
 
Malware reverse engineering part 1. Static 

analysis 

 

Official Malware Report 

Malware Reverse Engineering part1 of 2. Static analysis 

 

 



 
Malware reverse engineering part 1. Static 

analysis 

 

 

Contact info 

Report: Malware reverse engineering part 1. Static analysis 

Author: Rick Flores Security Engineer II  

Follow me on twitter: https://twitter.com/#!/nanoquetz9l or simply @nanoquetz9l 

Website: www.nanotechfibers.com 

Greetz to: San Diego eXploit Team, eXploitSD, iqlusion, and isomorphix 

 

Revision Summary 

Rev Description of changes Changes by: 
Review / Approval 

by: 
Date 

1.0 Malware reverse engineering 
part 1. Static analysis 

Flores, Rick N/A 01/06/2012 

 

 

Report Details 

Infected user Computer Name Malware Analyst Date 

Anonymous Dumpbin-0425x8F.anonymous.local Flores, Rick 01/06/2012 

https://twitter.com/#!/nanoquetz9l
http://www.nanotechfibers.com/
https://twitter.com/#!/eXploitSD
https://twitter.com/#!/iqlusion
https://twitter.com/#!/isomorphix


 
Malware reverse engineering part 1. Static 

analysis 

 

Table of Contents 

1. Scope..................................................................................................................................................... 4 

2. Investigation goals ................................................................................................................................ 4 

3. Malware samples analyzed ................................................................................................................... 4 

4 Malware analysis methodology, software, and secure lab setup .......................................................... 4 

5. General function and functionality of the malware............................................................................. 10 

6. Behavioral patterns of the malware and local system interaction....................................................... 10 

7. Files and registry keys created, modified and accessed...................................................................... 10 

8. Network behavior (including hosts, domains and ip’s accessed)........................................................ 13 

9. Time and local system dependant features ......................................................................................... 21 

10. Method and means of communication ................................................................................................ 22 

11. Original infection vector and propogation methodology .................................................................... 22 

12. Use of encryption for storage, delivery and or communication.......................................................... 22 

13. Use of self modifying/replicating or encrypted code.......................................................................... 23 

14. Any information concerning development of malware (compiler type, packer used, country of origin, 
author, names/handles, etc.)........................................................................................................................ 23 

15. Key questions and answers ................................................................................................................. 26 

16. Conclusions and recommendations to prevent incident from recurring ............................................. 26 

17. Followup actions and lessons learned................................................................................................. 26 

18. REFS................................................................................................................................................... 26 

 

 



 
Malware reverse engineering part 1. Static analysis 

 

1. SCOPE 

This malware report is part 1 of 2. Part 2 will focus heavily on dynamic analysis, determining 
packers/encryption used and finding original entry point (OEP) of the malware sample, and will 
utilize IDA Pro, and Immunity de-bugger extensively. We will also bypass anti-debugging, and 
anti-reversing tactics employed by attackers, and malware authors in part 2. Stay tuned! 

This report is an effort to track, categorize, contain, understand root cause and infection vector 
of said user account/s, networked equipment or computer/s. This report pertains to all incidents 
reported by TIER II help desk, TIER III engineers, customer complaints or random IT Security 
audit/finding/pen test.  

 

2. INVESTIGATION GOALS 

Determine extent of infection, network risk, determine risk of data exposure, figure out 
infection vector and propogation methods, etc. 

3. MALWARE SAMPLES ANALYZED 

3.1 Win32 Kryptik.YJA trojan variant 40dbdf4b-7db5306a.exe 

MD5 : f0d0872763058e047922ead2474943ec 

SHA1 : 5629f91e72401440024ec170430e60f50d4f4590 

SHA256 : b811b4089b36660ae089db8a7c61f2d9dc1ebfeb367ac51e55585ec8eaf1d77a 

3.2       Location C:\Documents and Settings\anonymousvictim\Local 
Settings\Temp\40dbdf4b-7db5306a.exe 

3.3 Moving forward, and for brevity I will be referring to “40dbdf4b-7db5306a.exe” simply 
as the malware sample. When you read `malware sample` in the remainder of this 
report, safely assume I am referring to 40dbdf4b-7db5306a.exe which is the malicious 
sample used as the basis of this malware report. 

3.4 Malware Sample properties. Note the Internet Explorer Developer Tools information 
recorded, and Original File Name : “iedvtool.dll” 

  "CompanyName", "Microsoft Corporation" 
  "FileDescription", "Internet Explorer Developer Tools" 
  "FileVersion", "8.00.6001.19044 (longhorn_ie8_gdr.110211-1700)" 
  "InternalName", "iedvtool.dll" 
  "LegalCopyright", "© Microsoft Corporation. All rights reserved." 
  "OriginalFilename", "iedvtool.dll" 
  "ProductName", "Windows® Internet Explorer" 

 



 
Malware reverse engineering part 1. Static analysis 

 

  "ProductVersion", "8.00.6001.19044" 
  

 

 

 

4. MALWARE ANALYSIS METHODOLOGY, SOFTWARE, AND SECURE LAB 
SETUP 

Malware Methodology 

4.1 This malware report focuses on malware static analysis but also lightly 
introduces dynamic analysis to determine if the malware sample is packed, 
armored, encrypted, and or obfuscated. There is also a very brief introduction to 
IDA Pro, and Immunity de-bugger.  

4.2 Advanced modern malware applications are either protected, obfuscated, 
encrypted (armoring) and/or packed (the original code is compressed, encrypted 
or both). This technique is applied in an attempt to evade signature based 
malware detection, and to hinder the efforts of static analysis by malware 
analysts by employing anti-reversing, anti-debugging and self-modifying code 
tactics. This malware sample is no different. The unpacking or decrypting of the 

 



 
Malware reverse engineering part 1. Static analysis 

 

malware layers remains the most complicated & sophisticated task in the overall 
process of malware analysis and finding the original entry point (OEP). True 
analysis of packed malicious binary code can only be performed after the 
payload is unpacked. Dynamic analysis goes beyond the focus of this paper, and 
will be the focus of part 2 of this malware report. Stay tuned! 

 

Software 

4.3 Software used for the analysis of the malware sample. 

1. Winalysis v3.1. Used to snapshot the OS and verify changes to the baseline after the 
malware sample has been executed. 

 

2. Mandiant Red Curtain v1.0. Look for entropy, packing indication, original entry point 
(OEP), compiler & packing signatures, digital signatures, and it generates a threat 
score.  

 

3. Mandiant Find Evil v0.1. Malware discovery tool which uses disassembly to detect 
packed executables. 

 



 
Malware reverse engineering part 1. Static analysis 

 

 

4. Resource Hacker v3.4.0.79. To view/modify Windows executable resources.  

 

5. Sysinternals Suite. All sorts of goodness! 

File Monitor. 

 

Process Explorer. 

 



 
Malware reverse engineering part 1. Static analysis 

 

 

TCP view. 

 

6. Wireshark. Used to capture all network packets, DNS requests, HTTP get requests… 
etc generated by the malware sample. 

 

7. Malicious domain research & staying anonymous during investigation. 

 



 
Malware reverse engineering part 1. Static analysis 

 

I primarily use a mixture of the following. Tor/TorSOCKS, Privoxy, anonymous.org, 
hidemyass.com, and/or a VPN connection. 

 

8. Researching malicious Domains, and IP’s. 

Query whois records. www.networktools.nl/whois 

How many malicious domains are hosted on an IP? www.networktools.nl/reverseip 

Is IP listed in SPAM blacklists? www.networktools.nl/rblcheck 

GeoIP location search/trace. www.ip-adress.com/ip_tracer/  

9. IDA Pro v6.1 

10. Immunity De-bugger v1.83 

 

Secure Lab setup. 

4.4 VMware workstation v8.0.1 build-528992. Under the guest VM I like to disable 
drag/drop, and copy/paste. I also set my host firewall to a default DROP/LOG 
ALL stance for the duration of the malware analysis, and you can also run snort 
on the host just for paranoia. I like to perform two different analysis. The same 
malware sample on a physical machine, and one on a virtual machine. I then 
compare the results and verify if the malware detected or changed its payload if 
under a VM (red pill) or tried to escape the VM sandbox (which is very possible). 
That is the reason you should have a dedicated malware machine for these 
purposes, and never be connected to the internet while analysis is underway. 
Your host machine can still be infected even if you run your guest machines 
under NAT/Bridged or host only networking modes. Being paranoid is the only 
way to survive! 

 

 

 

 

http://www.networktools.nl/whois
http://www.networktools.nl/reverseip
http://www.networktools.nl/rblcheck
http://www.ip-adress.com/ip_tracer/


 
Malware reverse engineering part 1. Static analysis 

 

5. GENERAL FUNCTION AND FUNCTIONALITY OF THE MALWARE 

5.1 This malware sample installs fake antivirus software on the victim machine. It 
attempts to trick the user with several popups that resemble valid applications 
warning that the user is infected and that he/she needs to buy the full version of 
the software in order to be fully protected. 

The malware sample’s main purpose is to steal credit card information from the victim. It 
has very extensive networking capabilities which are detailed in the Network Behavior 
section 7 of this report. 

6. BEHAVIORAL PATTERNS OF THE MALWARE AND LOCAL SYSTEM 
INTERACTION 

6.1 As soon as I executed the malware sample it immediately deleted itself.  

Meaning that the malware sample disappeared right after I double clicked/executed it. 

 

 

7. FILES AND REGISTRY KEYS CREATED, MODIFIED AND ACCESSED 

7.1 The malware sample installed/dropped the following new malicious files, and 
executables on the victim machine. 

 

 

 

 



 
Malware reverse engineering part 1. Static analysis 

 

7.2 The malware sample made 54 critical changes to the registry. 

 

 

7.3 It deleted the following registry keys from the registry. 

 

 

 

7.4 The malware sample created the following new registry keys, Subkeys, and 
values. 

 



 
Malware reverse engineering part 1. Static analysis 

 

 

 

7.5 The malware sample modified the following services on the victim machine. 

It started the BITS service with two new control parameters, and deleted the automatic 
updates service, and registry key values. This means that the malware sample has 
effectively disabled windows update, and prevented the download and installation of 
critical Windows updates for the victim machine. This most likely means that it is 
covering it tracks because it takes advantage of an existing unpatched Windows 
vulnerability, and updating the OS will likely kill/disable the 
infection/communication/propogation vector of this malware variant. 

 

7.6 Running processes before, and after the malware sample was executed. Note 
the “tyh.exe” that is now running. 

 



 
Malware reverse engineering part 1. Static analysis 

 

 

 

7.7 Process explorer output. Note that it is not able to verify that it is from Microsoft. 
And each time I execute the malware sample the name of the executable 
changes. Before it was tyh.exe, and now it is ucm.exe as example. 

 

 

 

 

8. NETWORK BEHAVIOR (INCLUDING HOSTS, DOMAINS AND IP’S 
ACCESSED) 

8.1 This malware sample makes a function call to the native Windows API 
C:\WINDOWS\System32\winsock32.dll which is the Windows Sockets API used 

 



 
Malware reverse engineering part 1. Static analysis 

 

by most Internet and Network applications to handle network connections, 
denoted below in highlighted blue. 

 

 

8.2 The malware sample also makes DNS requests in an attempt to resolve 
numerous malicious sites including mimopywyn.com, dihojocitiz.com, 
qobirawif.com, QOBIRAWIF.com, gavywelugamoqe.com, sesusihyt.com, and 
xybobimaholos.com, etc. A total of 32 different DNS requests were made but not 
shown for brevity. 

 

8.3 Listening network sockets before and after execution of the malware sample on 
the victim machine. It is clear from the below snapshot that it opened TCP:139 
NetBIOS Session, Windows File and Printer Sharing port. But also with any other 
system running Samba (SMB). The single most dangerous port on the internet. 

 

 



 
Malware reverse engineering part 1. Static analysis 

 

 

 

8.4 It did not take long before a fake A/V scanner showed me false scan results that 
my machine was infected with a malware infection. Clearly this Trojan wanted to 
steal my credit card information. The malicious software was titled “XP Internet 
Security 2012”. The malicious site that I was redirected to is intended to 
steal/collect victims credit card information, and forward the results to the 
following server http://bekukokymyje.com/support.html with IP of 199.168.189.25 
on TCP:80. The malicious server is located in Orlando Florida U.S.A. 

 



 
Malware reverse engineering part 1. Static analysis 

 

 

 

The above GUI/Application is running under process “hwi.exe” in the directory pictured 
below. 

 



 
Malware reverse engineering part 1. Static analysis 

 

   

8.5 The above popup redirected me to the following website. The actual form was 
not even a website nor an actual .html file, it was a Windows Form/GUI. The GUI 
did not contain any .html/JavaScript. But it made a good attempt to fool the 
casual user with its Internet Explorer logo. 

 

 

 



 
Malware reverse engineering part 1. Static analysis 

 

  



 
Malware reverse engineering part 1. Static analysis 

 

 

8.6 Whois, and geolocation trace of the two malicious IP’s 
http://bekukokymyje.com/support.html that the victim made the connection to. 

 

 



 
Malware reverse engineering part 1. Static analysis 

 

 

 



 
Malware reverse engineering part 1. Static analysis 

 

 

 

9. TIME AND LOCAL SYSTEM DEPENDANT FEATURES 

9.1 This malware sample requires a valid internet connection, and execution to 
activate its payload. Once executed it makes numerous DNS requests to over 32 
malicious sites to download the payload/instructions in a call home fashion. 

 



 
Malware reverse engineering part 1. Static analysis 

 

 

10. METHOD AND MEANS OF COMMUNICATION 

10.1 It communications, and receives the payload/instructions from the malicious 
server via port TCP 80.  

10.2 Server details are : http://bekukokymyje.com/support.html with IP of 
199.168.189.25 on TCP:80. The malicious server is located in Orlando Florida 
U.S.A. 

 

11. ORIGINAL INFECTION VECTOR AND PROPOGATION METHODOLOGY 

11.1 The victim could have visited a normal looking site or may have been the victim 
of a brower exploit running an unpatched version of Internet Explorer. Typical 
drive by download is another scenario. 

 

12. USE OF ENCRYPTION FOR STORAGE, DELIVERY AND OR 
COMMUNICATION 

12.1 Nowadays advanced malware applications are either protected, obfuscated, 
encrypted (armoring) and/or packed (the original code is compressed, encrypted 
or both). This technique is applied in an attempt to evade signature based 
malware detection, and to hinder the efforts of static analysis by malware 
analysts by employing anti-reversing, anti-debugging and self-modifying code 
tactics. This malware sample is no different. The unpacking or decrypting of the 
malware layers remains the most complicated & sophisticated task in the overall 
process of malware analysis and finding the original entry point (OEP). True 
analysis of packed malicious binary code can only be performed after the 
payload is unpacked.  

12.2 Loading the malware sample in Immunity debugger I noticed the following loaded 
module. C:\WINDOWS\system32\CRYPT32.dll is the module that implements 
many of the Certificate and Cryptographic Messaging functions in the CryptoAPI, 
such as CryptSignMessage. Crypt32.dll is a module that comes with the 
Windows and Windows Server operating systems, but different versions of this 
DLL provide different capabilities. There is no API to determine the version of 
CryptoAPI that is in use, but I can determine the version of crypt32.dll that is in 
use via the GetFileVersionInfo and VerQueryValue functions. The function is 
highlighted in blue below. 

 

http://msdn.microsoft.com/en-us/library/windows/desktop/aa379884(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa380281(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms647003(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms647464(v=vs.85).aspx


 
Malware reverse engineering part 1. Static analysis 

 

 

Executable modules, item 7 

 Base=762C0000 

 Size=0008B000 (569344.) 

 Entry=762C15B5 CRYPT32.<ModuleEntryPoint> 

 Name=CRYPT32  (system) 

 File version=5.131.2600.1106 (xpsp1.020828-1 

 Path=C:\WINDOWS\system32\CRYPT32.dll 

 

13. USE OF SELF MODIFYING/REPLICATING OR ENCRYPTED CODE 

13.1 I noticed each time I executed the malware sample that the names of the 
dropped malicious files “.exe’s” always changed to a random string/name. 
Different every single time. This might indicate the use of the rand function within 
the code. Other than the random naming convention on the malicious 
executables, the network traffic seemed to be always the same. The malware 
sample stuck to the same 32 malicious domains in it’s C&C structure. 

 

14. ANY INFORMATION CONCERNING DEVELOPMENT OF MALWARE 
(COMPILER TYPE, PACKER USED, COUNTRY OF ORIGIN, AUTHOR, 
NAMES/HANDLES, ETC.) 

14.1 Reverse engineering using static analysis on the malware sample allows me to 
understand its functionality. Loading the malware sample indicated it might be 
packed/compressed for several reasons. The memory visualization bar within the 

 



 
Malware reverse engineering part 1. Static analysis 

 

IDA GUI was not able to find any encoded/executable data. Usually normal un-
packed executables have several blue sections with readable data. Below is a 
comparison of a packed executable vs a non packed executable application. 

  PACKED 

 UNPACKED 

Note the memory visualization bar within the unpacked nc.exe application, and the graph 
overview.  

14.2 Next is a high level overview of the malware sample which involves using the 
start function and the “display graph of xref’s from current identifier” button. This 
method allows us to generate a visualization graph. The graph allows us to zoom 
in and inspect various portions of the program and see how much of it is actually 
system API calls versus custom implemented code. We can also use the graph 
overview to see all the function calls the application is making. 

 

 



 
Malware reverse engineering part 1. Static analysis 

 

 

14.3 I began by dumping the basic headers and imports/export entries in the malware 
sample using the dumpbin program. I extracted all data from all available 
sections of the malware sample. Sections that are available are .data, .idata, 
.rdata (hardcoded passwords/sometimes), .rsrc (resource), and .text (program 
code) as pictured below. 

 

14.4 I ran the following commands and dumped the above sections into .txt files for 
further analysis. 

 

14.5 Next I performed a full binary disassembly with all libraries included. 

 

 

 



 
Malware reverse engineering part 1. Static analysis 

 

5. KEY QUESTIONS AND ANSWERS1  

[drive-by infection from site Yes] 

 

occur?  

rive-by infection/banner Ad] 

ays] 

6. CONCLUSIONS AND RECOMMENDATIONS TO PREVENT INCIDENT FROM 

 How did the malware infection occur?  

 When did the malware infection occur? 

[On or before Jan. 04, 2012] 

 What vulnerabilities allowed the infection to 

[Unpatched Internet Explorer/ d

 What is the risk of data loss?  

[High: Kryptik/Data Stealing Trojan on machine for several d

 

1
RECURRING 

banner ad. The drive-by infection triggered a series of exploit steps, 

e 

ed browser standard operating procedure. 

ndards 
(NSA), installing no-script, and removing admin access for affected users. Also take a look at 

On Jan. 04, 2012, While browsing the internet, ANONYMOUS triggered a drive-by infection 
probably coming from a 
eventually resulting in installation of a trojan downloader and the Win-32 Kryptik.YJA trojan 
variant. Because Kryptic is a data-stealing trojan, any sensitive information handled by the 
victim between date of infection and the date of the investigation (January 09, 2012) should b
considered potentially compromised. 

IT Security should implement a harden

This SOP should include for example, disabling JavaScript, browser hardening sta

official DoD, Sans papers on browser hardening or  

www.us-cert.gov/reading_room/secure_browser/ 

 

17. FOLLOWUP ACTIONS AND LESSONS LEARNED 

17.1 Blacklist the entire offending IP block/s. 

17.2 Reset user password. Re-image victim m
passwords to login to ANY websites (ban

achine. If the user used ANY personal 
king, social media, news feeds, 

 
ed for 

educational, work websites), he should reset said passwords, and notify 
companies he does business. Especially if he logged on to any banking website.
Users Active Directory account password should be reset, and be monitor
any unusual/unauthorized activity.  

 



 
Malware reverse engineering part 1. Static analysis 

 

 

REFS

ssive, Packed Binary Programs 

http://arxiv.org/abs/0905.4581

 used in my .pdf report. 

Generic Unpacking of Self-modifying, Aggre

 

Practical malware analysis 

www.blackhat.com/.../bh-dc.../bh-dc-07-Kendall_McMillan-WP.pdf 

What to Include in a Malware Analysis Report 

http://zeltser.com/reverse-malware/malware-analysis-report.html 

Malware Analysis 101 

http://zeltser.com/reverse-malware/malware-analysis-webcast.html 

 

 

 


	Author contact info
	Table of Contents
	1. SCOPE
	2. INVESTIGATION GOALS
	3. MALWARE SAMPLES ANALYZED
	4. MALWARE ANALYSIS METHODOLOGY, SOFTWARE, AND SECURE LAB SETUP
	5. GENERAL FUNCTION AND FUNCTIONALITY OF THE MALWARE
	6. BEHAVIORAL PATTERNS OF THE MALWARE AND LOCAL SYSTEM INTERACTION
	7. FILES AND REGISTRY KEYS CREATED, MODIFIED AND ACCESSED
	8. NETWORK BEHAVIOR (INCLUDING HOSTS, DOMAINS AND IP’S ACCESSED)
	9. TIME AND LOCAL SYSTEM DEPENDANT FEATURES
	10. METHOD AND MEANS OF COMMUNICATION
	11. ORIGINAL INFECTION VECTOR AND PROPOGATION METHODOLOGY
	12. USE OF ENCRYPTION FOR STORAGE, DELIVERY AND OR COMMUNICATION
	13. USE OF SELF MODIFYING/REPLICATING OR ENCRYPTED CODE
	14. ANY INFORMATION CONCERNING DEVELOPMENT OF MALWARE (COMPILER TYPE, PACKER USED, COUNTRY OF ORIGIN, AUTHOR, NAMES/HANDLES, ETC.)
	15. KEY QUESTIONS AND ANSWERS
	16. CONCLUSIONS AND RECOMMENDATIONS
	17. FOLLOWUP AND LESSONS LEARNED
	18. REFS

