflows in its
own buffers, it cannot protect against overflows in the C functions that it calls. The
underlying functions that it calls provide little or no protection against buffer overflows.

Google also gives us a number of code fragments to work from. We can take those code
fragments. The TippingPoint signature also gives us the value Ox7fffffff, which is also a
strong hint to us that we should we should be creating integer overflows in values sent
into copyToArray.

Some curious things come out of this. The first is that the TippingPoint signature is
specific to the exploit. Changing one character in the exploit, for example, will bypass
detection. Second, it appears that this signature could easily trigger on a lot of QuickTime
objects that contain Java code. That’s probably a good thing, though, because, it appears
that the Java interface is too powerful. Indeed, Apple appears to have shipped multiple
patches after the CanSecWest contest.

Other Oday nexuses
We’ve had a chance to look at many defensive security products.

Some products are “flat” pattern-match systems (they do little decoding of protocols
other than the TCP/IP stack), and others are based on protocol-parsers. They still often
look for regex patterns, but those patterns are tightly restricted to a certain context. In
other words, whereas Snort has the “uricontent” for searching for a pattern in the context
of an HTTP URL, these products

will have potentially hundreds of contexts within which to search for patterns.

The Intruvert product from McAffee is itself interesting. Their protocol parsers are
expressed in an XML-based state-machine language. This gives more accurate detection
than a pattern-matching product using regex, but at the same time, it more accurately tells
the hacker how to build a packet that will trigger a vulnerability.

This work has interesting implications for an open-source product like Snort. A long
standing criticism of Snort was that vendors could provide “private” content that hackers
could not see, in advance of official announcement of vulnerabilities. Instead, since all
vendors can have their signatures cracked, the openness of Snort’s signatures is less of a
disadvantage.


http://developer.apple.com/documentation/Java/Reference/1.4.1/Java141API_QTJ/quicktime/util/QTPointerRef.html
http://developer.apple.com/documentation/Java/Reference/1.4.1/Java141API_QTJ/quicktime/util/QTPointerRef.html

We have also spent some time with anti-virus vendors. Most provide their signature
updates either as an unencrypted file, or a file that is simply obfuscated. Unfortunately,
we haven’t found anything useful to do with that information. AV vendors trigger on
patterns found within malware, unfortunately, those patterns can’t be used for much of
anything other than identifying that malware.

There are three popular hacking toolkits: CORE Impact*®, ImmunitySec CANVAS™, and
HD Moore’s Metasploit™. The first two are commercial, and last is open-source. The
commercial vendors develop and buy Oday exploits. Other people sell their own Oday
exploits as plug-ins for these tools.

These toolkits are quite large, including a lot of library code (such as RPC stacks) as well
as interpreted languages like Ruby and Python. They are too large for malware hackers,
such as those who create botnets. However, we have found cases where botnet writers
have extracted exploits from the toolkits and rewritten them in a small C module (such as
capturing the packets, then blindly replaying them over TCP).

How to protect your signatures
We feel a good technique for protecting signatures is to “pre-compile” them.

Many products, such as the one shown above, send PCRE regular expressions to the
customer. The customer’s product then compiles them. Instead, the vendor can run the
PCRE compilation step at the factory, then send the binary “blob” to the customer.
Techniques for doing this are published on http://www.pcre.org.

Again, hackers could defeat this in theory, but it would be much, much harder.

Conclusion

In this presentation we have shown that 0Oday exploit information can easily be harvested
from security products. Many defensive vendors include Oday information as part of their
offerings. While security vendors attempt to encrypt or obfuscate such information,
standard reverse engineering tools can be used to decrypt it. Once decrypted, that
information can often be turned into weaponized exploits. While we use TippingPoint as
an example, any vendor who ships Oday has the same type of risk. With broader
knowledge of this problem, we hope that all vendors will take additional steps to prevent
disclosure

L IBM Internet Security Systems - http://xforce.iss.net/
Symantec -
http://www.symantec.com/enterprise/security _response/weblog/security _response_blog/vulnerabilities_exp
loits/
® eEye - http://research.eeye.com/

Oday - A undisclosed or unpacthed flaw in software that can cuase unintended consequences like
additional levels of access or higher privileges
> Cyber warfare - http://en.wikipedia.org/wiki/Cyber-warfare



® Cyberoperator - http://taosecurity.blogspot.com/2007/06/hope-for-air-force-cyberoperators.html
" Disclosure: We used to work for ISS.

& 3com Zero Day Initiative - http://www.zerodayinitiative.com/

° Hex Workshop - http://www.hexworkshop.com/

19v/xWorks - http://www.windriver.com/vxworks/

L IDA Pro - http://www.datarescue.com/idabase/

12 Hex Rays - http://hexblog.com/2007/04/decompilation_gets_real.html#more

13 Core Security - http://www.coresecurity.com/

Y Immunity Sec - http://www.immunitysec.com/products-canvas.shtml

> Metasploit - http://www.metasploit.com/



	0Day – Early Protection and Competitive Differentiation
	The 0Day Risk
	Should we eliminate 0day in products?
	Product with 0day
	Analyzing the Target
	Snippet Information for Accessing 3Com-TippingPoint ZDI filters
	Case Study: The Apple 0day
	Other 0day nexuses
	How to protect your signatures
	Conclusion 

