

Page 1

Deep Dive into OS Internals
with Windbg
Malware and OS Internals

An approach towards reversing malwares, shellcodes and other malicious codes
to understand the ways in which they use the OS Internals for their
functionality.

2012

Sudeep Pal Singh
Honeywell
1/26/2012

Page 2

Table of Contents

Preface .. 3

Reversing Windows Internals .. 4

Portable Executable Anatomy ... 5

Data Directories of Interest ... 7

Import Directory .. 8

Import Address Table .. 12

Export Directory .. 13

Manual Walkthrough of Export Directory ... 14

Process Environment Block ... 17

Different methods to locate the PEB .. 18

Understanding an Example Shellcode ... 20

Using _PEB_LDR_DATA ... 20

Using _LDR_DATA_TABLE_ENTRY ... 23

Practical Example with Rustock.B Rootkit ... 25

Conclusion ... 32

References ... 33

Page 3

Preface

There is more than one reason to reverse malwares these days. As time passes by,

the awareness about Reverse Engineering is spreading. However, there are few

obstacles encountered for a person new in the field of Reversing Viruses. Unlike

other domains of security where you can make your way through with the reliance

on some security tools, this field demands a strong understanding of the

Operating System Internals and Assembly Language Programming.

Page 4

 Reversing Windows Internals

As the main aim of the document is to correlate the Operating Systems Internals and the

approach of Reverse Engineering a Malware at code level, I have started the document by

giving a brief overview of Windows OS Internals.

Since this subject requires hands on experience and it is not possible to visualize all

the data structures on our own, it’s important to have a debugger at hand. Any portable

executable file can be used to deep dive into the OS internals. We do not need

complicated tools to get an insight into the internal data structures of the operating

systems. For the purpose of this document, I make use of the Debugging Tool provided by

Microsoft called, Windbg.

The reader is introduced to methods that will allow them to practise along with using

this document as a reference.

Page 5

 Portable Executable Anatomy

We are going to understand the Portable Executable structure, the concepts and

various data directories inside it. To summarize, I will explain the OS internals

with the help of Windbg.

At first, set up the Symbols of your Windbg to point to the Microsoft Symbols

Server.

You can set the Environment Variable _NT_SYMBOL_PATH to

symsrv*symsrv.dll*C:\Symbols*http://msdl.microsoft.com/download/symbols

where, C:\Symbols is the folder on my file system where these symbols are cached

as and when they are downloaded.

Let's open up an executable like notepad.exe in windbg.

Go to File->Open Executable and open up notepad.exe from %systemroot%\system32

folder.

Once this is done, windbg will present a list of all the modules which were

loaded along with the main module, notepad.exe

Let us take a look at this output and try to make some sense out of it:

ModLoad: 01000000 01014000 notepad.exe

ModLoad: 7c900000 7c9b2000 ntdll.dll

ModLoad: 7c800000 7c8f6000 C:\WINXP\system32\kernel32.dll

ModLoad: 763b0000 763f9000 C:\WINXP\system32\comdlg32.dll

ModLoad: 77dd0000 77e6b000 C:\WINXP\system32\ADVAPI32.dll

ModLoad: 77e70000 77f03000 C:\WINXP\system32\RPCRT4.dll

ModLoad: 77fe0000 77ff1000 C:\WINXP\system32\Secur32.dll

ModLoad: 773d0000 774d3000 C:\WINXP\WinSxS\x86_Microsoft.Windows.Common-

Controls_6595b64144ccf1df_6.0.2600.6028_x-ww_61e65202\COMCTL32.dll

ModLoad: 77c10000 77c68000 C:\WINXP\system32\msvcrt.dll

ModLoad: 77f10000 77f59000 C:\WINXP\system32\GDI32.dll

ModLoad: 7e410000 7e4a1000 C:\WINXP\system32\USER32.dll

ModLoad: 77f60000 77fd6000 C:\WINXP\system32\SHLWAPI.dll

ModLoad: 7c9c0000 7d1d8000 C:\WINXP\system32\SHELL32.dll

ModLoad: 73000000 73026000 C:\WINXP\system32\WINSPOOL.DRV

(15c.ab8): Break instruction exception - code 80000003 (first chance)

When a PE is opened up, the OS loader will load the modules from which our

executable imports the functions. Each of these DLLs will occupy a specific

memory address range.

For instance, notepad.exe makes use of some Windows API functions exported by

ntdll.dll. So, ntdll.dll was loaded along with notepad.exe. Also, this dll will

occupy the address range: 7c900000 to 7c9b2000

By looking at this range, we get the Base Address of ntdll.dll

It's important to know the base address since as we investigate further into the

internal structures of the operating system, we will discover that usually the

value at hand is an RVA (Relative Virtual Address) which must be added to the

image base address to fetch the values.

Next, enter .cls to clear the screen.

http://msdl.microsoft.com/download/symbols

Page 6

Now, we will display the list of all loaded modules using lm command.

Note: lm command will give us the same output as above with the address range of

each module.

 Every Portable Executable begins with a DOS Header having the structure of type,

 IMAGE_DOS_HEADER. We can view it in windbg using the Image Base Address of the PE

 image.

 0:002> dt _IMAGE_DOS_HEADER 01000000

ntdll!_IMAGE_DOS_HEADER

 +0x000 e_magic : 0x5a4d // MZ Signature of the PE

 +0x002 e_cblp : 0x90

 +0x004 e_cp : 3

 +0x006 e_crlc : 0

 +0x008 e_cparhdr : 4

 +0x00a e_minalloc : 0

 +0x00c e_maxalloc : 0xffff

 +0x00e e_ss : 0

 +0x010 e_sp : 0xb8

 +0x012 e_csum : 0

 +0x014 e_ip : 0

 +0x016 e_cs : 0

 +0x018 e_lfarlc : 0x40

 +0x01a e_ovno : 0

 +0x01c e_res : [4] 0

 +0x024 e_oemid : 0

 +0x026 e_oeminfo : 0

 +0x028 e_res2 : [10] 0

 +0x03c e_lfanew : 224 // Decimal value of the PE File Header Offset

Here the two fields of interest to us are:

E_magic: This has the MZ signature hex value, 0x5a4d. Any portable executable

will begin with the characters ‘MZ’ which are present in the DOS Header.

E_lfanew: This field is of importance to us since it holds the offset to the

Portable Executable File Header. Please note that this value is in decimal and

hence we must convert it to hexadecimal before locating the PE File Header using

it.

In the above case, e_lfanew is 224 in decimal which is E0 in hex. Therefore, the

PE File Header is at an offset E0 from the Image Base Address of notepad.exe.

Page 7

Data Directories of Interest

Let us see how the PE header of our main executable, notepad.exe looks like.

The basic syntax is: !dh <image base address> <options>

In our case, image base address of notepad.exe is 01000000

I use the option -f along with this command, so that it does not display the

Section Headers for .data, .text, .rsrc, .reloc and various other sections which

might be present.

What I want to look into right now is something called as Data Directories, let's

see how they look like:

!dh 01000000 –f

File Type: EXECUTABLE IMAGE

FILE HEADER VALUES

 14C machine (i386)

 3 number of sections

48025287 time date stamp Mon Apr 14 00:05:51 2008

 0 file pointer to symbol table

 0 number of symbols

 E0 size of optional header

 10F characteristics

 Relocations stripped

 Executable

 Line numbers stripped

 Symbols stripped

 32 bit word machine

OPTIONAL HEADER VALUES

 10B magic #

 7.10 linker version

 7800 size of code

 A600 size of initialized data

 0 size of uninitialized data

 739D address of entry point

 1000 base of code

 ----- new -----

01000000 image base

 1000 section alignment

 200 file alignment

 2 subsystem (Windows GUI)

 5.01 operating system version

 5.01 image version

 4.00 subsystem version

 14000 size of image

 400 size of headers

 18700 checksum

00040000 size of stack reserve

00011000 size of stack commit

00100000 size of heap reserve

00001000 size of heap commit

 8000 DLL characteristics

 Terminal server aware

 0 [0] address [size] of Export Directory

 7604 [C8] address [size] of Import Directory

 B000 [8948] address [size] of Resource Directory

 0 [0] address [size] of Exception Directory

 0 [0] address [size] of Security Directory

 0 [0] address [size] of Base Relocation Directory

 1350 [1C] address [size] of Debug Directory

 0 [0] address [size] of Thread Storage Directory

 18A8 [40] address [size] of Load Configuration Directory

 1000 [348] address [size] of Import Address Table Directory

Page 8

Do you see the array of directories at the bottom highlighted in green?

This is the data directory array. It's an array of structures of

IMAGE_DATA_DIRECTORY type each having two fields:

VirtualAddress and Size.

The Virtual Address is going to give the Relative Virtual Address (RVA)

corresponding to the image base address. This RVA will point to another

structure.

The data directories I am interested in are:

Import Directory

Import Address Table Directory

Export Directory

Import Directory

The second entry in the Data Directory Array is of the Import Table.

7604 [C8] address [size] of Import Directory

We get the relative virtual address of the Import Table from this entry as

7604

Image Base Address = 01000000

Hence, the Virtual Address of Import Table = 01000000+7604= 1007604

Import Table contains an array of data structures of type,

_IMAGE_IMPORT_DESCRIPTOR

This structure has the following form:

typedef struct _IMAGE_IMPORT_DESCRIPTOR {

_ANONYMOUS_UNION union {

DWORD Characteristics;

DWORD OriginalFirstThunk;

} DUMMYUNIONNAME;

DWORD TimeDateStamp;

DWORD ForwarderChain;

DWORD Name;

DWORD FirstThunk;

} IMAGE_IMPORT_DESCRIPTOR,*PIMAGE_IMPORT_DESCRIPTOR;

Each DLL which is loaded along with the main module will have its own

_IMAGE_IMPORT_DESCRIPTOR structure.

There is no field that will give us an idea about how many

_IMAGE_IMPORT_DESCRIPTOR structures are present in the array; however the end

of this array is denoted by a structure who’s all the fields are set to 0.

Page 9

Two important fields at this point are, OriginalFirstThunk and FirstThunk.

Each of these will point to a Table.

OriginalFirstThunk -> Imports Name Table

FirstThunk -> Import Address Table

Both these tables are identical to each other till the point the PE is mapped

to memory by the OS Loader. The reason I say they are similar to each other

will become evident as we view these structures in debugger.

Let us start by viewing the memory at the Import Table Virtual Address:

0:001> dd 01000000+7604

01007604 00007990 ffffffff ffffffff 00007aac

01007614 000012c4 00007840 ffffffff ffffffff

01007624 00007afa 00001174 00007980 ffffffff

01007634 ffffffff 00007b3a 000012b4 000076ec

01007644 ffffffff ffffffff 00007b5e 00001020

01007654 000079b8 ffffffff ffffffff 00007c76

01007664 000012ec 000076cc ffffffff ffffffff

01007674 00007d08 00001000 00007758 ffffffff

Let us relate these fields (highlighted in blue) to the

_IMAGE_IMPORT_DESCRIPTOR structure.

OriginalFirstThunk = 00007990

TimeDateStamp = ffffffff

ForwarderChain = ffffffff

Name = 00007aac

FirstThunk = 000012c4

For now, we will focus on the two fields, OriginalFirstThunk and FirstThunk.

Let us view the memory pointed by the OriginalFirstThunk:

0:001> dd 01000000+00007990

01007990 00007a7a 00007a5e 00007a9e 00007a50

010079a0 00007a40 00007a8a 00007a6a 00007a14

010079b0 00007a2c 00000000 00007bdc 00007bd4

010079c0 00007bca 00007bc2 00007bb6 00007bea

010079d0 00007ba0 00007b8c 00007b84 00007b7a

010079e0 00007b6c 00007bf4 00007bfc 00007c06

010079f0 00007c16 00007c22 00007c36 00007c46

01007a00 00007c56 00007c64 00007c82 00007bac

And we get a list of RVAs. Each of these RVAs is also called the

_IMAGE_THUNK_DATA which in turn points to the structure of type,

_IMAGE_IMPORT_BY_NAME structure:

typedef struct _IMAGE_IMPORT_BY_NAME {

 WORD Hint;

 BYTE Name[1];

} IMAGE_IMPORT_BY_NAME, *PIMAGE_IMPORT_BY_NAME;

Here, Name[1] is the Name of the Imported Function which can have a variable

length.

So, there is a one to one correspondence between _IMAGE_THUNK_DATA and

_IMAGE_IMPORT_BY_NAME structure.

Page 10

Let us view it:

0:001> dc 01000000+00007a7a

01007a7a 6150000f 65536567 44707574 0057676c ..PageSetupDlgW.

01007a8a 6547000a 65704f74 6c69466e 6d614e65 ..GetOpenFileNam

01007a9a 00005765 72500012 44746e69 7845676c eW....PrintDlgEx

01007aaa 6f630057 676c646d 642e3233 00006c6c W.comdlg32.dll..

01007aba 68530103 416c6c65 74756f62 001f0057 ..ShellAboutW...

01007aca 67617244 696e6946 00006873 72440023 DragFinish..#.Dr

01007ada 75516761 46797265 57656c69 001e0000 agQueryFileW....

01007aea 67617244 65636341 69467470 0073656c DragAcceptFiles.

As you can see, the Names of Functions are stored in sequence. Also, if we

compare with the _IMAGE_IMPORT_BY_NAME structure, we can observe that the HINT

field is set to a NULL value. This value is set by the linker.

In this way, the Names of Functions are populated in the Import Names Table

pointed by the OriginalFirstThunk.

Now, let us view the FirstThunk.

0:001> dd 01000000+000012c4

010012c4 763d4906 763c85ce 763d9d84 763cc3e1

010012d4 763b2306 763c7b9d 763c8602 763c0036

010012e4 763c7c2b 00000000 77c32dae 77c39e9a

010012f4 77c39ece 77c4aecf 77c4ab69 77c39eb6

01001304 77c1d036 77c35c94 77c1ce77 77c4802f

01001314 77c3fb0c 77c39e7e 77c617ac 77c1eeeb

01001324 77c39d67 77c4d695 77c623d8 77c1f1a4

01001334 77c1f1db 77c3537c 77c4ee4f 77c4806b

We see that it is already populated with virtual addresses. Let us view them,

0:001> ln 763d4906

(763d4906) comdlg32!PageSetupDlgW

0:001> ln 763c85ce

(763c85ce) comdlg32!FindTextW

So, these are the virtual address of the functions imported by our PE from the

comdlg32.dll loaded module.

The reason we see this table populated with the virtual addresses already is

that our PE is already loaded by the OS Loader and the Import Address Table is

already filled with function pointers.

We will focus now on the Names field of the _IMAGE_IMPORT_DESCRIPTOR. This

field is important to us since it gives information about the Name of the DLL.

0:001> dc 01000000+00007aac

01007aac 646d6f63 3233676c 6c6c642e 01030000 comdlg32.dll....

Similarly we can parse the Import Table to locate the next,

_IMAGE_IMPORT_DESCRIPTOR structure as given below:

0:001> dd 01000000+7604

01007604 00007990 ffffffff ffffffff 00007aac

01007614 000012c4 00007840 ffffffff ffffffff

01007624 00007afa 00001174 00007980 ffffffff

01007634 ffffffff 00007b3a 000012b4 000076ec

01007644 ffffffff ffffffff 00007b5e 00001020

01007654 000079b8 ffffffff ffffffff 00007c76

01007664 000012ec 000076cc ffffffff ffffffff

01007674 00007d08 00001000 00007758 ffffffff

Page 11

OriginalFirstThunk = 00007840

TimeDateStamp = ffffffff

ForwarderChain = ffffffff

Name = 00007afa

FirstThunk = 00001174

Let us view the name of the next loaded module:

0:001> dc 01000000+00007afa

01007afa 4c454853 2e32334c 006c6c64 6c43001b SHELL32.dll...Cl

So, the next loaded module is shell32.dll

As mentioned before, the end of the _IMAGE_IMPORT_DESCRIPTOR array is denoted

by a structure filled with all NULL values as shown below in the screenshot:

0:001> dd 01000000+7604 L50

01007604 00007990 ffffffff ffffffff 00007aac

01007614 000012c4 00007840 ffffffff ffffffff

01007624 00007afa 00001174 00007980 ffffffff

01007634 ffffffff 00007b3a 000012b4 000076ec

01007644 ffffffff ffffffff 00007b5e 00001020

01007654 000079b8 ffffffff ffffffff 00007c76

01007664 000012ec 000076cc ffffffff ffffffff

01007674 00007d08 00001000 00007758 ffffffff

01007684 ffffffff 000080ec 0000108c 000076f4

01007694 ffffffff ffffffff 0000825e 00001028

010076a4 00007854 ffffffff ffffffff 0000873c

010076b4 00001188 00000000 00000000 00000000

010076c4 00000000 00000000 00007ca2 00007cb6

Another important point worth discussing at this moment is how API Calls made

in a program are replaced by bytecode by a compiler.

Let’s say there is an API Call to GetSystemTimeAsFileTime()in our program.

This function is exported by kernel32.dll

However the above API Call is replaced by the following instruction by our

compiler:

CALL DWORD PTR DS:[010010EC]

The reason being, instead of hard coding the function pointer of the API in

the bytecode, we give a pointer to the memory location where this function

pointer will be stored.

The advantage of doing so is that if we invoke this API in multiple locations

in our program, we need not modify the addresses in all those locations if the

function pointer happens to change in a newer version of the DLL.

In the above CALL Instruction, 010010EC is a memory location which has the

address of GetSystemTimeAsFileTime API imported from kernel32.dll

DS:[010010EC] = 7C8017E9

Here, 010010EC is a memory address inside the Import Address Table of the main

module.

Page 12

This is shown in the screenshot below:

 Import Address Table

When we look at the theory, it can be quite a complicated task to visualize.

But why visualize when we have Windbg?

IAT is the Import Address Table which consists of the mappings between the

absolute virtual addresses and the function names which are exported from

different loaded modules.

As we saw in starting, there are various DLLs which are loaded along with

notepad.exe. IAT gives us a list of function names which are imported from

these loaded modules.

Let us see how I can grab that info. Looking at the above data directory we

can see the following line:

 1000 [348] address [size] of Import Address Table Directory

Here, 1000 is the RVA which is the offset from the image base address of

notepad.exe

image base address + RVA are going to point to the Import Address Table. We

also have the size of this structure as 348 bytes.

I will display this structure as follows:

dps 01000000+1000 L348/4

here, the L parameter passed to the dps command is used to denote the size and

I have divided by 4 to take steps of 4 bytes while displaying the addresses.

A subsection of the output is shown below:

01001000 77dd6fff ADVAPI32!RegQueryValueExW

Page 13

01001004 77dd6c27 ADVAPI32!RegCloseKey

01001008 77dfba55 ADVAPI32!RegCreateKeyW

0100100c 77dfbd35 ADVAPI32!IsTextUnicode

01001010 77dd7abb ADVAPI32!RegQueryValueExA

01001014 77dd7852 ADVAPI32!RegOpenKeyExA

01001018 77ddd767 ADVAPI32!RegSetValueExW

0100101c 00000000

01001020 773dd270 COMCTL32!CreateStatusWindowW

01001024 00000000

01001028 77f2dc61 GDI32!EndPage

0100102c 77f44cd2 GDI32!AbortDoc

01001030 77f2def1 GDI32!EndDoc

01001034 77f16e5f GDI32!DeleteDC

01001038 77f2f49e GDI32!StartPage

So, we get a nice clean list of the function names, the module name from which

they are imported and the absolute virtual addresses.

It is good to know how to fetch an IAT of a PE image since we can use this

output to detect any sort of IAT Hooks. IAT hooking a technique used by

rootkits to take control of the functions in a DLL by overwriting the function

pointers in the IAT.

The question now is, how did the IAT get filled up with these values at run

time?

When the OS Loader starts the PE, it will fill the IAT with function pointers

to the imported functions from various loaded modules. We will try to find out

how it got to know these function pointers.

 Export Directory

Let's take an example to understand this better. My PE image makes use of a

function called GetCurrentProcess from kernel32.dll. The kernel32.dll file

exports these functions to our PE image.

PE image imports the functions from (<-) kernel32.dll

kernel32.dll exports the functions to (->) our PE image.

So, there's a handshake taking place.

This is a complicated concept to grasp but it should become clear with an

example.

Each loaded module will have its own Export Directory. This export directory

is a structure called, IMAGE_EXPORT_DIRECTORY, having the following form:

Private Type IMAGE_EXPORT_DIRECTORY

 Characteristics As Long

 TimeDateStamp As Long

 MajorVersion As Integer

 MinorVersion As Integer

 lpName As Long

 Base As Long

 NumberOfFunctions As Long

 NumberOfNames As Long

 lpAddressOfFunctions As Long

 lpAddressOfNames As Long

 lpAddressOfNameOrdinals As Long

End Type

This structure will help us understand the export directory. I would recommend

the article by Iczelion on Export Directory to understand it better.

Page 14

A summary of the Structure: This structure contains pointers to 3 Arrays. The

pointers are in the form of RVAs relative to the base address of the Image.

What are these arrays?

AddressOfFunctions: It is an array of RVAs of the functions in the module.

AddressOfNames: It is an array of RVAs each corresponding to the function name

strings of exported functions.

AddressOfNameOrdinals: This array is in sync with the AddressOfNames array and

there is a one to one correspondence between the two. It gives an index or an

offset into the AddressOfFunctions array to get the Address of the Function

Name.

So, the flow is like this:

The function name is fetched using Export Names Table and the corresponding

entry in the Export Ordinals Table is looked up to get the index or offset.

This index is used to parse the Export Address Table and fetch the Function

Address.

Export Names Table > Export Ordinals Table -> Export Address Table = Function

Address (VA).

This should make it clear how the OS Loader gets to know the addresses of

Functions which are imported by the main module from these loaded modules.

 Manual Walkthrough of Export Directory

Let's say, I want to view all the functions exported by the GDI32.dll module.

I need to first view the data directory of gdi32.dll:

!dh gdi32 –f

File Type: DLL

FILE HEADER VALUES

 14C machine (i386)

 4 number of sections

4900717E time date stamp Thu Oct 23 18:13:42 2008

 0 file pointer to symbol table

 0 number of symbols

 E0 size of optional header

 210E characteristics

 Executable

 Line numbers stripped

 Symbols stripped

 32 bit word machine

 DLL

OPTIONAL HEADER VALUES

 10B magic #

 7.10 linker version

 42C00 size of code

 3000 size of initialized data

 0 size of uninitialized data

 6587 address of entry point

 1000 base of code

 ----- new -----

77f10000 image base

 1000 section alignment

 200 file alignment

 3 subsystem (Windows CUI)

 5.01 operating system version

Page 15

 5.01 image version

 4.10 subsystem version

 49000 size of image

 400 size of headers

 52F15 checksum

00040000 size of stack reserve

00001000 size of stack commit

00100000 size of heap reserve

00001000 size of heap commit

 0 DLL characteristics

 1CA0 [3CD6] address [size] of Export Directory // We need to explore this

 42F24 [50] address [size] of Import Directory

 46000 [3D0] address [size] of Resource Directory

 0 [0] address [size] of Exception Directory

 0 [0] address [size] of Security Directory

 47000 [1870] address [size] of Base Relocation Directory

 43A10 [38] address [size] of Debug Directory

 0 [0] address [size] of Description Directory

 0 [0] address [size] of Special Directory

 We are interested in the Export Directory:

 1CA0 [3CD6] address [size] of Export Directory

So, the offset of the Export Directory is 1CA0 relative to the Image Base

Address.

Let's view the IMAGE_EXPORT_DIRECTORY structure in the memory:

The base address of gdi32.dll is: 77f10000

dd 77f10000+1CA0

 77f11ca0 00000000 48ff5bdd 00000000 0000349c

77f11cb0 00000001 00000262 00000262 00001cc8

77f11cc0 00002650 00002fd8 00034cd2 00036009

77f11cd0 0002f7d5 00019415 0001942f 0002ffc5

77f11ce0 0002fe78 0002ffab 00035069 0002d182

77f11cf0 00041fda 0003511b 00035207 000204cc

77f11d00 00042b64 00042b78 0001cd62 0001d4b0

77f11d10 00006f79 0001f0a6 0001f0ba 00042b16

Focus on first 3 rows. The first column has the memory address. We need to

focus on the values in the next 4 columns for the first 3 rows.

Parsing these values and comparing them with the IMAGE_EXPORT_DIRECTORY

structure definition we get:

Characteristics = 00000000

TimeDateStamp = 48ff5bdd

MajorVersion = 0000

MinorVersion = 0000

lpName = 0000349c

Base = 00000001

NumberOfFunctions = 00000262

NumberOfNames = 00000262

lpAddressOfFunctions = 00001cc8

lpAddressOfNames = 00002650

lpAddressOfNameOrdinals = 00002fd8

From this, we get the pointers to the 3 arrays.

Let's get the list of function names now:

The RVA of the pointer to AddressOfNames array is: 00002650

to dump the contents of this array, let's add it to the base address and

display:

dd 77f10000+00002650

Page 16

77f12650 000034a6 000034af 000034b9 000034ce

77f12660 000034df 000034f2 00003505 0000351d

77f12670 0000352e 00003537 00003546 00003555

77f12680 00003559 0000355f 0000357b 00003592

77f12690 000035a7 000035c0 000035ca 000035d1

77f126a0 000035df 000035f2 00003605 0000360e

77f126b0 00003621 00003633 00003639 0000364f

77f126c0 00003664 00003675 00003681 0000368f

So, we got the list of RVAs now. Each of these RVAs when added to the base

address of gdi32.dll will point to the Function Name string. Let's check by

taking the first RVA from this list: 000034a6

da gdi32+000034a6

 77f134a6 "AbortDoc"

To get the next function name:

da gdi32+000034af

 77f134af "AbortPath"

This way, we can get the list of function names.

The NumberOfNames field in the IMAGE_EXPORT_DIRECTORY structure had a value of

262. It means that there are 262 function names exported by gdi32.dll. We

cannot list all of them manually, that would be a very tedious task.

So, I will make use of a windbg script to iterate through these RVAs and grab

the corresponding Function Name String.

Before we write the script, let's make sure that our expression evaluator is

set to MASM:

Current Expression Evaulator:

.expr /q

Current expression evaluator: MASM - Microsoft Assembler expressions

Now, the windbg script:

 r? @$t0 = ((int *) (0x77f12650))

.for (r @$t1 = 0; @$t1 < 100; r @$t1 = @$t1 + 1)

{da gdi32+(@@c++(@$t0[@$t1]));}

0x77f12650 is a pointer to the first element of the AddressOfNames array.

It is obtained by adding the base address of gdi32.dll (0x77f10000) to the RVA

of AddressOfNames array (00002650) as given in the IMAGE_EXPORT_DIRECTORY

structure.

I save this script as parser.wds in the path: C:\Scripts\parser.wds and

execute as follows:

$$><C:\Scripts\parser.wds

It gives me the list of function names as follows:

77f134a6 "AbortDoc"

77f134af "AbortPath"

77f134b9 "AddFontMemResourceEx"

Page 17

77f134ce "AddFontResourceA"

77f134df "AddFontResourceExA"

77f134f2 "AddFontResourceExW"

77f13505 "AddFontResourceTracking"

77f1351d "AddFontResourceW"

77f1352e "AngleArc"

77f13537 "AnimatePalette"

77f13546 "AnyLinkedFonts"

77f13555 "Arc"

77f13559 "ArcTo"

77f1355f "BRUSHOBJ_hGetColorTransform"

In this way, we can walk through the list of function names using the Export

Directory structure of a loaded module.

Important thing to note is, if we use the x command to list the export

symbols, that's going to be more verbose and different from the above output:

x gdi32!* = All the exported symbols.

Process Environment Block

Process Environment Block is an important data structure from an exploiter's

perspective. A shellcode executes a set of function APIs and for this it must

locate and load them.

A common way of doing this is to make use of LoadLibraryA function which is

exported by kernel32.dll OS module.

I showed in my previous article about IATs and EATs, that we can parse the EAT

of a loaded module to find out the address of a function API exported by the

module.

Similarly, if we can find the base address of kernel32.dll then we can parse

its Export Address Table and locate LoadLibraryA or LoadLibraryW functions

which can further be used to load and execute the functions used by shellcode.

This is not a new technique and there are snippets available on the net which

show you how to do this using assembly language code. What I felt after

reading them is, there is not a good explanation provided along with those

codes to describe what they are doing.

So, I will make use of windbg to walk through the assembly language code which

is used to locate the base address of kernel32.dll

First let's explore the Process Environment Block. I attach my windbg to

notepad.exe on a Win XP SP3 platform.

PEB is located within the virtual address space of the loaded process. This

address is most often, 7ffda000 but not always. There are different ways to

get the PEB base address in the process VA space.

Page 18

Different methods to locate the PEB

Method 1: Windbg provides pseudo registers like $peb which point to the base

address of PEB data structure within the process VA space. Let's read this

value by prefixing it with @ symbol.

0:001> dt @$peb

output: 7ffda000

Method 2: You can use the !peb command to read this value. !peb will display

the complete PEB data structure with values.

The first few lines of output:

0:001> !peb

PEB at 7ffda000 <-------- The base address of PEB

 InheritedAddressSpace: No

 ReadImageFileExecOptions: No

 BeingDebugged: Yes

Method 3:

Now let's say I am debugging in kernel mode and I want to inspect the user

mode state of the processes and grab the address of PEB. So, here's how to do

it:

lkd> !process -0 0

**** NT ACTIVE PROCESS DUMP ****

....................

PROCESS 8290b020 SessionId: 0 Cid: 081c Peb: 7ffda000 ParentCid: 058c

 DirBase: 0e6c0240 ObjectTable: e23f1388 HandleCount: 41.

 Image: notepad.exe

....................

This will display the information about all the processes running on the local

system right now. Along with other pieces of useful information like DirBase,

it also displays the location of PEB.

Method 4:

PEB is a data structure in the user mode and specific to an application

process running in the user mode. Similarly in the kernel mode, we have the

_EPROCESS data structure which points to the PEB.

Using the Process number grabbed from the above output, I can display the

_EPROCESS structure for our notepad.exe user mode process.

lkd> dt nt!_EPROCESS 8290b020

 +0x000 Pcb : _KPROCESS

 +0x06c ProcessLock : _EX_PUSH_LOCK

 +0x1b0 Peb : 0x7ffda000 _PEB <--------- Pointer to PEB

Method 5:

We have so far seen how to do all of this using Windbg. However, when we are

writing a shellcode, we have to find a way to reference the base address of

PEB using assembly language code. This is done using the concept that, in any

Page 19

Windows NT operating system, PEB is always located at an offset 30 to fs

segment register.

Hence,

fs:[30] -> points to PEB.

So, by using a simple MOV instruction, we can get a pointer to PEB in a

register as follows:

 mov edx, fs:[30]

 More on this later.

Method 6:

Yet another way to locate the Process Environment Block in the user mode is by

using the Thread Environment Block.

Using the !teb command will display the thread environment block for the

current executing thread in our process. This has a pointer to the PEB as

shown below:

0:001> !teb

TEB at 7ffdc000

 ExceptionList: 0096ffe4

 StackBase: 00970000

 StackLimit: 0096f000

 SubSystemTib: 00000000

 FiberData: 00001e00

 ArbitraryUserPointer: 00000000

 Self: 7ffdc000

 EnvironmentPointer: 00000000

 ClientId: 00000a14 . 00000a44

 RpcHandle: 00000000

 Tls Storage: 00000000

 PEB Address: 7ffda000 <------------ Pointer to PEB

 LastErrorValue: 0

 LastStatusValue: 0

 Count Owned Locks: 0

 HardErrorMode: 0

Method 7:

Similar to Method 1 above, we have the pseudo register, $teb which stores the

address of Thread Environment Block.

0:001> dt @$teb

output: 7ffdc000

Now using this, I can display the complete TEB structure as follows:

0:001> dt nt!_TEB @$teb

ntdll!_TEB

 +0x000 NtTib : _NT_TIB

 +0x01c EnvironmentPointer : (null)

 +0x020 ClientId : _CLIENT_ID

 +0x030 ProcessEnvironmentBlock : 0x7ffda000 _PEB <---------- Pointer to PEB

So, at offset 0x030 in the TEB, we have a pointer to PEB.

This also means that we can reference the TEB using, fs:[0] and since we have

PEB at offset 0x030 in the TEB, so PEB can be located using, fs:[30]. Putting

all the pieces of information together, this makes more sense now.

Page 20

Understanding an Example Shellcode

Now, let's look at the shellcode which is used to retrieve the base address of

kernel32.dll

1. xor ebx, ebx ; clear ebx

2. mov ebx, fs:[0x30] ; get a pointer to the PEB

3. mov ebx, [ebx + 0x0C]

4. mov ebx, [ebx + 0x1C]

5. mov ebx, [ebx]

6. mov ebx, [ebx + 0x08]

The first two instructions are straight forward and so a comment is enough to

explain what they do. For the second instruction, I have elaborated in the

methods above that how we derive that PEB is at offset 0x30 to fs segment

register.

 Using _PEB_LDR_DATA

For the next 4 instructions, I will explain in detail since they are not so

easy to understand.

After instruction 2, I have the pointer to PEB in ebx register.

 Instruction 3:

 mov ebx, [ebx+0x0c]

I am moving the value stored at offset 0x0c of PEB into the register ebx.

Using windbg, let's understand it.

0:001> dt nt!_PEB @$peb

ntdll!_PEB

 +0x000 InheritedAddressSpace : 0 ''

 +0x001 ReadImageFileExecOptions : 0 ''

 +0x002 BeingDebugged : 0x1 ''

 +0x003 SpareBool : 0 ''

 +0x004 Mutant : 0xffffffff

 +0x008 ImageBaseAddress : 0x01000000

 +0x00c Ldr : 0x001a1e90 _PEB_LDR_DATA <-- We are storing this value in ebx

As we can see, at offset, 0x00c we have a pointer to the _PEB_LDR_DATA

structure.

So, register ebx now has 0x001a1e90 memory address stored in it.

Instruction 4:

We are moving the value stored at offset, 0x1c in the _PEB_LDR_DATA structure

into the register ebx.

We can view the structure along with the values by passing it the address,

0x001a1e90

0:001> dt nt!_PEB_LDR_DATA 0x001a1e90

ntdll!_PEB_LDR_DATA

 +0x000 Length : 0x28

 +0x004 Initialized : 0x1 ''

Page 21

 +0x008 SsHandle : (null)

 +0x00c InLoadOrderModuleList : _LIST_ENTRY [0x1a1ec0 - 0x1a2e90]

 +0x014 InMemoryOrderModuleList : _LIST_ENTRY [0x1a1ec8 - 0x1a2e98]

 +0x01c InInitializationOrderModuleList : _LIST_ENTRY [0x1a1f28 - 0x1a2ea0]

 +0x024 EntryInProgress : (null)

We can see 3 linked lists stored in this structure.

Windows OS Loader maintains information about how the DLLs were loaded into

the memory in 3 ways:

 Based on the order in which they were loaded: InLoadOrderModuleList

 Based on the order in which they appear in memory:

InMemoryOrderModuleList

 Based on the order in which they were initialized:

InInitializationOrderModuleList

In our case, we are referencing offset, 0x1c into the _PEB_LDR_DATA structure

which points to the InInitializationOrderModuleList.

Before we look further into these entries and what is stored in them, let's

first understand these lists.

All these lists are of type, _LIST_ENTRY.

Using windbg, I can see the structure of _LIST_ENTRY as:

0:001> dt nt!_LIST_ENTRY

ntdll!_LIST_ENTRY

 +0x000 Flink : Ptr32 _LIST_ENTRY

 +0x004 Blink : Ptr32 _LIST_ENTRY

So it is a set of Forward Pointer and Backward Pointer. It's a double linked

list keeping track of both the previous node and the next node. However, we

have to understand what data items are they pointing to.

Let's expand the InInitializationOrderModuleList field of _PEB_LDR_DATA

structure as follows:

0:001> dt nt!_PEB_LDR_DATA 0x001a1e90 InInitializationOrderModuleList.Flink /r1

ntdll!_PEB_LDR_DATA

 +0x01c InInitializationOrderModuleList : [0x1a1f28 - 0x1a2ea0]

 +0x000 Flink : 0x001a1f28 _LIST_ENTRY [0x1a1fc8 - 0x1a1eac]

I am expanding the Flink of this List which gives me the first memory address

as, 0x001a1f28

This memory address is moved into the ebx register.

Instruction 5:

Now, we are reading the data stored at this memory address. Let's dump this

data using dd command as follows:

dd 0x001a1f28

0:001> dd 0x001a1f28

001a1f28 001a1fc8 001a1eac 7c900000 7c912afc

001a1f38 000b2000 02080036 7c980048 00140012

..................

Page 22

We are storing the address, 001a1fc8 into ebx

Instruction 6:

We are moving the value stored at offset 0x8 from 001a1fc8 into the register

ebx.

Let's dump the contents of 001a1fc8 address.

0:001> dd 001a1fc8

001a1fc8 001a2248 001a1f28 7c800000 7c80b64e

001a1fd8 000f6000 003e003c 001a1f70 001a0018

..................

At offset 0: 001a2248

At offset 4: 001a1f28

At offset 8: 7c800000

So, we are moving the address 7c800000 into ebx register and this should be

the base address of kernel32.dll

Let us confirm this using lm command.

0:001> lm

start end module name

01000000 01014000 notepad (deferred)

5ad70000 5ada8000 UxTheme (deferred)

5cb70000 5cb96000 ShimEng (deferred)

6f880000 6fa4a000 AcGenral (deferred)

73000000 73026000 WINSPOOL (deferred)

74720000 7476c000 MSCTF (deferred)

755c0000 755ee000 msctfime (deferred)

76390000 763ad000 IMM32 (deferred)

763b0000 763f9000 comdlg32 (deferred)

769c0000 76a74000 USERENV (deferred)

76b40000 76b6d000 WINMM (deferred)

77120000 771ab000 OLEAUT32 (deferred)

773d0000 774d3000 COMCTL32 (deferred)

774e0000 7761e000 ole32 (deferred)

77be0000 77bf5000 MSACM32 (deferred)

77c00000 77c08000 VERSION (deferred)

77c10000 77c68000 msvcrt (deferred)

77dd0000 77e6b000 ADVAPI32 (deferred)

77e70000 77f03000 RPCRT4 (deferred)

77f10000 77f59000 GDI32 (deferred)

77f60000 77fd6000 SHLWAPI (deferred)

77fe0000 77ff1000 Secur32 (deferred)

From the above list of loaded modules, we can confirm that, 7c800000 is indeed

the base address of kernel32.dll

Page 23

Using _LDR_DATA_TABLE_ENTRY

In the above method, I have dumped the contents of memory addresses (Flinks)

and used the offsets to see what is there. But to understand better, we need

to look

deeper into the double linked lists.

The Flinks of the lists stored in _PEB_LDR_DATA structure actually point to a

data structure, _LDR_DATA_TABLE_ENTRY.

Let's view the structure.

0:001> dt nt!_LDR_DATA_TABLE_ENTRY

ntdll!_LDR_DATA_TABLE_ENTRY

 +0x000 InLoadOrderLinks : _LIST_ENTRY

 +0x008 InMemoryOrderLinks : _LIST_ENTRY

 +0x010 InInitializationOrderLinks : _LIST_ENTRY

 +0x018 DllBase : Ptr32 Void

 +0x01c EntryPoint : Ptr32 Void

 +0x020 SizeOfImage : Uint4B

 +0x024 FullDllName : _UNICODE_STRING

 +0x02c BaseDllName : _UNICODE_STRING

 +0x034 Flags : Uint4B

 +0x038 LoadCount : Uint2B

 +0x03a TlsIndex : Uint2B

 +0x03c HashLinks : _LIST_ENTRY

 +0x03c SectionPointer : Ptr32 Void

 +0x040 CheckSum : Uint4B

 +0x044 TimeDateStamp : Uint4B

 +0x044 LoadedImports : Ptr32 Void

 +0x048 EntryPointActivationContext : Ptr32 Void

 +0x04c PatchInformation : Ptr32 Void

As can be seen, the Lists in the data structure _PEB_LDR_DATA are pointing to

Links in the _LDR_DATA_TABLE_ENTRY data structure.

We saw before that, _LIST_ENTRY is a set of two pointers, flink and blink. But

we could not see the data item of the double linked list. We will use the

concept of macro CONTAINING_RECORD of linked lists to read the real data

elements of the list.

Let's look only at the fields of type, _LIST_ENTRY of the two structures:

0:001> dt nt!_PEB_LDR_DATA

ntdll!_PEB_LDR_DATA

 +0x00c InLoadOrderModuleList : _LIST_ENTRY

 +0x014 InMemoryOrderModuleList : _LIST_ENTRY

 +0x01c InInitializationOrderModuleList : _LIST_ENTRY

 0:001> dt nt!_LDR_DATA_TABLE_ENTRY

ntdll!_LDR_DATA_TABLE_ENTRY

 +0x000 InLoadOrderLinks : _LIST_ENTRY

 +0x008 InMemoryOrderLinks : _LIST_ENTRY

 +0x010 InInitializationOrderLinks : _LIST_ENTRY

There is a one to one correspondence between the _LIST_ENTRY fields of the two

structures. For instance, the InLoadOrderModuleList.Flink points to

InLoadOrderLinks entry of _LDR_DATA_TABLE_ENTRY structure at offset 0.

InMemoryOrderModuleList.Flink field of _PEB_LDR_DATA points into

InMemoryOrderLinks field of _LDR_DATA_TABLE_ENTRY at offset 0x08

InInitializationOrderModuleList.Flink field of _PEB_LDR_DATA points into

InInitializationOrderLinks field of _LDR_DATA_TABLE_ENTRY at offset 0x010.

In windbg, if you want to display the offsets of fields in a structure you can

use the following command,

Page 24

#FIELD_OFFSET(Structure Name, Field Name)

Now, let's again take the above example shellcode and look into it:

Instruction 4:

We got that the Flink of InInitializationOrderModuleList points to 0x001a1f28

which is stored in ebx.

Instruction 5:

We take the next Flink entry, 001a1fc8 of InInitializationOrderModuleList and

move it into ebx register.

Now, let's use the above structures to see what data element of the linked

list it points to.

0:001> dt nt!_LDR_DATA_TABLE_ENTRY (001a1fc8 -

@@(#FIELD_OFFSET(_LDR_DATA_TABLE_ENTRY,InInitializationOrderLinks)))

ntdll!_LDR_DATA_TABLE_ENTRY

 +0x000 InLoadOrderLinks : _LIST_ENTRY [0x1a2058 - 0x1a1f18]

 +0x008 InMemoryOrderLinks : _LIST_ENTRY [0x1a2060 - 0x1a1f20]

 +0x010 InInitializationOrderLinks : _LIST_ENTRY [0x1a2248 - 0x1a1f28]

 +0x018 DllBase : 0x7c800000

 +0x01c EntryPoint : 0x7c80b64e

 +0x020 SizeOfImage : 0xf6000

 +0x024 FullDllName : _UNICODE_STRING "C:\WINXP\system32\kernel32.dll"

 +0x02c BaseDllName : _UNICODE_STRING "kernel32.dll"

 +0x034 Flags : 0x80084004

 +0x038 LoadCount : 0xffff

 +0x03a TlsIndex : 0

 +0x03c HashLinks : _LIST_ENTRY [0x7c97e2d0 - 0x7c97e2d0]

 +0x03c SectionPointer : 0x7c97e2d0

 +0x040 CheckSum : 0x7c97e2d0

 +0x044 TimeDateStamp : 0x49c4f2bb

 +0x044 LoadedImports : 0x49c4f2bb

 +0x048 EntryPointActivationContext : (null)

 +0x04c PatchInformation : (null)

At offsets 0x024 and 0x02c, we can see FullDllName and BaseDllName

respectively which give us the name of DLL. This shows us that the second

entry in the InInitializationOrderModuleList contains information about the

kernel32.dll module.

Page 25

Practical Example with Rustock.B Rootkit

This time, we will apply the knowledge gained from previous topics about IAT, EAT of a

PE and also about Process Environment Block.

I have taken the Rustock.B rootkit as an example and this rootkit makes use of a

myriad of function APIs exported by kernel32.dll for its working. It has to get the

function pointers to memory addresses of these exported Function APIs. And we are

going to see how exactly, the rootkit does this.

Knowledge of the previous topics is highly recommended before you read further.

I have added my comments to the assembly language instructions to make it easier for

you to understand.

After unpacking the rootkit, this is what we see:

Function I:

pop ebp

sub ebp, 9

mov eax, fs:[30] ; Pointer to Process Environment Block

mov eax, [eax+c] ; Pointer to _PEB_LDR_DATA structure

mov eax, [eax+1c] ; Pointer to InInitializationOrderModuleList.Flink

mov eax, [eax] ; The second entry

mov eax, [eax+8] ; The base address of kernel32.dll

lea esi, [ebp+722] ; At memory address, 004022A4, we have the function name GetSystemDirectoryA

lea edi, [ebp+893] ; 00402415

The above set of instructions will grab a pointer to Process Environment Block and

then use it to find the base address of kernel32.dll. I have covered this in detail in

my previous article.

Page 26

Also, in the above instructions, we have grabbed the name of Function API,

GetSystemDirectoryA from memory location, 004022A4. The Rootkit stores the array of

names of all the Function APIs which it uses, at memory address, 004022A4 as shown in

the screenshot below.

Then it parses this list and grabs the function pointers to each of the above APIs and

stores them in another array.

Function II:

1. pushad ; save the contents of all the registers on the stack

2. mov ebx, eax ; kernel32.dll base address is placed in ebx

3. mov ecx, [ebx+3c] ; e_lfanew field in IMAGE_DOS_HEADE is at offset 0x3c and it points to the PE header

4. mov ecx, [ebx+ecx+78]; at offset 78h from IMAGE_NT_HEADER, we have the RVA of Export Directory Table of

kernel32.dll

5. add ecx,ebx ; add image base address

6. mov edx, [ecx+20] ; At offset 20h in the Export Directory table, we have the RVA of AddressOfNames

array

7. add edx, ebx ; add the image base address

8. mov edi, [edx] ; move the RVA of first function name in kernel32.dll in edi

9. add edi, ebx ; add the image base address

a. push edi ; push the First Function Name, ActivateActCtx to the stack

b. push -1

c. call 004020dc

In the above set of instructions, we have used the IMAGE_NT_HEADER to locate the

Export Data Directory of the Rootkit. In a Portable Executable you can find the Export

Table at Offset 0x78 from the PE File Header.

We have got a pointer to the first function name in the AddressOfNames array inside

the Export Directory. This function name is, ActivateActCtx.

Page 27

We have to find the function pointer to GetSystemDirectoryA. To do this, we have to

first find out the index of API function in the AddressOfNames Array in EAT.

Function III:

1. pushad ; save the contents of registers to the stack

2. xor edx, edx ; clear edx. It will store index number of API in the AddressOfNames array

3. push esi ; push the name of the function to the stack

4. cmp byte ptr [esi], 0 ; check whether the current byte is null or not

5. je short 004020f2 ; if the byte is 0 then exit the function

6. cmps byte ptr [esi], byte ptr es:[edi] ; compare the strings pointed to by esi and edi, byte by byte

7. je short 004020e0 ; if the byte matches then compare the next byte

8. inc edx ; increment the counter

9. xor eax, eax ; clear the eax register which is used to check for string termination

a. dec edi ; set the edi register to point to the API name

b. scas byte ptr es:[edi] ; compare the byte pointed to by edi with al register. in other words,

compare the current char with null byte

c. jnz short 004020ec ; keep checking till null byte is reached. at the end of this loop, we will

have the next API name pointer in the edi register

d. pop esi ; store the function name in the esi register

e. jmp short 004020df ; check with the next function name in the AddressOfNames array

The above set of instructions will walk through the AddressOfNames array of

kernel32.dll's Export Directory till it locates the function API whose address we want

to find. In our case, GetSystemDirectoryA function as an example.

At the end of the above function, edx register will have the index of the Function API

whose address we are trying to find.

Function IV:

1. inc esi ; point esi to the next function name whose address we have to fetch

2. mov [esp+8], esi ; store this function name on the stack

3. mov [esp+20], edx ; store the index number of function API on the stack

4. pop eax ; eax is set to function API name

5. popad ; restore all the registers using the stack contents

6. ret

At the end of the above set of instructions, we have the following stack layout.

eax: index number of function API in the AddressOfNames array

ecx: virtual address of kernel32.dll's export address table

edx:

ebx: base address of kernel32.dll

esp: stack pointer

ebp: base pointer

esi: pointer to next function name whose address we have to find

edi: pointer to the first function name in kernel32.dll's EAT's AddressOfNames array

This stack layout remains the same for all the Function API Address Resolutions.

Function V:

1. pop edi ; store FFFFFFFF in the edi register

2. inc edi ; set edi to 0 and therefore initialize the counter

3. push edi ; save it to stack

4. mov edx, [ecx+24] ; store the RVA of AddressOfOrdinals array of Export Directory. It is at

offset, 0x24 from the base address of Export Directory

Page 28

5. add edx, ebx ; add the base address of kernel32.dll to this RVA to get the Virtual Address

of AddressOfOrdinals Array

6. movzx edx, word ptr [edx+eax*2] ; using index of function name from AddressOfNames array, we get the

corresponding ordinal from AddressOfOrdinals array. store in edx

7. mov eax, [ecx+1c] ; store the RVA of AddressOfFunctions array of Export Directory which is at

offset 0x1c from base of EAT in eax.

8. add eax, ebx ; add the base address of kernel32.dll to eax to get the VA of

AddressOfFunctions array

9. mov eax, [eax+edx*4] ; using the ordinal of function api from AddressOfOrdinals array, we get the

RVA from AddressOfFunctions array and store in eax

a. add eax, ebx ; add base address of kernel32.dll to the above RVA to get the Virtual

Address of Function API

b. push esi ; push the next function name whose address we have to find to the stack

c. mov esi, [esp+c] ; get the pointer to the internal table where the malware stores the function

pointers to different APIs

d. mov [esi+edi*4], eax ; store the function API virtual address in the malware's function pointer

table

e. pop esi ; store the next function API's name back in esi

f. mov edi, [esp+4] ; point edi to the first function name in the AddressOfNames array

10. cmp byte ptr [esi],0 ; check whether esi is pointing to null byte or not

11. jnz short 004020aa ; if esi is pointing to a function name then repeat the entire process to

find its virtual address

As you can see, the rootkit maintains a table of function Pointers at the memory

address, 00402415, which initially looks like this:

Page 29

After running through the above loop multiple times, this table is filled with the

function pointers to all the APIs which the rootkit will be using:

Now, we will understand the above set of instructions much better using Windbg.

I will take AddConsoleAliasA as an example. By Walking through the above functions, I

will highlight how the assembly language code is working.

I will not go into the details of Function I, since it is already covered in previous

topic of Process Environment Block.

In Function II,

ebx = kernel32.dll base address

I will check the value at offset 3c from the base.

0:001> dd 7c800000+3c

7c80003c 000000f0 0eba1f0e cd09b400 4c01b821

So, the value is f0.

This is the offset of the PE File Header from the base address of kernel32.dll

Next, I will read the PE File Header by adding this offset to the base address,

0:001> dc 7c800000+f0

7c8000f0 00004550 0004014c 49c4f2bb 00000000 PE..L......I....

As can be seen, we have the PE File Header at the offset f0 from the base address of

kernel32.dll. This marks the beginning of PE File Header.

Page 30

Let's view this header now,

0:001> !dh kernel32 -f

File Type: DLL

FILE HEADER VALUES

 14C machine (i386)

 4 number of sections

49C4F2BB time date stamp Sat Mar 21 19:29:23 2009

 0 file pointer to symbol table

 0 number of symbols

 E0 size of optional header

 210E characteristics

 Executable

 Line numbers stripped

 Symbols stripped

 32 bit word machine

 DLL

OPTIONAL HEADER VALUES

 10B magic #

 7.10 linker version

 83A00 size of code

 70400 size of initialized data

 0 size of uninitialized data

 B64E address of entry point

 1000 base of code

 ----- new -----

7c800000 image base

 1000 section alignment

 200 file alignment

 3 subsystem (Windows CUI)

 5.01 operating system version

 5.01 image version

 4.00 subsystem version

 F6000 size of image

 400 size of headers

 F8F85 checksum

00040000 size of stack reserve

00001000 size of stack commit

00100000 size of heap reserve

00001000 size of heap commit

 0 DLL characteristics

 262C [6D19] address [size] of Export Directory

 81EB4 [28] address [size] of Import Directory

 8A000 [65EE8] address [size] of Resource Directory

 0 [0] address [size] of Exception Directory

 0 [0] address [size] of Security Directory

 F0000 [5CA0] address [size] of Base Relocation Directory

 847A4 [38] address [size] of Debug Directory

 0 [0] address [size] of Description Directory

 0 [0] address [size] of Special Directory

 0 [0] address [size] of Thread Storage Directory

 4E600 [40] address [size] of Load Configuration Directory

 0 [0] address [size] of Bound Import Directory

 1000 [624] address [size] of Import Address Table Directory

 0 [0] address [size] of Delay Import Directory

 0 [0] address [size] of COR20 Header Directory

 0 [0] address [size] of Reserved Directory

From this we can see that the Export Directory is at RVA, 262C from the base address.

In the Function II above, we are reaching the Export Directory by reading address at

offset, 0x78 from the PE File Header.

So, let's check that,

0:001> dd 7c8000f0+78

7c800168 0000262c 00006d19 00081eb4 00000028

7c800178 0008a000 00065ee8 00000000 00000000

Page 31

As can be seen, the value at offset 0x78 is, 262C which is the RVA of Export

Directory.

Let's dump the export directory.

0:001> dd 7c800000+0000262c

7c80262c 00000000 49c4ce3f 00000000 00004b98

7c80263c 00000001 000003ba 000003ba 00002654

7c80264c 0000353c 00004424 0000a6e4 000354ed

We saw in Export Directory topic that how we can traverse this data structure and

compare it with the IMAGE_EXPORT_DIRECTORY structure to get the RVAs of the 3 arrays.

In the function II above, we have read the RVA at offset 0x20 from the Export

Directory Base.

0:001> dd 7c800000+0000262c+20

7c80264c 0000353c 00004424 0000a6e4 000354ed

7c80265c 000326c1 0007241f 000723e1 000593fa

7c80266c 000592de 0002bf11 00009011 00072a71

The value is 353c and this is the RVA of AddressOfNames array.

Let's view the contents of this array,

0:001> dd 7c800000+0000353c

7c80353c 00004ba5 00004bb4 00004bbd 00004bc6

7c80354c 00004bd7 00004be8 00004c07 00004c26

7c80355c 00004c33 00004c4f 00004c5c 00004c76

In instruction 8,9 and 10, we are moving the RVA of first function name, adding base

address of kernel32.dll to it and then pushing the string found at that address to the

stack.

Let's view this string,

0:001> da 7c800000+00004ba5

7c804ba5 "ActivateActCtx"

This is the first function name in the array.

Now, let's analyze Function III,

In function III, we traverse the AddressOfNames array, take each RVA and add it to the

base address of kernel32.dll. The Function Name at that address is compared with

AddConsoleAliasA. This loop is repeated till the matching RVA is found. A counter is

incremented everytime the loop is executed and this is stored in edx.

So, after running this loop and searching for AddConsoleAliasA function, we get the

value in edx as 3.

Page 32

Let's analyze function V,

here ecx register will have the Export Directory Table base address, 7c80262c

At offset 0x24 from this address we have the RVA of AddressOfOrdinals array.

let's check it,

0:001> dd 7c80262c+24

7c802650 00004424 0000a6e4 000354ed 000326c1

7c802660 0007241f 000723e1 000593fa 000592de

7c802670 0002bf11 00009011 00072a71 0005fcb4

So, base address of the array is, 7c804424

In instruction 6, we use the index from AddressOfNames array and read the

corresponding word from the AddressOfOrdinals array. This gives us, 0x03.

In instruction 7, I read the RVA of AddressOfFunctions array which is at offset 0x1c

from the Export Directory's base address as shown below,

0:001> dd 7c80262c+1c

7c802648 00002654 0000353c 00004424 0000a6e4

7c802658 000354ed 000326c1 0007241f 000723e1

7c802668 000593fa 000592de 0002bf11 00009011

So, the base address of AddressOfFunctions Array is: 7c802654

Let's view this array,

0:001> dd 7c802654

7c802654 0000a6e4 000354ed 000326c1 0007241f

7c802664 000723e1 000593fa 000592de 0002bf11

7c802674 00009011 00072a71 0005fcb4 0003594f

We use the AddressOfOrdinals index and parse this array in steps of 4 bytes till index

0x3. This gives us the RVA of AddConsoleAliasA function as 0007241f

So, the base address of AddConsoleAliasA is: 7c800000+0007241f = 7c87241f

Let us verify the function name at this memory address,

0:001> ln 7c87241f

(7c87241f) kernel32!AddConsoleAliasA

In this way, we saw a realistic application of the method to find base address of a

function API by analyzing the rootkit.

Conclusion

After reading the above document, you should be able to explore OS Internals using a

debugger and apply this knowledge while reversing malwares.

This will also help in understanding more advanced concepts like reconstructing the

Import Table of a packed executable. This document shall serve as a reference to the

experienced reversers as well.

Page 33

 References

1. http://blog.harmonysecurity.com/2009_06_01_archive.html

2. http://www.offensivecomputing.net/

3. http://www.phreedom.org/solar/code/tinype/

http://blog.harmonysecurity.com/2009_06_01_archive.html
http://www.offensivecomputing.net/
http://www.phreedom.org/solar/code/tinype/

