EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

printf() tricks

DC4420 slides, Feb 2012

=i\

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

Who am I?

e Shaun Colley
e Senior Security Consultant at IOActive

e Exploit development, reverse engineering,
development, pen-testing

@)

Printf() tricks - Agenda

e Shifting the stack pointer & arbitrary
mem writes...

e ...in order to exploit format string bugs
without %n

e When is a NULL pointer not just a NULL
pointer?

e ..don’t expect printf() & family to crash on
NULL pointers

* These are just a few things | played with a
while back

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

&) |

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

There was a good article in Phrack #67 called “A
Eulogy for format strings” (phrack.org/issues.html?
issue=6/&id=9) by Captain Planet

Main point of the article was disabling the anti-
format string bug exploitation measures

implemented by the FORTIFY_SOURCE patch (gcc
prog.c —o prog -D_FORTIFY_SOURCE=2)

The patch’s anti-exploit measures are:
Detect ‘holes’ in direct parameter access, i.e.
7%16%x and not %16$x 7%15%x %14%x ... %1 $x
Detect %n in format strings that are in writable
segments (stack, heap, BSS, ...)
Both of these result in an abort()

&)\

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

* How did the author, Captain Planet
disable FORTIFY_SOURCE?

* Need to look into the GLIBC vfprintf.c
source code...

* Warning —it’s not pretty. In fact
understanding the code is more of a
reverse engineering job than just
reading C code ©

See code on next slide...

&) |

|OActive
args type = alloca (nhargs * sizeof (int));// !'! UNBOUNDED ALLOCA = STACK
SHIFTING !

memset (args type, s-> flags2 & O FLAGS2 FORTIFY ? "\xff' : "\O',
nargs * sizeof (int));

args value = alloca (nargs * sizeof (union printf arg)); // ! UNBOUNDED STACK
SHIFTING !

[* XXX Could do sanity check here: If any element in ARGS_TYPE is

still zero after this loop, format is invalid. For now we
simply use O as the value. */

/* Fill in the types of all the arguments. */
for (cnt = 0; cnt < nspecs; ++cnt)
{
[* If the width is determined by an argument this is an int. */
if (specs[cnt].width arg != -1)

args type[specs[cnt].width arg] = PA INT; // UNBOUNDED NULL DWORD WRITE

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

e Nargs = maximum possible number of format args, i.e.
%10Sx %12345S5x would give nargs = 12345

e And specs[cnt].width arg = width of currently parsing
format specifier

eSO can

ultimately lead to an (almost-)arbitrary addr NULL
DWORD write

,'/’_-i‘
X,

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

e This allowed the author to toggle off the
_|O_FLAGS2_ FORTIFY flag in the file stream being
used.

e \Very important point to note is that nargs was set to

something that would wrap to O in the memeset, i.e.
7%1073741824%

e And then another format specifier was used to exploit

e If width_arg is chosen very carefully the
FORTIFY SOURCE flag in the file stream is NULLed.

* At this point you can use direct parameter access +_
%n’s to carry out a fairly standard format string a‘eéack |

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

e Cool, patch bypassed...

e But are there any other ways to exploit this arbitrary
stack pointer shift and/or arbitrary NULL dword
write?

e For example, without later having to use %n like in
normal format string exploits?

e Yes, but they're fairly application-specific. Let’s
consider each of the attack vectors - 1) stack shifting
and 2) arbitrary address write (not arbitrary value)

,'/’_-
X,

10

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

e Stack pointer shifting with alloca()...

e Few different possibilities. Firstly you could use a large
DPA to shift the stack pointer into the heap:

args_type = alloca (nargs * sizeof (int)); // !!! UNBOUNDED ALLOCA =

STACK SHIFTING !

memset (args_type, s-> flags2 & 10 FLAGS2 FORTIFY ? \xff' : \Q|,
nargs * sizeof (int));

* However you’ll generally get a SIGSEGV because of the
memset()

=
(%)

11

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

e Sometimes this doesn’t matter

e The memset has still corrupted memory up to the point a
guard page is hit...

e We just need some of this memory to be used in a SEGV
signal handler

e i.e. SEGV signal handler tries to drop privileges to do
something priv-sensitive but the saved UID has been
overwritten with O’s...

e Could be pretty bad news.
e Demo (on a VM!!)

&) |

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

e What if there is no signal handler and a seg fault in memset()
will just crash the app?

e Sometimes we may be able to work it so that nargs * sizeof(int)
at [1] is small enough that no page fault happens at memset()...

IO FLAGS2 FORTIFY ?

xff' : '\O’,

| * sizeof (union)); /1 [2]

* Yet at the same time we make nargs * sizeof(union printf_arg)
is large enough to shift the stack pointer past the guard page
and into the heap

7> <
\'/0

13

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

* So we use a %<number>%$x with number small enough that
<number> * sizeof(int) still leaves ESP in the stack therefore
the memset() doesn’t page fault...

* .. Then the next alloca() with no annoying memset() shifts the
stack pointer past the guard page and into an area of
memory we (in/)directly control i.e. heap

* Any further function calls after this point will push stack
frames into this memory area

* What if another (p)thread then clobbers this area with data
we control?

* You've potentially got an exploitable vector...and you didn’t
even use a %n specifier

* You just need to find somewhere you can shift to that you
have some control over

,'/’--i‘
<
; AN
p

14

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

Can be a little messy
Often need to play around with rlimits and
get a lot of heap malloc()’ed

Demo...

\

15

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

What about using the arbitrary NULL overwrite for
something?

Again, application-specific just like the first demo

Could be used to zero out some context-specific int
like Captain Planet used to zero out the
FORTIFY_SOURCE flag

There are these assignment ops as well:

break;
default:
/*We have more than one argument for this format spec.
We must call the arginfo function again to determine

&) |

16

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

* Be imaginative and do some digging — there may
be something you can overwrite that will be
enough to affect execution flow in your favour

* Application-specific privilege flags
* Loop counters

* i.e.overwrite a decrementing loop counter
with zero, then...

 counter--; > Oxffffffff

* Could lead to memory corruption

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

* Lastly, be aware that printf(“‘abcd %s\n”, NULL) does not
necessarily crash at a NULL pointer dereference

* According to C99, the behavior is actually undefined

* But glibc’s *printf() and other implementations will

replace such an occurance with “(null)” (not always,
sometimes it will seg fault — it depends what else is in the

format string)

° |.e.

* root@bt:~# ./null
* abcd (null)

&) |

17

18

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

* Potential to be abused?

* Again, application-specific but could lead to an overflow in
sprintf() if ptr was supposed to point to a string shorter than
strlen(“(null)”) = 6 bytes.

* |.e. char *ptr = NULL;

° switch(user_controlled int) {
case 0 : ptr =“ABI”;

break;

case | :ptr =“AB2”;
break;
case 2 : ptr = “AB3”;

break;

sprintf(buf, “abcd %s”, ptr); // could be an overflow

&) |

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

* Just some *printf() internals/tricks | thought might be
Interesting.

* Thanks for listening.

Questions!

|OActive, Ltd

