
 Metasploit
Low Level View

ـــ

Saad Talaat (saadtalaat@gmail.com)
@Sa3dtalaat

http://twitter.com/sa3dtalaat

Forward 2

Forward
Abstract: for the past decade (almost) Metasploit have been number one
pentesting tool. A lot of plug-ins have been developed specially for it. Ho-
wever, the key-point of this paper is to discuss metasploit framework as a
code injector and payload encoder.
Another key-point of this paper is malware different forms and how to
avoid anti-viruses which have been a pain for pentesters lately. And how
exactly anti-malware software work.

Metasploit: Low Level view 2

Introduction 3

Introduction

Evading anti-viruses have been a painful issue for pentesters for years. On
the other hand a birth of an anti-virus evading technique means blackhats
and skiddies will have another way to hack without being detected.
Over the years metasploit framework have been working in one technique
on evading anti-viruses which is encoding.
For a year or two some encoding techniques worked fine. Nowadays It's
nearly impossible to get encoded payload that evades anti-virus from
metasploit's encoders no matter how many iterations you do.

Malware

Malware refer to Malicious software. And a malicious software is a
software that contains malicious code. And a malicious code is the code
added to a software in order to cause harm or enter a system without being
authorized to.
Malware used to be plain and direct and easy to detect. But, Malware's
complexity increases everyday and malware nowadays takes few shapes
that makes an anti-virus's job to detect a malware more difficult.

Malware can be categorized into four types :-
− Viruses

briefly, a computer virus is a small program that is able to replicate
itself. It spreads by a user copying and running infected programs on
other systems

− Worms
they are a self replicating programs. spread via exploiting
vulnerabilities in the operating system to copy themselves to other
devices via any medium without authorization from the user.

− Spyware
It is a software that spies the user by collecting a personal info
about the user like email addresses, credit cards..etc.

Metasploit: Low level view 3

Malware 4

− Adware
Adware is software that plays advertisements without user
authorizations. which often are for scam products and services or
for the purposes to convince the user to install another piece of
malware which is also often more sophisticated in nature.

− Trojans
Trojan's purpose it to gain access to the system by acting like an
authentic program. Moreover it can monitor or damage the system.

− Botnet
It is a remotely controlled software and a collection of robot
software that are being controlled by one point. They are mostly
used to spam and many other purposes.

Malware Detectors

Malware detection techniques can be categorized into two types: anomaly-
based detection technique and signature-based detection technique. Another
sub-type of anomaly-based technique called specification-based technique
is considered a third malware detection technique. Each type of this
techniques can be categorized into three types (static – dynamic – hybrid).
In this paper we are interested in signature-based detection techniques

Signature-based technique
Shortly, signature-based detection techniques depend on known malicious
signatures which are used to identify any malicious behavior which is
partially or generally similar to the signature. All known signatures are in a
repository, so when a process being inspected a detectors searches it for
any signature that might be similar to those on the repository. So zero-days
are not detectable by signature-based detectors.
Static signature-based technique
On this type of detection technique a disk-level inspection takes place.
What happens is that the detector scans the file for malicious code
sequences.
This sequence can take many shapes depending on malware type. Malware
categorized into : basic malware, polymorphic malware and metamorphic.
From simple to complex respectively.

Metasploit: Low Level View 4

Malware Detectors 5

− Basic Malware
Malware generally execute inside (injected) another executable, and to
force the infected executable to execute the malware. Metasploit makes it's
injected code executed using this technique. This happens by changing the
entry point in the file's header (PE header).
To detect such a malware, malware detectors look for the absolute binary
sequence of the malcode.
If the malcode's binary looks like this (fce8 8900 0000 6089..etc) the
detectors looks for this absolute values.

Figure 1: Basic malware

− Polymorphic Malware
Polymorphic malware (as its name stats) a malware that doesn't have a
specific shape. On Metasploit it represented by encoded payload. This type
of malware was made to evade signature-based malware detectors by
changing the whole hex-codes of the malware.
So a malware signatured as this (FCE8 8900 0000 6089..etc) might look
like this in a polymorphic malware (74a7 9123 8431 9174..etc) and as
many shapes as 16*16 per every byte. That makes it impossible to detect
such a malware.

Figure 2: Polymorphic malware

A strong API driven signature scanning is the solution for such a malware.

− Metamorphic Malware
Metamorphic malware takes many shapes by obfuscating its code so that
generated copies wouldn't look like the original copy. In such a way
evading anti-virus is highly possible. In that case anti-virus needs

Metasploit: Low Level view 5

Malware Detectors 6

a disassembler to process the disassembled binary and reverse it by re-
Obfuscating it.
Four known obfuscating techniques are possible : (Dead-Code Insertion –
Code transportation – Register renaming – Instruction substitution). sadly
no obfuscating encoders are used in metasploit framework since they are
using a direct plain shell-codes xfrom the block_api.

Two effective methods are used to detect Polymorphic and Metamorphic
malware are :
− SAVE
on SAVE method a sequence of windows API calls are checked which
represent the signature of a malware. To decide whether a file is infected or
not; The ecludian distance between every API call is calculated. And if the
avg. of the API calls distances is less than 10% then a file is flagged as
infected. This implies on the (disk-level) injected code probably to be
detected.
− Semantic aware
Here signatures are represented as control flow or tuples on instruction, on
disk-level a program is disassembled and a control flow is generated and
then compared to the signatures control flows and decided whether a
program is infected or not.

Dynamic signature-based technique
This type of detection technique checks the running program for patterns of
behavior. So It gathers information about the inspected process to find odd
behavior.

− Behavioral based detection
signature driven worm detection. One type is to monitor the incoming and

outgoing information to detect worm propagation. Like in meterpreter a
service is converted to a client and a connection between attacker and
victim is made and similar packets are sent and received.

Metasploit: Low Level view 6

Metasploit Encoders 7

Metasploit Encoders

Metasploit framework uses a (semi) direct injection means by directly
changing the original entry point to the malcode's entry point. You can notice
this by simply comparing PE-header's AddressofEntryPoint of both infected
and non-infected software.

Personally, I've surfed the Internet for any documentation for metasploit's
encoders but found nothing but theories about these encoders. Of course
reading the code is enough for guessing how they work. But not actually
seeing how they work.

How encoders work on metasploit's framework?
on metasploit there is certain types of encoders that make polymorphic
payloads by decoding a payload and inserting a decoding stub before the
encoded code to decode it before execution. These types can be categorized
to :-

• XOR encoders
• Alphanumeric encoders
• XOR Additive feedback encoders
• non-alpha encoders
• Manual (same previous types) of encoders

Only XOR and XOR Additive feedback encoders are what interest us. Other
types of Encoders are static and not polymorphic. As in Alphanumeric
encoders, it encodes instructions to another permutation of instruction that
has the shape of ASCII string (from a binary point of view).

First, a direct and plain reverse_tcp windows shellcode is going to be used.
As expected this will be plainly inserted in the code and the entry point will
be changed. So I injected notepad.exe by metasploit

Metasploit: Low Level view 7

Metasploit Encoders 8

Figure 3: the windows/shell/reverse_tcp shellcode

after injection pass it to a debugger and start debugging. a few steps in a
debugger and you will reach the payload.

Figure 4: Payload in debugger

That is how the payload looked in the debugger for me. Then if you checked
the entry point in both the origional notepad and the injected notepad you'll
find that the injected payload's entry point have actually changed.

Metasploit: Low Level view 8

Metasploit Encoders 9

Figure 5: PE headers in both infected and original notepad

Since there is no encoding technique used this malware is considered a basic
malware since there is no decoding procedure.

However, Metasploit's encoders contain what is called a decoder stub which
is responsible for decoding the generated encoded payload which have been
put in RWX(Read-Write-Execute) memory stub.

Call4_DWORD_XOR Encoder
This encoder is an XOR type encoder. It generates an XOR-ed payload by a
random key called XOR key.
Figure 6. contains the same payload we used earlier encoded by
call4_dword_xor encoder with the decoder stub before the payload.
This decoded payload enables malware to avoid anti-malware that use static
signatures for detection.

Metasploit: Low Level view 9

Metasploit Encoders 10

Figure 6: call4_dword_xor encoded windows/shell/reverse_tcp payload

Putting the executable in the debugger and looking for the payload's binary
string you'll get the decoder stub followed by a big sequence of db
instructions and garbage (Figure 7.)

Figure 7: call4_dword_xor infected executable in debugger

the decoder stub starts from 0x10051D to 0x1005e2e. On a look we'll find
that XOR DWORD PTR DS:[ESI+E],154F99B9 contains the XOR key then
incrementing the ESI by 4 in every loop means that you decode a DWORD
by a DWORD until you reach the end of the payload depending on the
payload length which is determined on metasploit's encoder's Interpretation.

Metasploit: Low Level view 10

Metasploit Encoders 11

If 4571C615 XORed by B9994F15 the result will be FCE88900 which is the
origional payload's first dword.

Figure 8: showing the call4_dword_xor encoder code

Countdown Encoder
This is a very basic encoding technique that we won't use any debugging in
it. First, it's an XOR
 encoding technique which XORs the payload gradually depending on a
count variable per byte.
 Looking at the decoder code. You'll find that it uses ecx as a counting
variable and decodes depending on the value of cl (which is a byte long).
And offsets by the value of ecx and 0x7 (0x7
 is the offset of the encoded payload in the binary).

Figure 9: the Countdown encoder code

Looking at the raw binary we will easily be able to decode the code just on
sight!
Matching the binary with the decoder hexcode on the ruby code we find that
the decoder ends at offset 0x12. Starting to XOR the following values by an

Metasploit: Low Level view 11

Metasploit Encoders 12
incrementing value will result to showing the real code!
FD EA 8A 04 05 06 XOR 01 02 03 04 05 06 → FC E8 89 00 00 00 (Original
code)...easy!

Figure 10: countdown encoded windows/shell/reverse_tcp payload

FNSTENV_MOV Encoder :-
FNSTENV is an 0x87 FPU instruction that stores the FPU environment to
the stack. That is an effective way to get the current address by poping the
last 32 bit of the FPU environment.

Figure 11: FSTENV Instruction

Metasploit: Low Level view 12

Metasploit Encoders 13

which is the address of the FPU instruction pointer selector (the address of
first instruction in decoder).
 Decoding starts after 22 byte of the first decoder instruction XORing to a
random .

Figure 12: FSTENV_MOV encoder code

On the binary key is found to be 0xc58cd1e4 (little-endian). Let's XOR that
to the value at
 offset 22. f439 6458 XOR c58c d1e4 = FCE88900 ← Original c
ode.

Figure 13: FSTENV_MOV encoded windows/shell/reverse_tcp payload

This is all for x86 XOR encoder, Next to XOR additive feedback encoder.

Metasploit: Low Level view 13

Metasploit Encoders 14

Jmp_call_additive encoder
Moving from basic xor encoding to a more complicated encryption
technique makes things more difficult for the anti-virus and for the reverse-
engineer to understand how things work. What happens on Additive
feedback encoders is that every (data length) DWORD for example is
XORed with a different XOR key depending on the previous DWORD
which was XORed by XOR key and vice versa till we reach the very first
DWORD that was encoded by the generated XOR key. Jmp_call_additive
encoder uses a very dynamic way, and a nice trick to decode/encode the
payload. Here's the code.

Figure 14: jmp_call_additive code

Generate an XOR key and stores the payload starting address by making a
call back to the code then XOR the payload gradually from start to end and
after every step it adds the payload's original code to the key as a string
which makes the original code added to the key in reverse order. Basically, if
the key is 8315B489 and the original payload's first DWORD is FCE88900
both are added in register-addressing order (89b41583 + 0089e8fc). It keeps
doing that till it gets a ZF after test.
Viewing this in ollyDBG, we check the decoder stub to find the XOR key is
6332D768 XORing the value after the call with the 63 byte (9F ^ 63) = FC
and etc.

Metasploit: Low Level view 14

Metasploit Encoders 15

after the decoder XORs a whole dword it adds it to the original XOR key to
generate another (68d73263 + 0089E8FC) = 69611b5f, then XORing takes
place in little-endian order.

Figure 15: jmp_call_additive decoder stub in debugger

Which is 5F1B6169 ← the new XOR key. Then decoder XORs next
DWORD with the new XOR key (5F1B6169 ^ 5F1B01E0) = 00006089 ←
Origional 2nd DWORD...etc.
This technique is very polymorphic since it's very payload dependent. But
still detectable.

Shikata ga nai Encoder
in Japanese it mean it can't be helped and metasploit ranked it as the only
excellent x86 encoder Looking at it's code we find that it's way too
complicated, But if debugging took place and we do only a look for an FPU
instruction like 0xd9 we will find the decoder stub.

Figure 16: Shikata ga nai decoder stub in debugger

Metasploit: Low Level view 15

Metasploit Encoders 16

What makes Shikata ga nai hard to detect is that it's highly polymorphic in
two levels. Shikata uses a premutations of instructions for each operation.
For example the XOR ECX,ECX instruction has three hexcodes.

Figure 17: permutation for the XOR ECX,ECX instructions

Refering back to the debugging phase..
decoder stub starts at 0x1003fe4 and ends at 0x1003ffd. XORing the next
value to the original value we get the key, which is FFA35888. When
checking how the decoder handles the additive feedback. We get the ADD
instruction and that seems similar to the previous decoder.
We get the ADD instruction and that seems similar to the previous decoder.
Actually adding here doesn't take place as expected. Instead of adding the
carry to next byte it is added to same byte(if next byte already has a carry
value). So if we have FF + FC = 1FB → FB + 1 = FC. And this is only
valid for the 2nd word. This is the complication about the Shikata ga nai.

Concluding the next key → FFA35888 + FCE88900 = FC8CE188.
FC8CE288 ^ FC8C8201 = 00006089
FC8CE288 + 00006089 = FC8D4211
FC8D4211 ^ 19BD9075 = E530D264
FC8C4211 + E530D264 = E2BD1475
E2BE1475 ^ 69EC24FE = 8b52308b
E2BE1475 + 8B52308b = ...etc.

Metasploit: Low Level view 16

Metasploit Code Injection 17

Metasploit Code Injection

Injection used in Metasploit happens on two phases. First, the payload
injection. Second, the payload stub allocation.

However, Metasploit has two techniques to execute a payload. One is by
directly executing the malcode in the main thread and the other one is by
spawning a separate thread.
I myself haven't seen an injected exe template that was thread injected. So
mainly the first technique is the technique that always takes place.

How Injection works?

If you are a reverse-engineer you'd wonder how encoders work if the
payload is injected in the code section which happens to have read and
execute permissions. So for the decoder stub to work the encoded payload
must have a write permission which doesn't exist in the .text section.
On payload constructing the original payload is put after a sequence of
procedures that create a memory block inside the text section that has RWX
permissions. Then the payload is copied to that rwx memory and fetched to
execution.

After a payload is constructed the text section is divided into blocks and
eligibility to inject the payload in text section is determined. Then the offset
where payload will be put and new entry code is built. The entry point first
contains a random size of nops with a jump to the end of nops and then ¼
of the original code is mangled. Finally the PE header's AddressOfEntryPoint
is overwritten with the payload's offset and payload is injected.

Here is the steps on code.
./lib/msf/util/exe.rb
1- payload construction phase :-

Copy the code to a new RWX segment to allow for self-modifying encoders
 payload = win32_rwx_exec(code)
2- breaking the text section to blocks
Break the text segment into contiguous blocks
 blocks = []
 bidx = 0
 mines.sort{|a,b| a[0] <=> b[0]}.each do |mine|
 ...etc

Metasploit: Low Level view 17

Metasploit Code Injection 18

3- test the eligibility to inject the payload
 if(payload.length + 256 > block[1])

 raise RuntimeError, "The largest block in .text does not have enough
contiguous space (need:#{payload.length+256} found:#{block[1]})"

 end

4- Padding the entry with some NOPs
Pad the entry point with random nops

 entry = generate_nops(framework, [ARCH_X86], rand(200)+51)

5- relative jump to end of NOPs
 # Relative jump from the end of the nops to the payload

 entry += "\xe9" + [poff - (eidx + entry.length + 5)].pack('V')
6- ¼ of the original code is mangled

 1.upto(block[1] / 4) do

 data[block[0] + rand(block[1]), 1] = [rand(0x100)].pack("C")

 end

7- Payload gets injected and entry overwritten
 data[block[0] + poff, payload.length] = payload

 data[block[0] + eidx, entry.length] = entry

This way of code injection is -in my opinion- easy to detect no matter what
encoding technique you use. Simply this technique makes the entry point
starts with some NOPs and a jump to the payload code block and other
random codes.
Plus, using the metasploit's default executable template makes it easier job
for the anti-virus to detect your injected executable.

Metasploit: Low Level view 18

Conclusion 19

Conclusion

In order to actually evade anti-viruses a more complex and dynamic
injections techniques are needed. Moreover, more complex code
obfuscating encoders can play a great rule in avoiding the anti-viruses. On
the other hand keeping the code as normal as possible and probably writing
your own shellcode will be much better.

So On a Low level perspective. The next security age might be all about
0days and self made or customized code injectors.

References
[1] Survey on Malware detection methods by Vinod P. and V.Laxmi, M.S. Guar.
[2] Survey on Malware detection techniques by Nwokedi Idika and Aditya P. Mathur

Metasploit: Low Level View 19

