
   

 

 

Covert Channel over ICMP 

 
 

 

By: Debasish Mandal 

http://www.debasish.in/ 

Date: 15/08/2011 

 

 

 

 

 



Contents: 

 

 

    Introduction 

    Some key points about ICMP 

    Some key points about firewalls 

    Uses of ICMP covert channel 

    Breaking an ICMP ping 

    Handmade raw ping using python 

    Establish a simple ICMP covert channel     

between two host using python 

    Server and Client source Code. 

    Few other well known covert channel tools 

    Mitigation 

 

 

 

 

 

 

 



 

Introduction and Overview: 

An ICMP covert tunnel establishes a covert connection between two computers using ICMP 

echo requests and reply packets. An example of this technique is tunneling complete TCP traffic 

over ping requests and replies. More technically we can say ICMP covert tunneling works by 

injecting arbitrary data into an echo packet sent to a remote computer. The remote computer 

replies in the same manner, injecting an answer into another ICMP packet and sending it back.  

Some Key Points about ICMP: 

ICMP Doesn't Have Ports: 

    We can't actually ping a port. When someone speaks of "pinging a port" they are actually 

referring to using a layer 4 protocol (such as TCP or UDP) to see if a port is open or not. So if 

someone "pings" port 80 on a box, that usually means send it a TCP SYN to that system in order 

to see if it's responding. Real ping uses ICMP, which doesn't use ports at all. 

ICMP Works At Layer Three (3) 

    While ICMP sits "on top of" IP, ICMP is not a layer 4 protocol. It's still considered to be at 

layer 3 rather than one layer higher. 

 

Network layer routes the packets according to the unique network addresses. Router works as 
the post office and network layer stamps the letters (data) for the specific destinations.  
Protocols: These protocols work on the network layer IP, ICMP, ARP, RIP, OSI, IPX and OSPF.  
Network Devices: Network devices including Router, Brouter, Frame Relay device and ATM 
switch devices work on the network layer. 



Some Key Points about Firewalls: 

 

Firewalls operate at different layers to use different criteria to restrict traffic. The lowest layer 

at which a firewall can work is layer three. In the OSI model this is the network layer. In TCP/IP 

it is the Internet Protocol layer. This layer is concerned with routing packets to their 

destination. At this layer a firewall can determine whether a packet is from a trusted source, 

but cannot be concerned with what it contains or what other packets it is associated with. 

Firewalls that operate at the transport layer know a little more about a packet, and are able to 

grant or deny access depending on more sophisticated criteria. At the application level, 

firewalls know a great deal about what is going on and can be very selective in granting access. 

 

It would appear then, that firewalls functioning at a higher level in the stack must be superior in 

every respect. This is not necessarily the case. The lower in the stack the packet is intercepted, 

the more secure the firewall. If the intruder cannot get past level three, it is impossible to gain 

control of the operating system. 

Uses of ICMP Covert Channel: 



 

ICMP tunneling can be used to bypass firewalls rules through obfuscation of the actual traffic. 

Depending on the implementation of the ICMP tunneling software, but this type of connection 

can also be categorized as an encrypted communication channel between two computers. 

Without proper deep packet inspection or log review, network administrators will not be able 

to detect this type of traffic through their network. 

Breaking an ICMP packet: 

 

To break an ICMP packet we are going to send ICMP echo requests to a remote host and sniff 

the network traffic. 

Let’s have a look at a normal ping. 

Here we are sending normal ICMP echo request to the remote host 192.168.157.1. 



 

Capturing the traffic using Wire shark we can see this: 

 

As we have used the basic ping utility with no options, it’s sent multiple ICMP echo requests to 

the host. So it will be bit complicated for us to analyze the entire traffic. So let’s send a single 

ICMP packet with 0 bytes of data. 

Here we can use following command to send an ICMP packet with 0 bytes of payload. 

      ping –c 1 –s 0 <host> 

 



Now it will be easier for us to analyze the traffic. 

In sniffer in the remote host we can see we have received 42 bytes of data. 

 

If we look at a typical ICMP packet structure it will like below figure. 

 

Figure 1 

A typical ICMP Header structure is like:  

 

Analyzing those 42 bytes of data we can understand 1st 14 bytes is the Ethernet Header. 

 

In the Ethernet header the 1st 12 bytes you can see that this is nothing but the Hardware 

addresses of the Destination and source machine. 

The next 20 BYTE of the received datagram is the IP Header. (This supports the Figure 1?) 

 

The IP header structure in more details: 



 

Now the next 8 bytes is ICMP Header: 

 

ICMP Header Structure in more details: 

 

This also supports figure 2. 

The ping utility present in a typical Linux system actually allows us to control number of 

packets, size of packets, but if we want to craft a ping in more detail it will not allow us to do 

that. As our main objective is to manipulate the data portion ICMP packet so using normal 

utility ping is not a good choice. 

HPING2: 

Hping is a free packet generator and analyzer for the TCP/IP protocol distributed by Salvatore 

Sanfilippo (also known as Antirez) using this we can also control / and manipulate the data part 

of a single ICMP packet. Here again we are going to send a single ICMP echo packet with the 

help of hping but this time we are going to add some junk data with the ICMP packet. 

 



You can see in the screenshot that we have added 4 “A” s with the ICMP packet and sent it to 

the HOST 192.168.157.1. 

Let’s sniff the traffic and analyze it. 

 

Now you can see we have captured 46(42+4) bytes of data and in the screen shot you can easily 

see our payload that’s highlighted.41 is the HEX representation of “A”. 

Handmade raw PING: Life is short, I always prefer python: 

 

In the above examples we have used normal ping utility and hping to send ICMP echo request 

to any host. Now we are going to use a python to send a handmade raw ICMP echo packet. 

 

In this case we are not only crafting ICMP header and the payload of the packet but also the 

Ethernet Header, IP header part. 



The variable “dump” in the above mentioned script is holding entire datagram.Includng 

Ethernet header IP header and ICMP header and also the payload. Here I have put 41 that 

mean 4 no. of “A”s. 

Now from the above discussion it’s clear that we can easily send arbitrary data to any host by 

injecting the data into an echo packet. Now if we can plant a demon in the remote host which 

can replies in the same manner, injecting an answer into another ICMP packet and sending it 

back. 

Packing all these together: 

 

If we can implement following feature into one program then we can do exactly the same thing  

1) A daemon will be running which will sniff all ICMP packets. 

2) After receiving a ping, extract the payload (valid query from attackers’ side) from ping 
packets. 

3) Do necessary things depending on the query received through ping. 

4) Ping back with the answers of the query. 

Here I have written a simple ICMP tunneling server and a client in python to establish a covert 
channel between two hosts. 

Code for Server: 

http://pastebin.com/JLD6grb2 

Code for Client: 

http://pastebin.com/JLD6grb2


http://pastebin.com/gH3zzHdQ 

This covert channel daemon basically receives OS commands from ping and executes the 
command on the remote host and ping us back the command output. Once the daemon is 
started on host it will start sniffing ICMP packets. After receiving commands from the client it 
will extract the payload from the ping packets and execute the command on that host and ping 
us back the output. If the command output is long the daemon will send the output through 
multiple pings.  

The client side sniffer will receive the response packets and extract the command output from 
payload. After parsing the command out put it will show the output. The tool Hping can also be 
used as a client of this daemon. In that case the payload should be crafted in a particular 
pattern so that the daemon can recognize the query. In that case the client script should be 
used as a response parser or in wire-shark. 

A video demo of this Covert Channel can be found here: 

http://www.youtube.com/watch?v=ADHtjwwkErI 

Few other well known covert channel tools: 

 LOKI 

LOKI is an Information tunneling program. It uses Internet Control message Protocol echo 

response packet to carry its payload. 

 NCovert 

It hides file transfer by cloaking it in seemingly harmless data using packet forgery. 

Sometime its possible to hide actual IP of users. 

 007 Shell: 

 

007 Shell is a simple client/server C program used for remotely administering a system 

over a network using techniques similar to Loki. Those covert ICMP ECHO_REPLY 

packets encapsulate the command and response message within the packet payload. 

 ICMPTX (IP-over-ICMP): 

ICMPTX is a program that allows a user with root privledges to create a virtual network link 

between two computers, encapsulating data inside of ICMP packets. 

 

http://pastebin.com/gH3zzHdQ
http://www.youtube.com/watch?v=ADHtjwwkErI


Mitigation: 

 

 

 

Preventing covert channels reminds the cat-and-dog chase .You can prevent certain channels 
only if you're aware of them, can analyze the traffic they generate and then configure your IDS 
accordingly, e.g. write Snort rules. Still, when covert channels generate different traffic with 
each packet (e.g. bit-flipping) or use advanced timing techniques, it becomes impossible to 
prevent them 

Although the only way to prevent this type of tunneling is to block ICMP traffic altogether, this 

is not realistic for a production or real-world environment. One method for mitigation of this 

type of attack is to only allow fixed sized ICMP packets through firewalls to virtually eliminate 

this type of behavior. Limit the size of ICMP packets. Large ICMP packet can be seen as 

suspicious by an IDS system that could inspect the ICMP packet and raise an alarm. However, 

since there are legitimate uses for large ICMP packets it is difficult to determine if a large ICMP 

packet is malicious. For example, large echo request packets are used to check if a network is 

able to carry large packets. Differentiating legal from illegal large packets is even more difficult 

if covert communication is encrypted. An IDS needs to be able to determine if a packet is 

encrypted or not. Distinguishing encrypted from non-encrypted packet still remains an open 

interesting research problem. 

Snort provides one or two rules that can help in detecting ICMP payload covert channels. This is 

one example. Another example is to detect the "Dont Fragment" bit covert channel and so on. 

These are simple examples. However, snort doesn't provide such rules and one needs to write 

them customized. In addition, there are some smart covert channels that are very difficult to 

detect like the ISN covert channel and timing covert channels. 

Reference:   

http://danielmiessler.com/study/icmp/ 

http://en.wikipedia.org/wiki/Covert_channel 

http://danielmiessler.com/study/icmp/
http://en.wikipedia.org/wiki/Covert_channel


http://en.wikipedia.org/wiki/Firewall_(computing) 

http://www.2factor.us/icmp.pdf 

 

 

http://en.wikipedia.org/wiki/Firewall_(computing)
http://www.2factor.us/icmp.pdf

