
Reverse Engineering
Malware

Part 1

Author :Arunpreet Singh

Blog : https://reverse2learn.wordpress.com

MD5 Hash : 1d8ea40a41988b9c3db9eff5fce3abe5

This is First Part of 2 Part Series .This Malware Drops A File
We will only Analyze Dropper and Next Part We

Originally Sample is Downloaded from
and Reverse Engineering .I Uploaded the Sample to s

Link

http://www.sendspace.com/file/to53wo

Anyway Start With Basic Stuff..Check it with ExeInfo
Detection .

NOTE: I Have Dedicated Virtual Machine For Malware Analysis .I

Here are Results From ExeInfo/Protection ID

So Sample is Not Packed .:D (Normally Malwares Are packed)

Compiler Detected : Visual C++ 2008

Fine Till Now

Visual C++ Targets are Kind of Ideal For Reversing ..Unlike Delphi Targets That Contain annoying
Calls..VC++ Targets are Relatively Easier to Reverse .

Debugger /Disassembler we are going to use are

1)Ollydbg

1d8ea40a41988b9c3db9eff5fce3abe5

This is First Part of 2 Part Series .This Malware Drops A File (All malwares do it usually)
We will only Analyze Dropper and Next Part We will Analyze Dropped File.

Originally Sample is Downloaded from KernelMode.info ..It is very Good Place for Malware Samples
I Uploaded the Sample to sendspace ..The Password to File is “infected”

http://www.sendspace.com/file/to53wo

Basic Stuff..Check it with ExeInfo/Protection ID for Packer Detection or Compiler

NOTE: I Have Dedicated Virtual Machine For Malware Analysis .I recommend You to have same..

Here are Results From ExeInfo/Protection ID

So Sample is Not Packed .:D (Normally Malwares Are packed)

Compiler Detected : Visual C++ 2008

Visual C++ Targets are Kind of Ideal For Reversing ..Unlike Delphi Targets That Contain annoying
Calls..VC++ Targets are Relatively Easier to Reverse .

we are going to use are

(All malwares do it usually)..So in This Part

for Malware Samples
Password to File is “infected”

/Protection ID for Packer Detection or Compiler

You to have same..

Visual C++ Targets are Kind of Ideal For Reversing ..Unlike Delphi Targets That Contain annoying

2)IDA

I have a habit of Running Both IDA and Ollydbg parallely .IDA is very Powerful Due to Its Features Like
Renaming the Variables, Functions ,Locations and Cross Reference etc ..Ollydbg is my Personal Favorite
Debugger.

Also This Article is mainly to demonstrate Reverse Code Engineering ..I will try to Reverse Engineer
Important parts of Malware .

Trace into Ollydbg Till WinMain = 00401648 or Use IDA ..IDA By default Start From WinMain

So lets start Analyzing from WinMain

00401648 /$ 8BFF MOV EDI,EDI //Do Nthing

0040164A |. 55 PUSH EBP //Standard Function Start –Save Frame Pointer

0040164B |. 8BEC MOV EBP,ESP //Move Stack Pointer to EBP

0040164D |. 83EC 1C SUB ESP,1C //Allocate 1C (28) Bytes For Local Variables

00401650 |. 56 PUSH ESI //Save Registers Before Calling

00401651 |. 57 PUSH EDI

00401652 |. E8 120D0000 CALL sample.00402369

Lets Trace Into This Call.. Disassembly Inside Call Looks Like This

Lets Start From Something Interesting.. We
passed is 0 .

We All Know GetModuleHandleW(NULL)..Returns Imagebase of Currently Loaded
..So This Call returns the Imagebase of sample.exe ..Next few Lines are

0040237A |. 8BF0 MOV ESI,EAX

0040237C |. 8B46 3C MOV EAX,DWORD PTR DS:[ESI+3C]

0040237F |. 8B9C30 800000 MOV EBX,

00402386 |. 03DE ADD EBX,ESI

00402388 |. 8B43 0C MOV EAX,DWORD PTR DS:[EBX+C]
_IMAGE_IMPORT_DESCRIPTOR

To Understand Above Code ..You Need Some Basic Understanding of PE Format …

Lets Start From Something Interesting.. We have A Call To API “GetModuleHandleW” ,the argument

We All Know GetModuleHandleW(NULL)..Returns Imagebase of Currently Loaded Executable in EAX
..So This Call returns the Imagebase of sample.exe ..Next few Lines are Interesting

MOV ESI,EAX //Now ESI Contain Imagebase

MOV EAX,DWORD PTR DS:[ESI+3C] //Get NT HEADER OFFSET

MOV EBX,DWORD PTR DS:[EAX+ESI+80] //Image_import_Directory

ADD EBX,ESI //Address Of _IMAGE_IMPORT_DESCRIPTOR

MOV EAX,DWORD PTR DS:[EBX+C] //Point to Name Field of

To Understand Above Code ..You Need Some Basic Understanding of PE Format …

have A Call To API “GetModuleHandleW” ,the argument

Executable in EAX

//Now ESI Contain Imagebase

//Image_import_Directory

//Address Of _IMAGE_IMPORT_DESCRIPTOR Structure

First Here We Have = Imagebase+3c

In PE Format First We have IMAGE_DOS_HEADER

Ignore Other Fields.. Here we have

e_lfanew Actually Contains the offset to PE Header

MOV EAX,DWORD PTR DS:[ESI+3C]

So above instruction is to get NT Header Offset

Imagebase is added as we are parsing the File in Memory ..Hope it is Clear Now

MOV EBX,DWORD PTR DS:[EAX+ESI+80]

So What We have is Load value at Imagebase+NT_HEADER+0x80 into EBX ..

Each PE File Contains Array of IMAGE_DATA_ DIRECTORY
IMAGE_DATA_DIRECTORY Structure

First Here We Have = Imagebase+3c

In PE Format First We have IMAGE_DOS_HEADER …..Lets Explore IMAGE_DOS_HEADER in Windbg

Ignore Other Fields.. Here we have e_lfanew at offset 0x3C.

Contains the offset to PE Header

MOV EAX,DWORD PTR DS:[ESI+3C]

Header Offset

as we are parsing the File in Memory ..Hope it is Clear Now

MOV EBX,DWORD PTR DS:[EAX+ESI+80]

So What We have is Load value at Imagebase+NT_HEADER+0x80 into EBX ..

Each PE File Contains Array of IMAGE_DATA_ DIRECTORY Structures .Lets Look Into
Structure

re IMAGE_DOS_HEADER in Windbg

Into

So Each IMAGE_DATA_DIRECTORY Contains Two Fields Virtual Address and Size

NT_HEADER+80 Points to Import_table_address .. The Values of that Directory are

00400170 D4320000 DD 000032D4 ; Import

00400174 78000000 DD 00000078 ; Import Table size = 78 (120.)

I Took these values from Memory Window of Ollydbg ..

So what above instruction doing is getting the import table address ..

*Import table is very important concept ..It basically contains the info about imported functions/Dlls

Add Imagebase with Import Table address as we are parsing file in memory

ADD EBX,ESI

Next Instruction is

MOV EAX,DWORD PTR DS:[EBX+C]

This is Interesting .. Import Table is actually a Array of
IMAGE_IMPORT_DESCRIPTOR
Functions imported from this DLL ..SO NO. of IMAGE_IMPORT_DESCRIPTOR

Lets Look Into IMAGE_IMPORT_DESCRIPTOR Closely

typedef struct _IMAGE_IMPORT_DESCRIPTOR {
 _ANONYMOUS_UNION union {
 DWORD Characteristics;
 DWORD OriginalFirstThunk;
 } DUMMYUNIONNAME;
 DWORD TimeDateStamp;
 DWORD ForwarderChain;

DWORD Name; //Offset 0xC
 DWORD FirstThunk;
} IMAGE_IMPORT_DESCRIPTOR,*PIMAGE_IMPORT_DESCRIPTOR;

So in Above Instruction ESI is Pointing to Name From

0040238D |. 8975 F8 MOV [LOCAL.2],ESI

So Each IMAGE_DATA_DIRECTORY Contains Two Fields Virtual Address and Size

NT_HEADER+80 Points to Import_table_address .. The Values of that Directory are

00400170 D4320000 DD 000032D4 ; Import Table address = 32D4

00400174 78000000 DD 00000078 ; Import Table size = 78 (120.)

I Took these values from Memory Window of Ollydbg ..

So what above instruction doing is getting the import table address ..

ant concept ..It basically contains the info about imported functions/Dlls

Add Imagebase with Import Table address as we are parsing file in memory

.. Import Table is actually a Array of IMAGE_IMPORT_DESCRIPTOR.. Each
IMAGE_IMPORT_DESCRIPTOR Structure Contains a Info about Single DLL and Info about
Functions imported from this DLL ..SO NO. of IMAGE_IMPORT_DESCRIPTOR= No. of DLLs

IMAGE_IMPORT_DESCRIPTOR Closely

typedef struct _IMAGE_IMPORT_DESCRIPTOR {

DWORD OriginalFirstThunk;

DWORD Name; //Offset 0xC
 // offset 0x10

} IMAGE_IMPORT_DESCRIPTOR,*PIMAGE_IMPORT_DESCRIPTOR;

is Pointing to Name From IMAGE_IMPORT_DESCRIPTOR

0040238D |. 8975 F8 MOV [LOCAL.2],ESI //Save ESI Into Local_var

ant concept ..It basically contains the info about imported functions/Dlls

IMAGE_IMPORT_DESCRIPTOR.. Each
Contains a Info about Single DLL and Info about

= No. of DLLs

IMAGE_IMPORT_DESCRIPTOR

So Next is Loop ..We Can Easily See this in our dear Ollydbg ..Lets Look Into Loop

00402397 |> /03C6 /ADD EAX,ESI //Get Name of DLL In Memory

00402399 |. |68 28134000 |PUSH sample.00401328 ; /s2 = "user32.dll" //Constant String

0040239E |. |50 |PUSH EAX ; |s1 = 000036E4 ??? /

0040239F |. |FF15 48114000 |CALL DWORD PTR DS:[<&msvcrt._stricmp>] ; _stricmp

004023A5 |. |85C0 |TEST EAX,EAX

004023A7 |. |59 |POP ECX ; sample.00404C78

004023A8 |. |59 |POP ECX ; sample.00404C78

004023A9 |. |0F85 A0000000 |JNZ sample.0040244F

So what above instructions Doing are

1)Get Address of DLL_NAME in Memory

2) Compare the DLL_NAME with “ user32.dll”

3) IF DLL_NAME !=”user32.dll” then Go to NEXT IMAGE_IMPORT_DESCRIPTOR Structure

4)Go to Step 1

So this Loop Continues Untill DLL NAME IS “user32.dll”

So lets Look What Happen When condition is True ..I mean DLL NAME == “user32.dll”

Jump AT 004023A9 is Conditional Jump ..That Not taken If DLL Name ==”user32.dll” .So lets Look Into
Code Below the conditional Jump when we Got a Match with DLL Name .

004023AF |. 8B3B MOV EDI,DWORD PTR DS:[EBX] //Get Address OF RVA of IAT in EDI

004023B1 |. 03FE ADD EDI,ESI // Get In Memory Address

004023B3 |. 8B73 10 MOV ESI,DWORD PTR DS:[EBX+10] // RVA of FirstThunk

004023B6 |. 0375 F8 ADD ESI,[LOCAL.2] // IN Memory Address of FirstThunk

So what Above Code Does is Get IN Memory Address(Virtual Address of FirstThunk)..

(Look into PE format to Know More About IAT)

This Whole Procedure is Actually to Parse the Names of APIs Imported By DLL.

004023BE |> /8B4D F8 MOV ECX,[LOCAL.2]

004023C1 |. |8D4408 02 LEA EAX,DWORD PTR DS:[EAX+ECX+2] //Point To Name Of API

So finally Now it Point to Name of APIs Imported By User32.dll

004023BE |> /8B4D F8 MOV ECX,[LOCAL.2] ; sample.00400000

004023C1 |. |8D4408 02 LEA EAX,DWORD PTR DS:[EAX+ECX+2]

004023C5 |. |68 14134000 PUSH sample.00401314 ; /s2 = "RegisterClassExW"

004023CA |. |50 PUSH EAX ; |s1 = "TranslateMessage"

004023CB |. |FF15 48114000 CALL DWORD PTR DS:[<&msvcrt._stricmp>] ; _stricmp

Check If Current API Name == RegisterClassExW (here it is not equal as First API Imported is Translate
Message).

004023D1 |. |85C0 TEST EAX,EAX ; sample.004037D2

004023D3 |. |59 POP ECX ; sample.004037D2

004023D4 |. |59 POP ECX ; sample.004037D2

004023D5 |. |75 25 JNZ SHORT sample.004023FC

If API Name Matched then DO not JUMP(Execute the Code Below) If Not Matched then JUMP

004023D7 |. |8D45 FC LEA EAX,[LOCAL.1]

004023DA |. |50 PUSH EAX ; /pOldProtect = sample.004037D2

004023DB |. |6A 40 PUSH 40 ; |NewProtect = PAGE_EXECUTE_READWRITE

004023DD |. |6A 04 PUSH 4 ; |Size = 4

004023DF |. |56 PUSH ESI ; |Address = <&USER32.TranslateMessage>

004023E0 |. |FF15 44104000 CALL DWORD PTR DS:[<&KERNEL32.VirtualP>; \VirtualProtect

004023E6 |. |8D45 FC LEA EAX,[LOCAL.1]

IF API NAME MATCHED THEN CHANGE THE PERMISSION FOR THAT ADDRESS (ESI POINT TO ADDRESS
OF API) BY USING VirtualProtect

New Protect = PAGE_EXECUTE_READWRITE

MAKE IT WRITABLE

Size= 4

HERE SIZE = 4 Bytes as Probably it Going to Overwrite the API Address (As we are on 32 bit Arcitecture
so Address = 4bytes=32 bits)

Address = ESI (API ADDRESS) (Address of Target API)

004023E9 |. |50 PUSH EAX ; /pOldProtect = sample.004037D2

004023EA |. |C706 EF194000 MOV DWORD PTR DS:[ESI],sample.004019EF

OverWrite the API Address With 004019EF (Other Function Address)

004023F0 |. |FF75 FC PUSH [LOCAL.1] ; |NewProtect = PAGE_READONLY|PAGE_WRITECOPY

004023F3 |. |6A 04 PUSH 4 ; |Size = 4

004023F5 |. |56 PUSH ESI ; |Address = <&USER32.TranslateMessage>

004023F6 |. |FF15 44104000 CALL DWORD PTR DS:[<&KERNEL32.VirtualP>; \VirtualProtect

Restore the Original Permission Using VirtualProtect

Same Is For Next Part Of LOOP .. it checks API Against “CreateWindowExW”.If Name Matched then
Use VirtualProtect to Make that Memory portion Writable .Then Change Address and Again Restore
Permission

So let me Write A Pseudo Code To Describe what Just Happened in This LOOP

Parse IMAGE_IMPORT_DESCRIPTOR

If stricmp(Image_Import_descriptor->Name,”user32.dll) //Label2

{

 Parse using FirstThunk ..Get API NAMES..

 If stricmp(Current_API ,”RegisterClassExW”) //Label1

 {

 VirtualProtect(Address_of_API,Size(4Bytes), PAGE_EXECUTE_READWRITE,PoldProtec)

 // Make it Writable

 Address_of_API= 004019EF

 VirtualProtect() //Restore original Permissions

 }

 Else if(Stricmp(Current API,”CreateWIndowExW”)

 {

 VirtualProtect(Address_of_API,Size(4Bytes), PAGE_EXECUTE_READWRITE,PoldProtec)

 // Make it Writable

 Address_of_API= 00402228

 VirtualProtect() //Restore orginal Permissions

 }

 Else

 {

 Get Next API NAME

 } //Start From Label 1

Else

{Get Next IMAGE_IMPORT_DESCRIPTOR TABLE

} //Start From Label 2 ..Once Two Functions are matched Loop Terminates

SO After End OF LOOP We have

Address_RegisterClassExW=004019EF

Address_CreateWindowEx=00402228

Finally Functions Ends and Return …So main Motive is this Function to Make Some Modification in IAT

After Call ..There are some Calls to Resources..More Likely Fake Calls ..As Called Resource does not
Exist

00401657 |. 8B7D 08 MOV EDI,[ARG.1] // Move ImageBase Into EDI

0040165A |. 8B35 C8104000 MOV ESI,DWORD PTR DS:[<&USER32.LoadStringW>] ; USER32.LoadStringW

00401660 |. 6A 64 PUSH 64 ; /Count = 64 (100.)

00401662 |. 68 C04A4000 PUSH sample.00404AC0 ; |Buffer = sample.00404AC0

00401667 |. 6A 67 PUSH 67 ; |RsrcID = 67 (103.) //It Actually Never Exist

00401669 |. 57 PUSH EDI ; |hInst = 00400000

0040166A |. FFD6 CALL ESI ; \LoadStringW

This ResourceID does not Exist .Check the GetLastError Field Under the ollydbg
ERROR_RESOURCE_TYPE_NOT_FOUND.So Look Like A Fake Call to make Program Look Legitmate(may
be)

00401678 |. 57 PUSH EDI ; Arg1 = 00400000 // ImageBase As Parameter

00401679 |. E8 4DFFFFFF CALL sample.004015CB

Trace Into This Call… Again Few Call to Resources ….LoadIcon,LoadResouce ..Nthing Important

After that We See a call

00401637 |. 50 PUSH EAX ; pWndClassEx = 0006FECC

00401638 |. FF15 00114000 CALL DWORD PTR DS:[<&USER32.RegisterClassExW>] ;

Remember the Address of RegisterClassExW is altered in starting ..Now Instead of Going to user32.dll
,it points to another function inside the executable..Trace Into this

Here In this Function We can See Some Interesting Call

GetModuleFileNameA=>Here it is to get the full path of Currently Executing File (As
GetModuleHandleW with Argument NULL is used to Get Handle For It)

GetTempPathW=> As Name Suggests Retrieves a Path to Temp Files

Then We can see a Call to Function 00401952 =>

00401637 |. 50 PUSH EAX ; pWndClassEx = 0006FECC

00401638 |. FF15 00114000 CALL DWORD PTR DS:[<&USER32.RegisterClassExW>] ;\RegisterClassExW

Remember the Address of RegisterClassExW is altered in starting ..Now Instead of Going to user32.dll
,it points to another function inside the executable..Trace Into this Function

Here In this Function We can See Some Interesting Calls Such As

GetModuleFileNameA=>Here it is to get the full path of Currently Executing File (As
with Argument NULL is used to Get Handle For It)

GetTempPathW=> As Name Suggests Retrieves a Path to Temp Files

to Function 00401952 =>

isterClassExW

Remember the Address of RegisterClassExW is altered in starting ..Now Instead of Going to user32.dll

I Checked this Function ..This internally Calls CRT function _vsnwprintf…Which is used For String
Manipulation (String Formatting)..

First Call to this Function Returns =

Second Call To This Function Returns a String =
C:\\DOCUME~1\\ADMINI~1\\LOCALS~1

This LookLike A Location To Drop A File

00401A7D |. 6A 00 PUSH 0

00401A7F |. 8D85 F4FDFFFF LEA EAX,[LOCAL.131] ; |

00401A85 |. 50 PUSH EAX ; |Path =
"C:\\DOCUME~1\\ADMINI~1\\LOCALS~1

00401A86 |. FF15 08104000 CALL DWORD PTR DS:[<&KERNEL32.CreateDirectoryW>]

So Here it Creates A Directory ..Nthing to Explain..

Then Again it Call to 401952(String Formatting) to

C:\\DOCUME~1\\ADMINI~1\\LOCALS~1

So finally this is Path to Drop File

As Shown in Pic ..then Finally there is call to CopyFileW ..So finally it Drops File to Location Mentioned
above..It Actually Copy/Drop the Same File

So After Dropping A File Our Function Ends ..

I Checked this Function ..This internally Calls CRT function _vsnwprintf…Which is used For String

First Call to this Function Returns =TMP1CDFDEBF (It is Directory name..i know it as I analyzed it)

Returns a String =
LOCALS~1\\Temp\\\\TMP1CDFDEBF

This LookLike A Location To Drop A File

00401A7D |. 6A 00 PUSH 0 ; /pSecurity = NULL

00401A7F |. 8D85 F4FDFFFF LEA EAX,[LOCAL.131] ; |

00401A85 |. 50 PUSH EAX ; |Path =
LOCALS~1\\Temp\\\\TMP1CDFDEBF"

00401A86 |. FF15 08104000 CALL DWORD PTR DS:[<&KERNEL32.CreateDirectoryW>]

So Here it Creates A Directory ..Nthing to Explain..

Then Again it Call to 401952(String Formatting) to Generate File Path ..output is

LOCALS~1\\Temp\\\\TMP1CDFDEBF\\sample.exe

..then Finally there is call to CopyFileW ..So finally it Drops File to Location Mentioned
above..It Actually Copy/Drop the Same File That is being Executed ..

So After Dropping A File Our Function Ends ..

I Checked this Function ..This internally Calls CRT function _vsnwprintf…Which is used For String

name..i know it as I analyzed it)

..then Finally there is call to CopyFileW ..So finally it Drops File to Location Mentioned

So Till Now We Analyzed the RegisterClassExW_0 Function … Now Trace Into
CreateWindowEx_MOD(Modified CreateWindowEx)…I Call this Function CreateWindowEx_MOD as it
internally Calles Modified CreateWIndowExW

Lets Trace Into This

So Till Now We Analyzed the RegisterClassExW_0 Function … Now Trace Into
CreateWindowEx_MOD(Modified CreateWindowEx)…I Call this Function CreateWindowEx_MOD as it

Modified CreateWIndowExW API..
CreateWindowEx_MOD(Modified CreateWindowEx)…I Call this Function CreateWindowEx_MOD as it

All Parameters Original/Necessary are passed to CreateWindowEx to make it Look genuine ..Now Step
Into CreateWindowExW

So inside CreateWindowExW(that actually is Function

Such As CreateProcessW,GetThreadContext,SetThreadContext, ,WriteProcessMemory…Lets Check what
They Exactly Doing ..

Then we have a call to CreateProcessW(W in the end is to indicate a Unicode
CreateProcessW in simple words used to Create a Process ...check MSDN For Other info

http://msdn.microsoft.com/en-us/library/windows/desktop/ms682425%28v=vs.85%29.aspx

Lets Check the Paramters Passed to CreateProcessW

00402266 |. 50 PUSH EAX ; /pProcessInfo = 0006FB90

00402267 |. 8D85 D8FCFFFF LEA EAX,[LOCAL.202] ; |

0040226D |. 50 PUSH EAX ; |pStartupInfo = 0006FB90

All Parameters Original/Necessary are passed to CreateWindowEx to make it Look genuine ..Now Step

So inside CreateWindowExW(that actually is Function 00402228)..We can See some Intersting API Calls

Such As CreateProcessW,GetThreadContext,SetThreadContext, ,WriteProcessMemory…Lets Check what

CreateProcessW(W in the end is to indicate a Unicode Version
W in simple words used to Create a Process ...check MSDN For Other info

us/library/windows/desktop/ms682425%28v=vs.85%29.aspx

Lets Check the Paramters Passed to CreateProcessW

00402266 |. 50 PUSH EAX ; /pProcessInfo = 0006FB90

00402267 |. 8D85 D8FCFFFF LEA EAX,[LOCAL.202] ; |

0226D |. 50 PUSH EAX ; |pStartupInfo = 0006FB90

All Parameters Original/Necessary are passed to CreateWindowEx to make it Look genuine ..Now Step

can See some Intersting API Calls

Such As CreateProcessW,GetThreadContext,SetThreadContext, ,WriteProcessMemory…Lets Check what

Version)…
W in simple words used to Create a Process ...check MSDN For Other info

us/library/windows/desktop/ms682425%28v=vs.85%29.aspx

0040226E |. 56 PUSH ESI ; |CurrentDir = NULL

0040226F |. 56 PUSH ESI ; |pEnvironment = NULL

00402270 |. 6A 04 PUSH 4 ; |CreationFlags = CREATE_SUSPENDED

00402272 |. 56 PUSH ESI ; |InheritHandles = FALSE

00402273 |. 56 PUSH ESI ; |pThreadSecurity = NULL

00402274 |. 56 PUSH ESI ; |pProcessSecurity = NULL

00402275 |. 56 PUSH ESI ; |CommandLine = NULL

00402276 |. 68 80464000 PUSH sample.00404680 ; |ModuleFileName =
"C:\\DOCUME~1\\ADMINI~1\\LOCALS~1\\Temp\\\\TMP1CDFDEBF\\sample.exe"

0040227B |. FF15 40104000 CALL DWORD PTR DS:[<&KERNEL32.CreateProcessW>] ; \CreateProcessW

The Paramters Highlighted in Red Color are Important …Let me explain it

00402270 |. 6A 04 PUSH 4 ; |CreationFlags = CREATE_SUSPENDED

Acc. To MSDN

CREATE_SUSPENDED
0x00000004

The primary thread of the new process is created in a suspended state, and does not run until the
ResumeThread function is called.

Hope it is Clear Now….In Case of Malware if Process is created in SUSPENDED mode then it Most
probably means it will be modified

Other interesting Paramter is

00402276 |. 68 80464000 PUSH sample.00404680 ; |ModuleFileName =
"C:\\DOCUME~1\\ADMINI~1\\LOCALS~1\\Temp\\\\TMP1CDFDEBF\\sample.exe"

So this mean our sample file starts the dropped file into SUSPENDED Mode …

*Also u can think like that …what is meaning of dropping Duplicate/Same File and then Run it ..Does
not making sense ..Dropping File and then run it ..then again the file will do same (Off course u can
think that file can check its running location and can change its behavior acc. To it but it is not in this
case..)…So it will be kind of very Stupid malware that Just Drops itself and do nthing ..:P.. so this
Philosophy also provide some hint that there will be some modification in the Dropped File
Process..Also We can See Some APIs Like WriteProcessMemory

WriteProcessMemory is basically used for InterProcess Communication …to Write the Given Data in
Desired Location in Remote Process.

So All this make Sense that Our malware will make Some Modification in its child Process i.e Dropped
File Process .Lets Continue Analyzing

00402287 |. 50 PUSH EAX ; /pContext = 0006FBE8

00402288 |. FFB5 24FDFFFF PUSH [LOCAL.183] ; |hThread = 00000048 (window)

0040228E |. C785 30FDFFFF>MOV [LOCAL.180],10007 ; |

00402298 |. FF15 74104000 CALL DWORD PTR DS:[<&KERNEL32.GetThreadContext>] ; \GetThreadContext

GetThreadContext = Retrieves the context of the specified thread (Simple and smart Defination from
MSDN)

 pContext = Holds the CONEXT Structre..I.e it Value Of registers obtained ..Here it is 006FBE8

hThread =Handle of thread….Here in this Case it Contains the Handle of main thread of Dropped File
Process(I will call it Dropped Process)

Check Context Structre in Windbg ..WIndbg is Pretty Handy Tool to Examine the Data Structres in
Windows ..also Shows Offsets …that’s Real

As You can See EAX is at offset 0xB0 ..

We have Context Structre Starting at

Context.EAX in Memory = 006FBE8+B0=00

Why EAX is So Important … in Case of SUSPENDED Process EAX Always Point To Entry Point

After Executing GetThreadContext

Check Context Structre in Windbg ..WIndbg is Pretty Handy Tool to Examine the Data Structres in
Windows ..also Shows Offsets …that’s Really Useful…

As You can See EAX is at offset 0xB0 ..

tarting at 006FBE8

Context.EAX in Memory = 006FBE8+B0=006FC98

Important … in Case of SUSPENDED Process EAX Always Point To Entry Point

Check Context Structre in Windbg ..WIndbg is Pretty Handy Tool to Examine the Data Structres in

Important … in Case of SUSPENDED Process EAX Always Point To Entry Point

We Have Value of Context.Eax

We have 006Fc98 = 004029B9 ..As Described Earlier it is Entry Point of Dropped Process

Now Examine Next Few Intersting Lines

004022A4 |. 50 PUSH EAX ; /pContext = 0006FBE8

004022A5 |. FFB5 24FDFFFF PUSH [LOCAL.183]

004022AB |. C785 E0FDFFFF>MOV [LOCAL.136],sample.00401E1F //OverWrite EAX

004022B5 |. FF15 70104000 CALL DWORD PTR DS:[<&KERNEL32.SetThreadContext>]

SetThreadContext= Sets the context for the specified thread….

As You Can See it Points to Same Address

Check the Highlighted… Here LOCAL.136 = 006Fc98 ..So what this instruction doing is Overwriting the
value at Location 006Fc98 with 00401E1F..

And Then We have a call to SetThreadContext…

So all this to change the Entry Point of Dropped Process By Overwriting the Eax in Context Structre

Check the Below Snapshot to get things more Clear way …IDA’s nami
for reversing .

So Entry Point is Changed …Lets see what happened Next

004022C1 |. 56 PUSH ESI ; /pBytesWritten = NULL

004022C2 |. 68 08020000 PUSH 208 ; |BytesToWrite = 208 (520.)

004022C7 |. B8 A0484000 MOV EAX,sample.004048A0 ;
Settings\\Administrator\\Desktop\\97c5080399e5df2407d6fdf28faf17f8

..As Described Earlier it is Entry Point of Dropped Process

Now Examine Next Few Intersting Lines

004022A4 |. 50 PUSH EAX ; /pContext = 0006FBE8

004022A5 |. FFB5 24FDFFFF PUSH [LOCAL.183] ; |hThread = 00000048 (window) //Dropped Process thre

004022AB |. C785 E0FDFFFF>MOV [LOCAL.136],sample.00401E1F //OverWrite EAX

004022B5 |. FF15 70104000 CALL DWORD PTR DS:[<&KERNEL32.SetThreadContext>]

= Sets the context for the specified thread….

As You Can See it Points to Same Address 0006FBE8

Check the Highlighted… Here LOCAL.136 = 006Fc98 ..So what this instruction doing is Overwriting the
00401E1F..

And Then We have a call to SetThreadContext…

So all this to change the Entry Point of Dropped Process By Overwriting the Eax in Context Structre

Check the Below Snapshot to get things more Clear way …IDA’s naming feature make th

So Entry Point is Changed …Lets see what happened Next..Lets Analyze what happen Next

004022C1 |. 56 PUSH ESI ; /pBytesWritten = NULL

208 ; |BytesToWrite = 208 (520.)

004022C7 |. B8 A0484000 MOV EAX,sample.004048A0 ; |UNICODE "C:\\Documents and
97c5080399e5df2407d6fdf28faf17f8\\1d8ea40a41988b9c3db

..As Described Earlier it is Entry Point of Dropped Process

//Dropped Process thread

004022AB |. C785 E0FDFFFF>MOV [LOCAL.136],sample.00401E1F //OverWrite EAX

Check the Highlighted… Here LOCAL.136 = 006Fc98 ..So what this instruction doing is Overwriting the

So all this to change the Entry Point of Dropped Process By Overwriting the Eax in Context Structre.

ng feature make this tool ideal

..Lets Analyze what happen Next

Documents and
1d8ea40a41988b9c3db"

004022CC |. 50 PUSH EAX ; |Buffer = sample.004048A0

004022CD |. 50 PUSH EAX ; |Address = 4048A0

004022CE |. FFB5 20FDFFFF PUSH [LOCAL.184] |hProcess = 00000044 //Handle of Dropped Process

004022D4 |. FFD3 CALL EBX ; \WriteProcessMemory

As I commented hProcess is Handle of Dropped Process…So what WriteProcessMemory Here Doing is
Copying the Orginal Path of Sample To Dropped Process.(4048A0 contains path of Current
Executable).You will come to know why this is copied to dropped process

Call to GetCurrentProcessId = This Returns the Process ID of Current Process in Eax

Next , OpenProcess API is called and ProcessID of Current Process is Passed a Parameter..This Means
OpenProcess Attempt to Currently Executing Process with PROCESS_ALL_ACCESS (Red mark
1F0FFF=PROCESS_ALL_ACCESS)…If Evrything Fine then OpenProcess Will Return A handle to Local
Process Object.

Next We Have a Call to DuplicateHanlde…This is Best Explained in MSDN ..Read it

http://msdn.microsoft.com/en-us/library/windows/desktop/ms724251%28v=vs.85%29.aspx

Then we have a call to WriteProcessMemory…In this call..we are Passing the Real Handle Obtained By
Using DuplicateHandle to Dropped Process.. We Write The Handle at =404AA8 (Keep this in Mind)

If u read the MSDN ..then the Purpose of this WriteProcessMemory will be Clear to You ..

Then We have a call to Resume Thread

0040231A |. FFB5 24FDFFFF PUSH [LOCAL.183] ; /hThread = 00000048 //Dropped Process

00402320 |. FF15 1C104000 CALL DWORD PTR DS:[<&KERNEL32.ResumeThread>]

So Finally After making all the Necessary Changes in Dropped Process …It Resumes The Dropped
Process and then Dropped Process Start Executing ..

I did not execute ResumeThread Till Now …All I want is to attach Ollydbg to to dropped process..

Here is a way how to do it ..

We have entry point of Dropped Process =401E1F h

So what we are Going to do is to trap the the Dropped Process in Infinite Loop…

I am going to Use PUPE Suite .. And Chaned First Two Bytes at 401E1F to EB FE (Write Down Orginal
Bytes Before Changing Orginal Ones)

Check my previous post where i use same method if you are not getting it

https://reverse2learn.wordpress.com/2011/09/01/unprotecting-the-crypter/

So Now Execute ResumeThread.Now Dropped Process is Trapped in Infinite Loop..Attach Ollydbg to it
..Replace EB FE with Orginal Bytes (orginal Bytes : 8B FF)..

*I Recommend to DUMP the Process at this point as I include all the changes made by parent
process..we are going to analyze this dumped process in next part of this series

So Finally What we have is Two Instances of Ollydbg one Debugging sample and other Debugging
Dropped Process.

This is What We have in Sample Process…After Resuming Main Thread of Dropped Process …it closes
Hanldes and Finally Exits

Look at Code From Dropped Process

So What We have Calls To Memset ..After Memset Calls We ha

WaitForSingleObject (hObject,TimeOut)

hObject=404AA8 (Remember 2nd WriteProcessMemory Call ,Where we Write the handle obtained from
DuplicateHandle at 404AA8 of Dropped Process)

TimeOut = INFINITE // Wait Until Object i

And After that Handle is Closed by Using CloseHandle

Look at Code From Dropped Process

So What We have Calls To Memset ..After Memset Calls We have Very Intersting API Call

WaitForSingleObject (hObject,TimeOut)

WriteProcessMemory Call ,Where we Write the handle obtained from
DuplicateHandle at 404AA8 of Dropped Process)

TimeOut = INFINITE // Wait Until Object is Signaled

And After that Handle is Closed by Using CloseHandle

ve Very Intersting API Call

WriteProcessMemory Call ,Where we Write the handle obtained from

Then We Have a Call to DeleteFileW …The Filename passed is Location of Sample Process

*Remember when we passed the location/path of sample Executable using first WriteProcessMemory
Call

So I think Now it is clear how this implement Self Delete(Melt Feature)/Drop File …

Dropped Process Wait for the Event From Sample Process …When it is Signaled it go ahead and delete
that file.

So First Part Ends Here …In Next Part We Will Analyze the Dropped Process(I Dumped it when I restore
the orginal Bytes after attaching Ollydbg to it).

I Love to get Your Feedback .You can Email me Comment on my blog

 Blog :https://reverse2learn.wordpress.com/

 Email :arunpreet90@gmail.com

