
Structured Exception Handler
EXPLOITATION

Brian Marianihttp://www.htbridge.ch/

http://www.htbridge.ch/

What is an exception

• An exception is an event that occurs during the execution of a program

• Requires the execution of code outside the normal flow of control

Structured Exception Handling

• Blocks of code are encapsulated, with each block having one or more associated
handlers.

• Each handler specifies some form of filter condition on the type of exception it
handles

• When an exception is raised by code in a protected block, the set of corresponding
handlers is searched in order, and the first one with a matchingfilter condition is
executed

• A single method can have multiple structured exception handling blocks, and the
blocks can also be nested within each other

Exception pointers structure (1)

• Contains an exception record with a machine-independent description of an
exception

• A context record with a machine-dependent description of the processor context at
the time of the exception

Exception pointers structure (2)

• A pointer to the next exception registration structure

• A pointer to the address of the actual code of the exception handler

Thread information block
• The Thread Information Block (TIB)Thread Information Block (TIB) is a data structure in Win32 that stores

information
about the currently running thread

• At the position FS:[0x00]FS:[0x00] we found the current exception handler

Dumping SEH chain in Inmunity debugger

How SEH works?

• The exception handlers are linked to each other

• They form a linked list chain on the stack, and sit relatively close to the bottom of the
stack

• When an exception occurs, Windows retrieves the head of the SEH chain SEH chain walks
through the list and tries to find the suitable handler to close the application properly

Abusing the SEH
• When exploiting an SEH overwrite and attacker clobbers the handler attribute of the

EXCEPTION_REGISTRATION_RECORDEXCEPTION_REGISTRATION_RECORD with the address of an instruction sequence
similar to POP POP RETPOP POP RET

• When the exception occurs, this causes Windows to pass execution to this address,
which subsequently returns to the location on the stack of the Next attribute of the

EXCEPTION_REGISTRATION_RECORDEXCEPTION_REGISTRATION_RECORD

• The Next attributeNext attribute is also controlled by the attacker, but if we recall the stack layout
from earlier, the Next attributeNext attribute is below the Handler attributeHandler attribute

• This limits the attacker to 4 bytes before running into the Handler address he
previously supplied to originally obtain code execution

• However, by overwriting the Next attributeNext attribute with the instructions that jump the Handler
attribute, the attacker typically has enough room for arbitrary shellcode, and this is
exactly what happens

Overwriting the Next SEH record and SE
handler

• To check a chain of exception handlers before and after an overflow we can use
WinDbgWinDbg !exchain!exchain command

• At the left we can see the SEH chainSEH chain and the stack before the overflow occurs

• At the right we can see the pointers were successfully overwritten

What are we overwriting?

• When we performs a regular stack based buffer overflow, we overwrite the return
address of the Extended Instruction Pointer (EIP)Extended Instruction Pointer (EIP)

• WWhen doing a SEH overflowSEH overflow, we will continue overwriting the stack after overwriting
EIPEIP, so we can overwrite the default exception handler as well

Viewing the SEH beforebefore the overflow
• Before the overflow occurs we can see the stack and the SEH chain.SEH chain.

• TThe SEH chainSEH chain starts from 0x015fd0440x015fd044 down to 0x015fffdc0x015fffdc which indicates the end of
the SEH chainSEH chain

• Directly below 0x015fffe00x015fffe0, we see 0x7c839ad80x7c839ad8, which is the address of the default SE SE
handlerhandler for this application. This address sits in the address space of kernel32.dllkernel32.dll

Viewing the SEH afterafter the overflow

EIP point to 0x61616161,
so we can control the flow

of the program

Pointer to the Next record
and SEH handler was

overwritten

TIB dumping let us know
the SEH chain was

sucessfully overwritten

• Dumping the TIBTIB confirms that the SEHSEH was overwritten

• Code execution is successfully passed to the injected address 0x616161610x61616161

• Addresses 0x015fd0440x015fd044 and 0x015fd0480x015fd048 which were the Next SEHNext SEH record and SE SE
handlerhandler are now controlled.

See an exception analysis
• The command !analyze –v!analyze –v in Windbg give us more details about the triggering of the

exception

How SEH base exploit works
• When the exception is triggered the program flow go to the SE HandlerSE Handler

• All we need is just put some code to jump to our payload

• Faking a second exception makes the application goes to the next SEH pointer

• As the Next SEH pointer is before the SE handler we can overwrite the Next SEH

• Since the shellcode sits after the Handler, we can trick the SE Handler to execute POP POP

POP RETPOP RET instructions so the address to the Next SEH will be placed in EIP, therefore
executing the code in Next SEH

• The code will basically jump over some bytes and execute the shellcode

Exploiting the application

• We will exploit a vulnerability in Gogago Youtube Downloader Video ActiveX
www.gogago.net/download/youtube_video_downloader_setup.exe

• A buffer overflow is triggered after injecting more that 2230 bytes in the Download()
function

• This vulnerability could be exploited using a basic RET CALL technique

• We will use SEH based exploitation which is also functioning in this particular case

Creating the POC
• We craft an html page calling the method DownloadDownload using the CLASSID

• When we overflow the method with 2250 bytes2250 bytes with junk data we trigger an exception

Overwriting Next pointer and SE
handler

• To successfully overwrite the Next PointerNext Pointer and SE HandlerSE Handler we must calculate the exact
 number of bytes to inject

• You can use tools as pattern_createpattern_create and pattern_searchpattern_search from Metasploit, or you can do
it manually injecting buffers with different patterns

Finding POP POP RET instructions
• Finding opcodes it’s not a difficult task you can use findjumpfindjump or IDAIDA

• In this tutorial we will use WinDBG

• We launch our prove of concept and we attach to Internet ExplorerInternet Explorer. After the overflow
occurs we search the base memory address of the Gogago module MDIEex.dllMDIEex.dll

• Finally we can search for the opcodes using the s commands command

Building the exploit
• After calculating the number of bytes to overwrite the NextNext pointerpointer and SE handler SE handler we

 inject 4 bytes of code to jump to our shellcode this will replace the old SE handlerSE handler
•

Following the SE handler we inject the POP POP RET POP POP RET opcodes from the same module
of the exploited application

• Finally we inject our payload

Executing the exploit (1)

• We place a breakpoint before entering in the vulnerable method. The SE handlerSE handler that
will be overwritten sits at 0x15fa79c0x15fa79c, and corresponds to the jscript.dlljscript.dll module

Executing the exploit (2)
• After the overflow occurs we successfully overwrites the old jscript SE handlerSE handler later

code execution will be redirected to our POP POP RETPOP POP RET instructions

Redirect code execution
• The code is redirected to our fake SE Handlerfake SE Handler address

Jumping to our payload
• Jumping over 6 bytes6 bytes to reach ou shellcode starting at address 0x015fa7a40x015fa7a4

Shellcode execution
• Time to dance

Questions

brian.mariani@htbridge.ch

References
• http://msdn.microsoft.com/en-us/library/ms680663%28v=VS.85%29.aspxhttp://msdn.microsoft.com/en-us/library/ms680663%28v=VS.85%29.aspx

• http://msdn.microsoft.com/en-us/library/c68xfk56%28v=vs.71%29.aspxhttp://msdn.microsoft.com/en-us/library/c68xfk56%28v=vs.71%29.aspx

• http://en.wikipedia.org/wiki/Win32_Thread_Information_Blockhttp://en.wikipedia.org/wiki/Win32_Thread_Information_Block

• http://corelan.behttp://corelan.be

