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In  the  last  year,  MDSec’s  consultants  have  performed an increasing number of 
security assessments of iOS applications and their supporting architecture 
where data security is paramount, specifically the retail/business banking 
sector. 

Smartphones have become commonplace not only in the consumer markets 
but now also in the enterprise. Smartphones combine the traditional mobile 
features with computer like functionality. The increased processing power and 
memory of the modern smartphone has led to a surge in mobile application 
development as developers look to take advantage of the feature rich offerings 
of  the  platform.  Application  development  is   indeed  now  so  popular  that  Apple’s  
trademark  slogan  “There’s  an  app  for that”  is  bordering  on  reality. 

A growing trend that we have witnessed over 2011 has been an increase in 
demand for security assessments of mobile applications, with iOS and Android 
apps being the front-runners. Market research conducted by NetApplications 
[1] shows that iOS devices control approximately 52% of the global mobile 
market. 

Drawn  from  MDSec’s  hands-on training course on iOS Application Security, the 
focus of this whitepaper is to document the categories of issues that typically 
affect iOS applications and provide a single reference point for not only 
security assessors but also developers wishing to adhere to security best 
practice. 
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Before discussing the security issues that affect iOS applications, it is 
important to have a fundamental understanding of the security features of the 
platform, not only to provide context to application vulnerabilities but also to 
highlight opt-in features that an application can take advantage of. 

The core security features of the iOS platform can be summarised as: 

 Code Signing 
 Generic native language exploit mitigations 

o Address Space Layout Randomisation 
o Non executable memory 
o Stack Smashing Protection 

 Process level sandboxing 
o Also known as Seat Belt 

 Data at rest encryption 

A comprehensive review of these features can be found within the whitepaper 
“Apple  iOS  4  Security  Evaluation”  by  Dino  Dai  Zovi   [2] which provided much of 
the foundation for the details discussed in this section. 

Code Signing 

Code signing is a runtime security feature of the platform that attempts to 
prevent unauthorised applications running on the device by validating the 
application signature each time it is executed. Additionally, applications may 
also only execute code signed by a valid, trusted signature. 

For an application to be run on the device, it must first be signed by a trusted 
certificate. Developers can install trusted certificates on a device through a 
provisioning profile signed by Apple. The provisioning profile contains the 
embedded developer certificate and set of entitlements that the developer 
may grant to applications. In production applications, all code must be signed 
by Apple, this is performed during the AppStore submission process. This 
process allows Apple some degree of control over apps and to govern the APIs 
and functionality used by developers. For example, Apple looks to prevent 
apps using private APIs or downloading to installing executable code [3].    

Exploit Mitigation Features 

Address Space Layout Randomisation (ASLR) [4] is a security feature that 
attempts to increase the complexity of vulnerability exploitation by 
randomising where data and code is mapped in a processes address space. 
ASLR was first introduced to iOS in version beta 4.3 and since inception has 
gradually improved with each release. The primary weakness in the ASLR 
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implementation was the lack of relocation of the dyld, this was addressed with 
the release of iOS 5.0. Applications can have ASLR applied in two different 
flavours, either partial ASLR or full ASLR depending on whether they have 
been compiled with support for Position Independent Execution (PIE). In a full 
ASLR scenario, all the application memory regions are randomised and iOS will 
load a PIE enabled binary at a random address each time it is executed. An 
application with partial ASLR will load the base binary at a fixed address and 
use a static location for the dynamic linker (dyld). An in-depth assessment of 
ASLR in iOS has been conducted by Stefan Esser and is recommended reading 
for those looking to gain a greater understanding [5]. 

ASLR is designed to frustrate exploitation due to the lack of knowledge an 
attacker will have of the process layout in memory and thus the addresses 
they need to target. However, there are a number of techniques that can 
weaken its effectiveness. The most common of these techniques is memory 
revelation. This is where a separate vulnerability is used to leak or confirm 
memory layout to an attacker prior exploitation of a vulnerability that will yield 
arbitrary code execution. 

In an attempt to further mitigate exploitation of native language 
vulnerabilities, iOS combines ASLR with the implementation of a “W^X” non-
executable memory policy, meaning that memory pages cannot be marked as 
writeable and executable at the same time. As part of this policy, executable 
memory pages that are marked as writeable cannot also be later marked back 
to executable. In many ways this is similar to the Data Execution Protection 
(DEP) features implemented by Microsoft Windows, Linux and Mac OS X 
desktop   OS’. While non-executable memory alone can be trivially bypassed 
using Return Orientated Programming (ROP) based payloads, the complexity 
of exploitation is significantly increased when compounded with ASLR and 
Mandatory Code Signing. 

iOS applications can look to add additional exploit mitigation at compile time  
through stack smashing protection. Stack canaries in particular introduce 
some protection against buffer overflows by placing a random, known value 
before the local variables. The stack canary is checked upon return of the 
function. If an overflow occurs and the canary is corrupted, the application is 
able to detect and protect against the overflow. 

Sandboxing 

All third party applications on iOS run within a sandbox; this is a self-
contained environment that isolates applications not only from other 
applications but also the operating system. While applications all  run as the 
“mobile”   operating   system   user,   they   are   contained  within   a  unique  directory  
on the filesystem and separation is maintained by the XNU Sandbox kernel 
extension.  The operations that can be performed in the sandbox are governed 



 iOS Application (In)Security 
  

 

 
 

P ub l ic R e le a s e  
Page 7 of 54 

v 1.0 

by the seatbelt profile.   Third   party   applications   are   assigned   the   “container”  
profile which will generally limit file access to the application home directory, 
allow read access to media, read and write to the address book as well as 
unrestricted access to outbound network connections, with the exception of 
launchd’s network sockets. See “The   Apple   Sandbox” [6] for recommended 
further reading. 

Encryption 

By default, all data on the iOS filesystem is encrypted using block-based 
encryption (AES) with the File System Key, which is stored on the flash. The 
filesystem is encrypted only at rest; when the device is turned on the 
hardware based crypto accelerator unlocks the filesystem. 

In addition to the hardware encryption, individual files and keychain items can 
be encrypted using the Data Protection (DP) API that uses a key derived from 
the device passcode. Consequently, when the device is locked, content 
encrypted using the DP API will be inaccessible unless cached in memory. 
Third party applications wishing to encrypt sensitive data should employ the 
Data Protection API to do so. However consideration should be given for 
background processes how they will behave if the at-rest becomes unavailable 
due to the device becoming locked. 

 

Third party iOS applications use the Cocoa Touch API to interact with the 
device. This framework provides a means of abstraction from the OS and is 
written in Objective-C, a superset of C. 

Development of iOS applications can be performed using the freely available 
XCode IDE for OS X. XCode provides a simulator for compiling and running 
applications, however it should be noted that this is simulation rather than 
emulation. In order to run the application on a non-jailbroken device, you 
must be a member of the subscription-based iOS Developer Program and have 
a development certificate. 

 

To our knowledge, there are two noteworthy presentations on evaluating iOS 
application security. Both of these presentations are recommended reading for 
those performing iOS application assessments: 

 “Auditing   iPhone  and  iPad  Applications”   by  Ilja  van  Sprundel   [7] 
 “Secure  Development  on  iOS”  by  David  Thiel  [8] 
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Introduction 

A   common   assumption   made   by   organisations   is   that   an   application’s   inner  
workings are in some way protected from an attacker who does not have 
access to the application source code. In practice, it is a relatively 
straightforward process for an attacker to access the decrypted application, 
locate the key methods it contains, hook into them at runtime, and alter 
variables and execution flow. This generally requires the following steps:  

 

Apps  originating  from  the  AppStore  are  protected  by  Apple’s  binary  encryption  
scheme. These apps will be decrypted at runtime by the kernel’s  mach  loader; 
as such recovering the decrypted files is a relatively straightforward process . 
Removing this encryption allows the attacker to get a greater understanding of 
how the binary works, the internal class structure and to get the binary in a 
suitable state for reverse engineering. 

Removing the AppStore encryption can be achieved by letting the loader 
decrypt the app then using the debugger to dump out the decrypted image. 
This process has been automated by two applications available via Cydia, 
namely Crackulous [9] and AppCrack. However, the process can also be 
performed manually using GDB. 

Encrypted   binaries   can  be  identified  by  the  value  in  the  “cryptid”  field  of  the  
LC_ENCRYPTION_INFO [10] load command, for example: 

mdsec-iPhone:/var/mobile/Applications/E938B6D0-9ADE-4CD6-83B8-
712D0549426D/99Bottles.app root# otool -l 99Bottles | grep -A 4 
LC_ENCRYPTION_INFO 

          cmd LC_ENCRYPTION_INFO 

      cmdsize 20 

 cryptoff  4096 

 cryptsize 12288 

 cryptid   1  

In some instances, apps may be compiled for multiple architectures; these are 
known as fat binaries. The architectures an app is compiled for can again be 
identified using otool: 
mdsec-iPhone:/var/mobile/Applications/68E3B644-9203-4B8F-A707-
A52E23B793B6/Kik.app root# otool -f Kik 

Fat headers 

fat_magic 0xcafebabe 

nfat_arch 2 

architecture 0 
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    cputype 12 

    cpusubtype 6 

    capabilities 0x0 

    offset 4096 

    size 865152 

    align 2^12 (4096) 

architecture 1 

    cputype 12 

    cpusubtype 9 

    capabilities 0x0 

    offset 872448 

    size 867488 

    align 2^12 (4096) 

In the above example cputype 12 with cpusubtype 6 corresponds to ARM v6 
and cputype 12 with cpusubtype 9 is ARM v7; if required a binary can be 
“thinned”   to  the  desired  architecture  using  lipo. 

To retrieve the decrypted segment of the app, we must first let the loader run; 
this   can  be  achieved  by  setting  a  breakpoint  on  “doModInitFunctions”  which  
is called after all objects have been loaded: 
mdsec-iPhone:/var/mobile/Applications/E938B6D0-9ADE-4CD6-83B8-
712D0549426D/99Bottles.app root# gdb --quiet -e ./99Bottles  

Reading symbols for shared libraries . done 

(gdb) set sharedlibrary load-rules ".*" ".*" none 

(gdb) set inferior-auto-start-dyld off 

(gdb) set sharedlibrary preload-libraries off 

(gdb) rb doModInitFunctions 

Breakpoint 1 at 0x2fe0ce36 

<function, no debug info> 
__dyld__ZN16ImageLoaderMachO18doModInitFunctionsERKN11ImageLoader11LinkContextE; 

(gdb) r 

Starting program: /private/var/mobile/Applications/E938B6D0-9ADE-4CD6-83B8-
712D0549426D/99Bottles.app/99Bottles  

 

Breakpoint 1, 0x2fe0ce36 in 
__dyld__ZN16ImageLoaderMachO18doModInitFunctionsERKN11ImageLoader11LinkContextE 
() 

(gdb) 

At this stage, the loader has decrypted the app and we can dump the clear 
text segments directly from memory. The location of the encrypted segment is 
specified by the cryptoff value in the LC_ENCRYPTION_INFO load command, 
which gives the offset relative to the header. Consequently, the encrypted 
segment begins at offset 0x2000 (cryptoff of 0x1000 (4096) plus the start 
address of 0x1000). The address range to dump memory is simply the address 
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of the start of the encrypted segment, plus the size of the encrypted segment 
that is specified by the cryptsize (12288, 0x3000), resulting in an end address 
of 0x5000 (0x2000 + 0x3000). The decrypted segment can be retrieved using 
the  “dump  memory”  GDB  command: 
(gdb) dump memory 99bottles.dec 0x2000 (0x2000 + 0x3000) 

(gdb) kill 

Kill the program being debugged? (y or n) y 

(gdb) q 

mdsec-iPhone:/var/mobile/Applications/E938B6D0-9ADE-4CD6-83B8-
712D0549426D/99Bottles.app root# ls -al 99bottles.dec 

-rw-r--r-- 1 root mobile 12288 Mar  4 16:31 99bottles.dec 

The resultant file should be exactly the same size as our cryptsize value. The 
decrypted section can then be written to the original binary, replacing the 
original encrypted segment: 
mdsec-iPhone:/var/mobile/Applications/E938B6D0-9ADE-4CD6-83B8-
712D0549426D/99Bottles.app root# dd seek=4096 bs=1 conv=notrunc 
if=./99bottles.dec of=99Bottles  

12288+0 records in 

12288+0 records out 

12288 bytes (12 kB) copied, 0.471737 s, 26.0 kB/s 

Finally, the cryptid value must be set to 0 to denote that the file is no longer 
encrypted and the loader should not attempt to decrypt it. Using vbindiff, 
search for the location of the LC_ENCRYPTION_INFO command; this can be 
found by searching for the hex bytes 2100000014000000. From this location 
flip the cryptid value to 0, which is located 16 bytes in advance of the 
cmdsize (0x21000000): 

 
Figure 1 - Hex dump of  LC_ENCRYPTION_INFO 

At this stage, the app should be decrypted and will run as normal once code 
signed again. 

 

Position Independent Executable (PIE) is an exploit mitigation security feature 
that allows an application to take full advantage of ASLR. In order for this to 
happen,   the   app  must   be   compiled   using   the   “–fPIE –pie”   flag;;   using   XCode  
this   can   be   enabled/disabled   using   the   “Generate   Position-Dependent   Code”  
option from the compiler code generation build setting. As previously 
mentioned, an app compiled without PIE will load the executable at a fixed 
address; consider the following simple example that will print the address of 



 iOS Application (In)Security 
  

 

 
 

P ub l ic R e le a s e  
Page 11 of 54 

v 1.0 

the main function: 
int main(int argc, const char* argv[]) 

{ 

    NSLog(@"Main: %p\n", main); 

    return 0; 

} 

Compiling the above application without PIE and running on the iPhone, we 
can see that despite system wide ASLR the main executable is loaded at a 
fixed address: 
mdsec-iPhone:~ root# for i in `seq 1 5`; do ./nopie-main;done 

2012-03-01 16:56:17.772 nopie-main[8943:707] Main: 0x2f3d 

2012-03-01 16:56:17.805 nopie-main[8944:707] Main: 0x2f3d 

2012-03-01 16:56:17.837 nopie-main[8945:707] Main: 0x2f3d 

2012-03-01 16:56:17.870 nopie-main[8946:707] Main: 0x2f3d 

2012-03-01 16:56:17.905 nopie-main[8947:707] Main: 0x2f3d 

Recompiling the same application with PIE, we can see the app now loads the 
main executable at a dynamic address: 
mdsec-iPhone:~ root# for i in `seq 1 5`; do ./pie-main;done 

2012-03-01 16:57:32.175 pie-main[8949:707] Main: 0x2af39 

2012-03-01 16:57:32.208 pie-main[8950:707] Main: 0x3bf39 

2012-03-01 16:57:32.241 pie-main[8951:707] Main: 0x3f39 

2012-03-01 16:57:32.277 pie-main[8952:707] Main: 0x8cf39 

2012-03-01 16:57:32.310 pie-main[8953:707] Main: 0x30f39 

From a blackbox perspective, the presence of PIE can be verified using the 
otool application, which provides functionality to inspect the Mach-O header. 
For example, comparing the two binaries above we can easily  detect the PIE 
executable: 
mdsec-iPhone:~ root# otool -hv pie-main nopie-main  

pie-main: 

Mach header 

      magic cputype cpusubtype  caps    filetype ncmds sizeofcmds      flags 

   MH_MAGIC     ARM          9  0x00     EXECUTE    18       1948   NOUNDEFS 
DYLDLINK TWOLEVEL PIE 

 

nopie-main: 

Mach header 

      magic cputype cpusubtype  caps    filetype ncmds sizeofcmds      flags 

   MH_MAGIC     ARM          9  0x00     EXECUTE    18       1948   NOUNDEFS 
DYLDLINK TWOLEVEL 

In iOS 5, all of the built-in applications are compiled with PIE by default, 
however in practice third-party applications do not commonly take advantage 
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of this protection feature [5]. 

 

As previously noted, iOS applications can apply stack smashing protection at 
compile time. This can be achieved by specifying the –fstack-protector-all 
compiler flag, as shown below: 

 
Figure 2 – Xcode compile sources 

When an app is compiled with stack smashing protection, a known value or 
“canary”   is   placed   on   the  stack  directly  before  the  local  variables  to  protect  the  
saved base pointer, saved instruction pointer and function arguments. The value 
of the canary is verified upon the function return to see if it has been 
overwritten. The compiler uses a heuristic to intelligently apply stack protection 
to a function, typically functions using character arrays. 

From a black box perspective, the presence of stack canaries can be identified 
by examining the symbol table of the binary. If stack smashing protection is 
compiled in to the application, two undefined symbols will be present; 
“___stack_chk_fail”   and   “___stack_chk_guard”. The symbol table from an 
app can be dumped using the otool application: 
$ otool -I  -v DummyApp | grep stack 

0x00003fc4    14 ___stack_chk_fail 

0x0000400c    14 ___stack_chk_fail 

0x0000406c    15 ___stack_chk_guard 

 

Automatic Reference Counting (ARC) was introduced in iOS SDK version 5.0 to 
move the responsibility of memory management from the developer to the 
compiler. Consequently, ARC also offers some security benefits as it reduces the 
likelihood of developers introducing memory corruption (specifically object use -
after-free and double free) vulnerabilities in to apps (See section 5.2). 

ARC can be enabled in an application within XCode by setting the compiler 
option   “Objective-C   Automatic   Reference   Counting”   to   “yes”. To identify the 
presence of ARC in a black box review of a compiled app, an evaluator can look 
for the presence of ARC related symbols in the symbol table, as shown below: 
$ otool -I -v DummyApp-ARC  | grep "_objc_release" 

0x00003fe8   181 _objc_release 
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0x00004030   181 _objc_release 

$ 

The symbols that highlight the presence of ARC are: 

 _objc_retainAutoreleaseReturnValue 
 _objc_autoreleaseReturnValue 
 _objc_storeStrong 
 _objc_retain 
 _objc_release 
 _objc_retainAutoreleasedReturnValue 

At compile time, ARC can be explicitly disabled on specific source files by using 
the “-fno-objc-arc”   compiler   flag   and   this   should   be   highlighted   as   part   any  
white box iOS application assessment. 

 

With a decrypted binary, there is a wealth of information in the __OBJC 
segment that can be useful to a reverse engineer. The __OBJC segment 
provides details on the internal classes, methods and variables used in the 
app; this information is particularly useful when looking to understand how the 
app functions, patching the app or hooking the app at runtime. 

Parsing the __OBJC segment can be performed using the class-dump-z [11] 

application; for example running the previously decrypted 99Bottles app 
through class-dump-z yields the following: 
@interface BottleLayer : CALayer { 

@private 

 BOOL flown; 

} 

@property(assign, nonatomic) BOOL flown; 

-(void)drawInContext:(CGContextRef)context; 

-(void)jiggle; 

-(void)flyAway; 

-(void)animationDidStop:(id)animation finished:(BOOL)finished; 

-(void)dealloc; 

@end 

 

__attribute__((visibility("hidden"))) 

@interface RootViewController : UIViewController <UIActionSheetDelegate> { 

@private 

 UILabel* numberDisplay; 

 NSMutableArray* marr; 

 Player* player; 

 UIView* wall; 
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 BottleLayer* currentBottle; 

 NSArray* names; 

 NSArray* names10; 

 int count; 

 BOOL paused; 

In the above example snippet, class-dump-z has identified a number of 
methods   including   “jiggle”,   “flyAway”   and   “drawInContext”; these can all be 
hooked and modified at runtime. 

 

Hooking the Objective-C runtime is a powerful method of observing and 
modifying the internal behaviour of an application. The most common method 
for hooking the runtime is using MobileSubstrate [12], a hooking framework for 
jailbroken devices, similar to that of Application Enhancer on OS X. 
MobileSubstrate typically comes as default with many of the iOS jailbreaks and 
facilitates hooking of not only Objective-C but also C and C++. 

Cycript [13] provides a programming language to interface with a JavaScript to 
Objective-C bridge from the command line. As well as blending JavaScript and 
Objective-C, Cycript allows runtime hooking using MobileSubstrate. Perhaps 
one of the most useful features of Cycript is the ability to attach to a running 
process and manipulate the runtime. For example, cycript can be used to 
inject into the running SpringBoard process on a jailbroken broken device, 
disable the passcode requirement and unlock the device, bypassing the 
passcode: 
mdsec-iPhone:~/Documents/Cracked root# cycript -p SpringBoard 

cy# SBAwayController.messages['isPasswordProtected'] = function() {return NO;} 

{} 

cy# [SBAwayController.sharedAwayController unlockWithSound:1] 

cy# 

For those looking to write MobileSubstrate extensions, iOSOpenDev provides a 
fantastic means of integrating MobileSubstrate into XCode using XCode 
templates. iOSOpenDev [14] uses the CaptainHook framework to simplify 
writing MobileSubstrate tweaks.  

Example: Bypassing Jailbreak Detection 

For example, consider an app that attempts to detect and prevent the app 
being run on a jailbroken device. The most common way for this to be 
accomplished is to check the filesystem for a list of files known to be 
associated with jailbreaks, for example: 
@implementation AppSecurity 

-(BOOL)isJailBroken 
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{ 

    NSString *filePath = @"/Applications/Cydia.app"; 

    if ([[NSFileManager defaultManager] fileExistsAtPath:filePath]) 

    { 

        return TRUE; 

    } 

    return FALSE; 

} 

The above method can be hooked and modified at runtime using a 
MobileSubstrate tweak such as the following: 
#import <Foundation/Foundation.h> 

#import <CaptainHook/CaptainHook.h> 

#include <notify.h> 

@interface hookDummy : NSObject 

@end 

@implementation hookDummy 

 

-(id)init 

{ 

    if ((self = [super init])){} 

    return self; 

} 

@end 

@class AppSecurity; 

CHDeclareClass(AppSecurity); 

CHOptimizedMethod(0, self, BOOL, AppSecurity, isJailBroken) 

{ 

    NSLog(@"####### isJailBroken hooked"); 

    return false; 

} 

CHConstructor 

{ 

    NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init]; 

    CHLoadLateClass(AppSecurity); 

    CHHook(0, AppSecurity, isJailBroken); // register hook 

    [pool drain]; 

} 

Once compiled, placing the library in the DynamicLibraries folder causes it to 
be loaded every time an application is launched on the device: 
-rwxr-xr-x 1 root wheel 10912 Mar  8 10:15 
/Library/MobileSubstrate/DynamicLibraries/hookDummy.dylib* 
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Mar  8 21:03:56 unknown DummyApp[1722] <Notice>: MS:Notice: Installing: 
MDSec.DummyApp [DummyApp] (675.00) 

Mar  8 21:03:56 unknown DummyApp[1722] <Notice>: MS:Notice: Loading: 
/Library/MobileSubstrate/DynamicLibraries/Activator.dylib 

Mar  8 21:03:56 unknown DummyApp[1722] <Notice>: MS:Notice: Loading: 
/Library/MobileSubstrate/DynamicLibraries/hookDummy.dylib 

Mar  8 21:03:56 unknown kernel[0] <Debug>: launchd[1722] Builtin profile: 
container (sandbox) 

Mar  8 21:03:56 unknown kernel[0] <Debug>: launchd[1722] Container: 
/private/var/mobile/Applications/1F6A9800-DBD0-4831-A7C9-C4826C6F7EAD [69] 
(sandbox) 

Mar  8 21:03:57 unknown DummyApp[1722] <Warning>: ####### isJailBroken hooked 

 

The library can be configured to only load into specific applications by creating 
a plist for the library containing the application bundle identifier, similar to: 
Filter = { 

  Bundles = (MDSec.DummyApp); 

}; 

Using a real world example, the CommBank Kaching application implements a 
similar method to detect jailbroken devices; we can identify the relevant 
methods using class-dump: 
@interface RootViewController : /private/tmp/KIA_IPHONE_SOURCE/ 
<UIWebViewDelegate, DILDisplayView, UIAlertViewDelegate> 

{ 

<snip> 

- (BOOL)isJailbrokenDevice; 

When run on a jailbroken device, the app will 
display an NSAlert with an exception and does 
not proceed past the alert. 

 

 

 

 

 

 

 

 

 

Figure 3 - Jailbroken error in Kaching 
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The following MobileSubstrate tweak can be used to bypass this protection and 
use the app as normal: 
@class RootViewController; 

CHDeclareClass(RootViewController); 

CHOptimizedMethod(0, self, BOOL, RootViewController, isJailbrokenDevice) 

{ 

    NSLog(@"####### isJailbrokenDevice hooked"); 

    return false; 

} 

CHConstructor 

{ 

 NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init]; 

CHLoadLateClass(RootViewController); 

 CHHook(0, RootViewController, isJailbrokenDevice);  

 [pool drain]; 

} 

Rerunning the app will cause the app to function as normal due to the 
isJailBrokenDevice method being hooked and modified: 
Mar  8 21:15:46 unknown KIA[1786] <Notice>: MS:Notice: Installing: 
au.com.commbank.kaching [KIA] (675.00) 

Mar  8 21:15:46 unknown KIA[1786] <Notice>: MS:Notice: Loading: 
/Library/MobileSubstrate/DynamicLibraries/Activator.dylib 

Mar  8 21:15:46 unknown kernel[0] <Debug>: launchd[1786] Builtin profile: 
container (sandbox) 

Mar  8 21:15:46 unknown kernel[0] <Debug>: launchd[1786] Container: 
/private/var/mobile/Applications/63DC8037-5A2F-4C5C-ADDB-30AF3BF49449 [69] 
(sandbox) 

Mar  8 21:15:47 unknown KIA[1786] <Notice>: MS:Notice: Loading: 
/Library/MobileSubstrate/DynamicLibraries/hookDummy.dylib 

Mar  8 21:15:47 unknown securityd[1787] <Notice>: MS:Notice: Installing: (null) 
[securityd] (675.00) 

Mar  8 21:15:47 unknown securityd[1787] <Notice>: MS:Notice: Loading: 
/Library/MobileSubstrate/DynamicLibraries/hookDummy.dylib 

Mar  8 21:15:47 unknown KIA[1786] <Warning>: **** READ 60 LOG ENTRIES FROM DISK 
**** 

Mar  8 21:15:47 unknown KIA[1786] <Warning>: ####### isJailbrokenDevice hooked 

 

Developers looking to mitigate against runtime attacks or increase the 
complexity of reverse engineering can employ some defensive strategies to 
thwart attackers. However, it should generally be accepted that there is no full 
proof method for protecting the app when running on a compromised OS such as 
in a jailbroken environment. 

One of the most common approaches for defending the runtime is to integrity 



 iOS Application (In)Security 
  

 

 
 

P ub l ic R e le a s e  
Page 18 of 54 

v 1.0 

check classes for expected addresses or checksums, allowing an app to 
determine if the Objective-C runtime has been hooked or modified. This 
approach is typically achieved by retrieving and validating the address of the 
class. The runtime provides the class_getMethodImplementation method that 
returns a function pointer to a class method, if that class method was invoked. 

Consider the following simple implementation: 
#import "security.h" 

@implementation security 

void * perform_sec_check() 

{ 

    void * addr = verify_address("AppSecurity", "isJailBroken"); 

    fprintf(stderr, "\ncaddr = %p\n", addr); 

    if(addr != 0x25a9) take_evasive_action(); 

} 

void * verify_address(const char * cname, const char * method) 

{ 

    id class = objc_lookUpClass(cname); 

    SEL selector = sel_registerName(method); 

    IMP imp = class_getMethodImplementation(class, selector); 

    return imp; 

} 

void * take_evasive_action() { 

    fprintf(stderr, "%s", "Tamper detected\n");  

    exit(-1); 

} 

@end 

The above class provides a simple implementation of runtime tamper detection. 
The verify_address function retrieves the address of the function pointer for 
the AppSecurity: isJailBroken method, taken from the earlier example. This 
address is then compared to the known safe address, hardcoded by the 
developer. If the address differs, tampering may have occurred and appropriate 
action is taken. 

Running the application without any runtime hooking, the app jail break 
detection executes as normal: 
caddr = 0x25a9 

2012-04-18 20:51:51.580 DummyApp[595:707] ##### Sorry, you are running on a 
jailbroken device 

The address printed is the expected address for the AppSecurity: 

isJailBroken method. If the application is run again with the MobileSubstrate 
library from the above example present, the address of the AppSecurity: 
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isJailBroken method has changed: 
caddr = 0x76ec5 

Tamper detected 

While the above anti-tamper detection can be effective, it can also be trivially be 
bypassed by hooking the detection or patching the binary. To further improve 
the detection, the functions can be in-lined which causes the compiler to fully 
insert the function body whenever the function is called. Consequently, the 
attacker would need to patch every occurrence of the function each time it is 
called. This can be achieved simply by using the keyword inline: 
inline void * perform_sec_check() 

{ 

    void * addr = verify_address("AppSecurity", "isJailBroken"); 

    fprintf(stderr, "\ncaddr = %p\n", addr); 

    if(addr != 0x25a9) take_evasive_action(); 

} 

 

In conclusion, we have reviewed some of the techniques that can be employed 
during a black box assessment of an iOS application. Indeed, it is possible to 
gain an in depth understanding of the inner workings of an app, even those 
protected by the AppStore encryption. Runtime hooking provides a powerful 
means to interact, asses and modify an application, in particular it allows an 
evaluator to get inside an app and utilise inner functionality such as APIs that 
would otherwise need to be reverse engineered to verify functionality. 

From a defensive perspective, developers looking to protect their apps from 
tampering can do so by using checksums or validating the runtime address of 
classes and methods. The effectiveness of these protections can be further 
improved by using inline functions. Where possible, developers should look to 
refactor code to increase the complexity of reverse engineering and reduce the 
amount of information disclosed on class structure. 
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Introduction 

iOS applications typically leverage a standard set of APIs to interoperate with 
servers, local resources and other applications. Whilst many of these 
implement secure defaults, MDSec have audited many applications where the 
default options are not used, or where an API is simply trusted to operate 
securely. The following key touch points in an application should be reviewed 
when performing source code reviews of reviewing iOS applications. 

 

Most iOS applications will perform some network communication and due to 
the nature of mobile devices this communication may often occur over an 
untrusted or insecure network such as hotel or café WiFi, mobile hotspot or 
cellular. Consequently, it is imperative that this communication is performed in 
a secure manner. 

iOS apps will commonly interact with online web applications or web 
technology based RPC mechanisms; these interactions are often performed 
using the NSURLConnection class. This class takes an NSURLRequest object 
and performs an HTTP(S) request with it. The API uses a default set of SSL 
ciphers to perform secure connections; unfortunately the API is not granular 
enough to allow the developer to select which ciphers from the suite to 
negotiate with. There are some differences between the transports that are 
negotiated for different versions of the SDK, these are summarised in the 
table below: 

SDK Version Protocol “Weak”  Cipher  
Suites 

Total Cipher 
Suites 

4.3 TLS 1.0 5 29 

5.0 TLS 1.2 0 37 

5.1 TLS 1.2 0 37 

The table highlights an improvement in the cipher suites negotiated over time 
with the release of the newer versions of the SDK. 
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Consider the following example, which will perform a simple HTTPS connection 
to the localhost: 
@implementation insecuressl 

int main(int argc, const char* argv[]) 

{ 

    NSString *myURL=@"https://localhost/test"; 

    NSURLRequest *theRequest = [NSURLRequest requestWithURL:[NSURL 
URLWithString:myURL]]; 

    NSURLResponse *resp = nil; 

    NSError *err = nil; 

    NSData *response = [NSURLConnection sendSynchronousRequest: 

theRequest returningResponse: &resp error: &err]; 

    NSString * theString = [[NSString alloc] initWithData:response 
encoding:NSUTF8StringEncoding]; 

    [resp release]; 

    [err release]; 

    return 0; 

} 

Compiling the application with both the 5.0 or 5.1 and 4.3 SDKs and then 
running it while monitoring the communication produces different results. 

For version 4.3 of the SDK, the application negotiates a TLS1.0 session with 
one of 29 cipher suites, as shown in figures 3 and 4: 

 
Figure 4 - 4.3 SSL Negotiation 
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Figure 5 - 4.3 SSL Ciphers 

Using version 5.0 or 5.1 of the SDK, the application negotiates a TLS1.2 
session with one of 37 cipher suites, as shown in figures 5 and 6: 

 
Figure 6 – iOS 5.0/5.1 SSL Client Hello 
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Figure 7 - iOS 5.0/5.1 SDK Cipher Suites 

In the above 4.3 SDK negotiation, the following cipher suites can be seen as 
weak: 

 TLS_RSA_WITH_DES_CBC_SHA 
 TLS_RSA_EXPORT_WITH_RC4_MD5 
 TLS_RSA_EXPORT_WITH_DES40_CBC_SHA 
 TLS_DHE_RSA_WITH_DES_CBC_SHA 
 TLS_DHE_RSA_EXPORT_WITH_DES40_CBC_SHA 

In order to prevent Man-in-the-Middle attacks, it is essential for iOS 
applications to prohibit the use of self-signed certificates. The default 
behaviour for the NSURLRequest class is to reject self-signed certificates and 
raise an NSURLErrorDomain exception. However, it is not uncommon to see 
developers override this behaviour to accept any certificate, frequently to 
allow the use of self-signed certificates deployed in pre-production 
environments. The certificate validation can be disabled for the requested 
domain using the allowsAnyHTTPSCertificateForHost method, similar to 
that in the following example: 
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#import "loadURL.h" 

@interface NSURLRequest (DummyInterface) 

+ (BOOL)allowsAnyHTTPSCertificateForHost:(NSString*)host; 

+ (void)setAllowsAnyHTTPSCertificate:(BOOL)allow forHost:(NSString*)host; 

@end 

@implementation loadURL 

-(void) run 

{ 

    NSURL *myURL = [NSURL URLWithString:@"https://localhost/test"];  

    NSMutableURLRequest *theRequest = [NSMutableURLRequest requestWithURL:myURL 
cachePolicy:NSURLRequestReloadIgnoringCacheData timeoutInterval:60.0]; 

    [NSURLRequest setAllowsAnyHTTPSCertificate:YES forHost:[myURL host]]; 

    [[NSURLConnection alloc] initWithRequest:theRequest delegate:self]; 

} 

@end 

The allowsAnyHTTPSCertificateForHost method is a private method and 
using it in production code may result in the application being rejected from 
the App Store. An alternate approach for bypassing SSL verification that is not 
uncommon is using the 
continueWithoutCredentialForAuthenticationChallenge selector, 
implemented within the NSURLConnection delegate method 
didReceiveAuthenticationChallenge, as shown below: 
- (void)connection:(NSURLConnection *)connection 
didReceiveAuthenticationChallenge:(NSURLAuthenticationChallenge *)challenge  

{ 

    if ([challenge.protectionSpace.authenticationMethod 
isEqualToString:NSURLAuthenticationMethodServerTrust])  

   { 

    [challenge.sender useCredential:[NSURLCredential 
credentialForTrust:challenge.protectionSpace.serverTrust]forAuthenticationChallen
ge:challenge]; 

         [challenge.sender 
continueWithoutCredentialForAuthenticationChallenge:challenge]; 

    return; 

      } 

The CFNetwork framework provides an alternate API for implementing SSL, 
indeed the framework allows greater control and customisation of the SSL 
session for the developer. Similarly to NSURLRequest, it is not uncommon to 
see developers weaken the SSL configuration. CFNetwork however provides 
more granular controls, allowing the application to accept expired certificates 
or roots, allow any root or even perform no validation on the certificate chain. 

Consider the following onSocket delegate method, taken from a real-world 
application: 
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- (void)onSocket:(AsyncSocket *)sock didConnectToHost:(NSString *)host 
port:(UInt16)port {  

NSMutableDictionary *settings = [[NSMutableDictionary alloc] 
initWithCapacity: 3];  

[settings setObject:[NSNumber numberWithBool:YES]  

forKey:(NSString *)kCFStreamSSLAllowsExpiredCertificates];  

[settings setObject:[NSNumber numberWithBool:YES]  

forKey:(NSString *)kCFStreamSSLAllowsAnyRoot];  

[settings setObject:[NSNumber numberWithBool:NO]  

forKey:(NSString *)kCFStreamSSLValidatesCertificateChain];  

[sock startTLS:settings];  

Unfortunately, when using the CFNetwork framework, there is no clear method 
of modifying the cipher suite and again, the SDK default set of ciphers is used. 

In conclusion, it is imperative for mobile applications to implement transport 
methods in a secure manner and in the default mode and using the latest 
SDK, this is likely to be the case when developing an iOS application. 
However, the APIs do allow the transport security to be weakened and it is not 
uncommon to see this implemented by developers. Developers looking to 
temporarily weaken transport security for development or staging 
environments should be cautious to ensure that this code does not persist in 
to production. This simplest way to achieve this is to use a pre-processor 
macro to include the code for development builds only. 

 

Due to the restrictions imposed by the iOS sandbox, Inter-Process 
Communication (IPC) is generally prohibited. However, a simple form of IPC is 
supported by the API if the application registers a custom protocol handler. 

There are many reasons why a developer might want to support IPC ; some 
examples   that   we’ve   seen   in   practice   include   determining   the   presence   of  
other apps, allowing the app to be launched from Safari or passing data 
between apps. 

There are two API methods commonly used to implement protocol handlers on 
iOS,   “application:openURL”   and   “application:handleOpenURL”,   the   latter  
now   deprecated.   The   advantage   of   using   the   “openURL”   method   is   that   it  
supports validation of the source application that instantiated the URL request. 

A custom URL scheme can be registered in an iOS application by adding a URL 
type to the application plist file, as shown in the VulnerableiPhoneApp project 
below  which  registers  the  “vuln”  protocol  handler: 
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Figure 8 - Registering an IPC in XCode 

The protocol handling code can then be implemented using the application 
delegate methods handleOpenURL or openURL similar to the following which 
will simply display an alertView with the requested URL text: 
- (BOOL)application:(UIApplication *)application handleOpenURL:(NSURL *)url { 

UIAlertView *alertView; 

NSString *text = [[url host] 

stringByReplacingPercentEscapesUsingEncoding:NSUTF8StringEncoding]; 

alertView = [[UIAlertView alloc] initWithTitle:@"Text" message:text 
delegate:nil cancelButtonTitle:@"OK" otherButtonTitles:nil]; 

[alertView show]; 

return YES; 

} 

An assessment of a real world application found a custom URL handler used to 
implement configuration changes: a feature initially built in to the application 
for developer convenience but which had persisted through to production 
release. Consider the following implementation of the handleOpenURL method: 
- (BOOL)application:(UIApplication *)application handleOpenURL:(NSURL *)url { 

    if (!url) {  return NO; } 

    NSString *method = [[url host] 

stringByReplacingPercentEscapesUsingEncoding:NSUTF8StringEncoding]; 

    if([method isEqualToString:@"setHomeURL"]) 

    { 

        Settings *s = [[Settings alloc] init]; 

        NSString *querystr = [[url query] 
stringByReplacingPercentEscapesUsingEncoding:NSUTF8StringEncoding]; 

        NSArray *param = [querystr componentsSeparatedByString:@"="]; 

        NSString *value = [param objectAtIndex:1]; 

        [s setHomeURL:value]; 

    } 

    return YES; 
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In this example, the custom URL handler is used to update the default URL 
that the application opens when it is started. The method accepts an NSURL 
object which is then parsed; if   the   host   that   is   passed   is   “setHomeURL”   the  
method   will   call   the   “setHomeURL” method of the Settings object with an 
argument  of  the  first  URL  parameter’s  value. 

The setHomeURL method of the Settings object configures the application 
preferences and is implemented as follows: 
@implementation Settings 

- (void) setHomeURL:(NSString*)url 

{ 

    NSUserDefaults *prefs = [NSUserDefaults standardUserDefaults]; 

    [prefs setObject:url forKey:@"homeURL"]; 

    [prefs synchronize]; 

} 

An attacker could exploit this issue to reconfigure the default landing page for 
the application using a malicious iframe, similar to: 
<iframe  src=”vuln://setHomeURL?url=http://mdattacker.net”></iframe> 

A possible solution to this issue is to use the updated API call “openURL” that 
also provides information on the application from which the URL request 
originated. The following example will verify that the URL was invoked from 
within the application itself: 
- (BOOL)application:(UIApplication *)application openURL:(NSURL *)url 
sourceApplication:(NSString *)sourceApplication annotation:(id)annotation { 

    NSString* myBid = [[NSBundle mainBundle] bundleIdentifier]; 

    if ([sourceApplication isEqualToString:myBid]) 

    { 

        return NO; 

    } 

    else if (!url) {  return NO; } 

    NSString *method = [[url host] 
stringByReplacingPercentEscapesUsingEncoding:NSUTF8StringEncoding]; 

    if([method isEqualToString:@"setHomeURL"]) 

    { 

        Settings *s = [[Settings alloc] init]; 

        NSString *querystr = [[url query] 
stringByReplacingPercentEscapesUsingEncoding:NSUTF8StringEncoding]; 

        NSArray *param = [querystr componentsSeparatedByString:@"="]; 

        NSString *value = [param objectAtIndex:1]; 

        [s setHomeURL:value]; 

    } 

    return YES; 
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Alternatively, if the developer wishes to ensure that the URL can only be 
invoked from another app, for example Safari, this could be implemented as 
follows: 
- (BOOL)application:(UIApplication *)application openURL:(NSURL *)url 
sourceApplication:(NSString *)sourceApplication annotation:(id)annotation { 

    NSString *SafariPath = @"/Applications/MobileSafari.app"; 

    NSBundle *bundle = [NSBundle bundleWithPath:SafariPath]; 

    if ([sourceApplication isEqualToString:[bundle bundleIdentifier]]) 

    { 

        return No; 

    } 

A public real-world vulnerability example could be found in the Skype iOS 
application that registers   the   “skype”   protocol  handler  which could be used to 
instantiate calls and chats. An attack to perform a call without authorization 
using a malicious iframe was first documented by Nitesh Dhanjani [15]. The 
attack payload could be triggered from MobileSafari to launch the Skype app, 
which would perform the call as shown below: 
<iframe  src=”skype://123456789?call"></iframe> 

Skype resolved this issue by displaying a UIView that allows the user to accept 
or decline the call. 

A simple method of identifying valid URLs in AppStore apps is to take the 
decrypted app and check for protocol strings, an example using the Facebook 
application (truncated from 558 URLs): 
bash-3.2# strings Facebook.app/Facebook | grep "://" | grep -v "http" 

fb://upload/actions/newalbum 

fb://root 

fb://birthdays 

fb://messaging 

fb://notifications 

fb://requests 

fb://publish 

fb://publish/profile/(gatePublishWithUID:) 

fb://oldpublish 

fb://oldpublish/profile/(initWithUID:) 

fb://publish/post/(initWithPostId:) 

fb://publish/photo/(initWithUID:)/(aid:)/(pid:) 

fb://publish/mailbox/(initWithFolder:)/(tid:) 

fb://publish/privacy 

fb://place/create 

fb://compose 

fb://compose/profile/(initWithUID:) 
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In conclusion, protocol handlers can provide a convenient method for 
developers to perform inter-process communication. However, developers 
should be careful to perform validation on the source and content of any data 
entering the application and avoid using protocol handlers to access sensitive 
or dangerous functionality. 

 

The protection of data stored on a mobile device is perhaps one of the most 
important issues that an application developer has to deal with. It is 
imperative that developers protect sensitive data that is stored client-side in a 
secure manner. As previously noted, developers wishing to encrypt sensitive 
content on the device should employ the Data Protection API. Unfortunately, it 
is common practice to find even apps from large multinationals storing their 
sensitive data in clear text. A good example of this was highlighted in 2010 
where vulnerabilities in the Citigroup online banking application caused it to be 
pulled from the AppStore, as reported by The Register: 

“In a letter, the US banking giant said the Citi Mobile app saved user 
information in a hidden file that could be used by attackers to gain 
unauthorized access to online accounts. Personal information stored in the file 
could   include   account   numbers,   bill   payments   and   security   access   codes…”  
[16]. 

While this paper will only focus on app data storage and how applications can 
use the Data Protection API, an in depth presentation on iPhone encryption 
has been performed by Jean-Baptiste Bedrune and Jean Sigwal of ESEC [17]. 

C lient-side data can be stored in a number of forms, including but not limited 
to: 

 Custom created files, 
 Databases, 
 System logs, 
 Cookie stores, 
 Plists, 
 Data caches. 

All of these may contain sensitive data that should be protected if the handset 
were lost   or   stolen.   This   data   will   generally   be  stored  within  the  application’s  
sandboxed container. 
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Applications are stored on the file-system   as   the   “mobile”   user   under   the  
“/var/mobile/Applications”   directory   where   a   unique   GUID   is   used   as   a   sub  
directory container to store the app data. The application directory structure is 
as follows: 

Directory Description 

Application.app Stores the static content of the application and 
compiled app. This content is signed and 
checked at runtime. 

Documents A persistent store for application data; this 
data will be synched and backed up to iTunes. 

Library This folder contains support data used by the 
app such as configurations, preferences, cache 
data and cookies. 

tmp This folder is used to store temporary files. 

An attacker looking to extract application data is likely to find it within this 
directory structure in one form or another. However, such exploration of the 
filesystem will first require a jailbroken device.  

Let’s  take  a  look  at  a  real  world  app, taken from the AppStore. Kik Messenger 
is a social networking application with a 4+ star rating from 6405 ratings on 
the AppStore and well over 1 million users. The application allows users to 
send free instant messages via the devices data connection. In order to do 
this, the user must sign-up for a free Kik account. 

Within the Kik application directory is the preferences plist, 
“Library/Preferences/com.kik.chat.plist”   that   is   used by the app to store 
configuration information, including the user ’s username, password and e-mail 
address, as shown below (obscured for reader): 

 
Figure 9 - Kik Messenger plist  
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The plist detailed above is not protected by the Data Protection API and 
therefore resides unencrypted on the file-system while the device is enabled, 
regardless of lock state. This is a classic example of misuse of data storage as 
sensitive information such as credentials should be stored in the keychain 
rather than on the filesystem as a plist. 

In addition to the above, Kik stores other information on the device, including 
the SMS chat history and contact information. This data is stored in a sqlite 
database  in  “Documents/kik.sqlite”   which  again  is  not  encrypted: 

 
Figure 10 - Kik SQLite Database 

A common dilemma and one faced by the Kik application is that it is a real-
time app that receives messages while backgrounded and regardless of lock 
state. If the app was to apply NSFileProtectionComplete, it would not be 
able to access the SQLite store when the phone is locked. Partial mitigation 
might be achieved by encrypting the data until the first phone unlock by 
setting the NSFileProtectionCompleteUntilFirstUserAuthentication 
constant. Subsequent reboots would cause the data to be encrypted, however 
this feature is only available from iOS 5. 

The Kik app also allows users to send attachments such as photos within IMs, 
these   are   stored   unencrypted   in   the   “Documents/fileAttachments”   directory.  
For example, the following shows a photo sent via an IM attachment: 
mbp:Documents $ file fileAttachments/057a8fc9-0daf-4750-b356-5b28755f4ec4 

fileAttachments/057a8fc9-0daf-4750-b356-5b28755f4ec4: JPEG image data, JFIF 
standard 1.01 mbp:Documents $ 

It is worth considering that iOS itself does not apply data protection to photos 
stored on the device; however it is a risk that the application could potentially 
avoid. 

The Data Protection API allows four levels of file-system protection that are 
configurable by passing an extended attribute to the NSData or 
NSFileManager classes. The possible levels of protection are: 

Level Description 

No Protection The file is not encrypted on the file-system. 

Complete 
Protection 

The file is encrypted on the file-system and inaccessible 
when the device is locked. 
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Complete Unless 
Open 

The file is encrypted on the file-system and inaccessible 
while closed. When a device is unlocked an app can 
maintain an open handle to the file even after it is 
subsequently locked, however during this time the file 
will not be encrypted.  

Complete Until 
First User 
Authentication 

The file is encrypted on the file-system and inaccessible 
until the device is unlocked for the first time. This helps 
offer some protection against attacks that require a 
device reboot. 

In order to apply one of the above levels of protection, one of the following 
extended attributes must be passed to the relevant class: 

NSData NSFileManager 

NSDataWritingFileP rotec tionNone  NSFileP rotec tionNone  

NSDataWritingFileP rotec tionC omplete  NSFileP rotec tionC omplete  

NSDataWritingFileProtectionCompleteUnlessO p
en  

NSFileProtec tionC ompleteUnlessO pen  

NSDataWritingFileProtectionCompleteUntilFirs t
UserA uthentication  

NSFileProtectionCompleteUntilFirstUserA
uthentication  

For example, consider an application that needs to save some data to the file -
system, but it does not require access to the file while the device is locked, 
such as an app that allows you to download documents and then later view 
them. As the app does not require access to the files when the device is 
locked, it can take advantage of the complete protection by setting the 
NSDataWritingFileProtectionComplete or NSFileProtectionComplete 
attributes: 
-(BOOL) getFile 

{ 

    NSString *fileURL = @"http://www.mdsec.co.uk/training/wahh-live.pdf"; 

    NSURL  *url = [NSURL URLWithString:fileURL]; 

    NSData *urlData = [NSData dataWithContentsOfURL:url]; 

    if ( urlData ) 

    { 

        NSArray     *paths = 
NSSearchPathForDirectoriesInDomains(NSDocumentDirectory, NSUserDomainMask, YES); 

        NSString    *documentsDirectory = [paths objectAtIndex:0]; 

        NSString  *filePath = [NSString stringWithFormat:@"%@/%@", 
documentsDirectory,@"wahh-live.pdf"]; 

        NSError *error = nil; 

        [urlData writeToFile:filePath options:NSDataWritingFileProtectionComplete 
error:&error]; 

http://developer.apple.com/library/ios/documentation/Cocoa/Reference/Foundation/Classes/NSData_Class/Reference/Reference.html#//apple_ref/c/econst/NSDataWritingFileProtectionNone
http://developer.apple.com/library/ios/documentation/Cocoa/Reference/Foundation/Classes/NSFileManager_Class/Reference/Reference.html#//apple_ref/c/data/NSFileProtectionNone
http://developer.apple.com/library/ios/documentation/Cocoa/Reference/Foundation/Classes/NSData_Class/Reference/Reference.html#//apple_ref/c/econst/NSDataWritingFileProtectionComplete
http://developer.apple.com/library/ios/documentation/Cocoa/Reference/Foundation/Classes/NSFileManager_Class/Reference/Reference.html#//apple_ref/c/data/NSFileProtectionComplete
http://developer.apple.com/library/ios/documentation/Cocoa/Reference/Foundation/Classes/NSFileManager_Class/Reference/Reference.html#//apple_ref/c/data/NSFileProtectionCompleteUnlessOpen
http://developer.apple.com/library/ios/documentation/Cocoa/Reference/Foundation/Classes/NSFileManager_Class/Reference/Reference.html#//apple_ref/c/data/NSFileProtectionCompleteUntilFirstUserAuthentication
http://developer.apple.com/library/ios/documentation/Cocoa/Reference/Foundation/Classes/NSFileManager_Class/Reference/Reference.html#//apple_ref/c/data/NSFileProtectionCompleteUntilFirstUserAuthentication
http://www.mdsec.co.uk/training/wahh-live.pdf
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        return YES; 

    } 

    return NO; 

} 

In this scenario, the document will only be accessible while the device is 
unlocked. The OS provides a 10 second window between locking the device 
and this file being unavailable. The following shows an attempt to access the 
file while the device is locked: 
mdsec-iPhone:/var/mobile/Applications/7F5ED565-781E-47FD-8787-4C76CD7A4DD5 root# 
ls -al Documents/ total 372 

drwxr-xr-x 2 mobile mobile    102 Jan 20 15:24 ./ 

drwxr-xr-x 6 mobile mobile    204 Jan 20 15:23 ../ 

-rw-r--r-- 1 mobile mobile 379851 Jan 20 15:24 wahh-live.pdf 

mdsec-iPhone:/var/mobile/Applications/7F5ED565-781E-47FD-8787-4C76CD7A4DD5 root# 
strings Documents/wahh-live.pdf 

strings: can't open file: Documents/wahh-live.pdf (Operation not permitted) 

mdsec-iPhone:/var/mobile/Applications/7F5ED565-781E-47FD-8787-4C76CD7A4DD5 root# 

Developers wishing to apply the relevant protection levels to data stored on 
the device can achieve this in a similar manner to the above by passing the 
relevant  attribute   that  best  fits  the  developer’s  requirement for file access. 

In  conclusion,  iOS  leaves  data  protection  very  much  in  the  developer’s  hands,  
providing granular controls to configure the level of protection that can be 
applied to data written to the filesystem. Unfortunately, it is common to find 
that developers do not take advantage of this protection and leave sensitive 
data at risk of compromise. 

 

The iOS keychain is an encrypted container used for storing sensitive data 
such as credentials whilst restricting apps to accessing only their own keychain 
items unless they are a member of a keychain access group. Similar to files on 
the filesystem, a protection level can be applied using the Data Protection API. 
The following table describes the available protection levels for keychain 
items: 

Attribute Description 

kSecAttrAccessibleAlways The keychain item is always 
accessible. 

kSecAttrAccessibleWhenUnlocked The keychain item is only accessible 
when the device is unlocked. 
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kSecAttrAccessibleAfterFirstUnlock They keychain item is only accessible 
after the first unlock from boot. This 
helps offer some protection against 
attacks that require a device reboot. 

kSecAttrAccessibleAlwaysThisDevic
eOnly 

The keychain item is always 
accessible but cannot be migrated to 
other devices. 

kSecAttrAccessibleWhenUnlockedT
hisDeviceOnly 

The keychain item is only accessible 
when the device is unlocked and may 
not be migrated to other devices. 

kSecAttrAccessibleAfterFirstUnlock
ThisDeviceOnly 

The keychain item is accessible after 
the first unlock from boot and may 
not be migrated to other devices. 

Keychain items can be added using the SecItemAdd or updated using the 
SecItemUpdate methods, which accept one of the above attributes to define 
the protection level to apply. By default all keychain items are created with a 
protection level of kSecAttrAccessibleAlways which will allow access at any 
time and allows migration to other devices. 

Applications’   access   to   keychain   items   is   limited   by   the  entitlements  they  are  
granted.   The   keychain   uses   application   identifiers   stored   in   the   “keychain-
access-group”   entitlement   of   the   provisioning   profile   for   the   app; a sample 
provisioning profile that allows keychain access only to the app’s keychain is 
shown overleaf: 
<?xml version="1.0" encoding="UTF-8"?> 

<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" 

"http://www.apple.com/DTDs/PropertyList-1.0.dtd"> 

<plist version="1.0"> 

<dict> 

    <key>application-identifier</key> 

    <string>my.company.VulnerableiPhoneApp</string> 

    <key>get-task-allow</key> 

    <true/> 

    <key>keychain-access-group</key> 

    <array> 

        <string>my.company.VulnerableiPhoneApp</string> 

    </array> 

</dict> 

</plist> 

As previously noted, an app can add an item to the keychain using the 
SecItemAdd method; consider the following example app that wishes to store 

http://www.apple.com/DTDs/PropertyList-1.0.dtd
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a license key in the keychain and only requires access to the item when the 
device is unlocked: 
- (NSMutableDictionary *)getkeychainDict:(NSString *)service { 

    return [NSMutableDictionary dictionaryWithObjectsAndKeys: 

            (id)kSecClassGenericPassword, (id)kSecClass, 
service,(id)kSecAttrService, service, (id)kSecAttrAccount, 
(id)kSecAttrAccessibleWhenUnlocked, (id)kSecAttrAccessible, nil]; 

} 

 

- (BOOL) saveLicense:(NSString*)licenseKey { 

    static NSString *serviceName = @"my.company.VulnerableiPhoneApp"; 

    NSMutableDictionary *myDict = [self getkeychainDict:serviceName]; 

    SecItemDelete((CFDictionaryRef)myDict); 

    NSData *licenseData = [licenseKey dataUsingEncoding:NSUTF8StringEncoding]; 

    [myDict setObject:[NSKeyedArchiver archivedDataWithRootObject:licenseData] 
forKey:(id)kSecValueData]; 

    OSStatus status = SecItemAdd((CFDictionaryRef)myDict, NULL); 

    if (status == errSecSuccess) return YES; 

    return NO; 

} 

Firstly, the app creates a dictionary of key-value pairs which are the 
configuration attributes for the keychain. In this instance the app sets the 
kSecAttrAccessibleWhenUnlocked attribute to allow access to the keychain 
item whenever the device is unlocked. The app then sets the kSecValueData 
attribute to the value of the data that it wishes to store in the keychain, in this 
instance the license key data, and adds the item to the keychain using the 
SecItemAdd method. 

Under the hood, the keychain is simply a SQLite database and can be queried 
like any other database. For example, to find out the list of the keychain 
groups the following query can be executed: 
mdsec-iPhone:/var/Keychains root# sqlite3 keychain-2.db "select agrp from genp" 

apple 

apple 

apple 

ichat 

com.apple.apsd 

apple 

apple 

T84QZS65DQ.platformFamily 

T84QZS65DQ.platformFamily 

apple 

apple 
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my.company.VulnerableiPhoneApp 

mdsec-iPhone:/var/Keychains root# 

On a jailbroken phone, it is possible to dump all the keychain items for any 
application under the same caveats previously detailed with the Data 
Protection API. This is achieved by creating an app that is assigned to all the 
relevant keychain-access-groups and querying the keychain service to retrieve 
the protected items [18]. 

 

UIWebView is the iOS rendering engine for displaying text; it supports a 
number of different file formats, including: 

 HTML 
 PDF 
 RTF 
 Office Documents (doc, xls, ppt) 
 iWork Documents (Pages, Numbers and Keynote) 

The web view is built upon WebKit and uses the same core frameworks as 
Safari and MobileSafari. Consequently, a web view is also a web browser and 
can be used to fetch and display remote content. As would be expected of a 
web browser, web views also support JavaScript, allowing apps to perform 
dynamic, client-side scripting; however there is no configurable option to 
disable this feature within the API. Consequently, just like a traditional web 
application, iOS apps can be affected by Cross-Site Scripting (XSS). 

Cross-Site Scripting in iOS apps can often be much more severe than 
traditional XSS attacks such as session theft, as developers commonly expose 
native iOS functionality by implementing a JavaScript to Objective-C bridge; 
some examples MDSec have witnessed in practice include taking a photo, 
accessing geolocation and sending SMS/E-Mails from JavaScript. Cross-Site 
Scripting can occur in an iOS in any scenario where user supplied input is 
blindly populated in to a UIWebView without sanitisation. Often this can 
happen when a developer needs to use a user controlled objective C variable 
in a web view. The Skype iOS application was affected by such a vulnerability 
when  displaying  a  user’s  “Full  Name”  for  an  incoming  call.  The  Skype  app  used  
a   local   HTML   file   as   a   template   for   a   UIWebView  without  sanitising  the  user’s  
“Full   Name”   from   the   incoming   call.  In  this   instance  the   attacker could access 
the local file system due to the file being loaded in a local context; a proof of 
concept   exploit   was   developed   to   retrieve   and   upload   the   device’s   address  
book [19]. 

Consider the following simple example where a username from an objective C 
variable is added to the DOM of the UIWebView: 
NSString *javascript = [[NSString alloc] initWithFormat:@"var myvar=\"%@\";", 
username]; 
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[mywebView stringByEvaluatingJavaScriptFromString:javascript]; 

[mywebView loadRequest:[NSURLRequest requestWithURL:[NSURL 
fileURLWithPath:[[NSBundle mainBundle] pathForResource:@"index" 
ofType:@"html"]isDirectory:NO]]]; 

Firstly, the username is added to an NSString object that represents the 
JavaScript, this is then added to the DOM of the web view using the 
“stringByEvaluatingJavaScriptFromString”   method.   Whilst   there   is   also  
Cross-Site Scripting at this point as the JavaScript is directly evaluated by the 
UIWebView, the variable is also populated into the local HTML file stored in the 
bundle directory:  
<html> 

    <p> 

     Cross-Site Scripting in UIWebView: 

    </p> 

    <p> 

     This is an example of XSS: 

     <script>document.write(myvar);</script> 

    </p> 

</html> 

Much like the traditional Cross-Site Scripting attacks, the key to prevention is 
strictly sanitising all data on arrival into the iOS application and ensuring that 
data is suitably encoded when presenting it in the UIWebView. 

 

XML is widely used in mobile application deployments to represent data and 
the iPhone SDK provides two options for parsing XML, the NSXMLParser and 
libxml2. However, there are also a number of popular third party XML parser 
implementations. 

A   common   attack   often  associated  with  XML  parsers  is  the  “billion  laughs”   [20] 
attack in which the parser is supplied with a number of nested entities which if 
expanded can cause a Denial of Service. The default parsers included with the 
iOS SDK are not vulnerable to this attack; when a nested entity is detected 
the NSXMLParser will raise an NSXMLParserEntityRefLoopError exception, 
while   the   libxml2   parser   will   throw   an   error   stating   “Detected   an   entity  
reference  loop”. 

Another common attack scenario with XML parsers is the parsing of external 
XML entities. While parsing of external XML entities is not enabled by default 
on the NSXMLParser, it is enabled by default if the developer uses the 
alternate LibXML2 parser. To enable the parsing of external entities with 
NSXMLParser, the developer must set the 
setShouldResolveExternalEntities option which causes the delegate 
method  foundExternalEntityDeclarationWithName to be invoked when an 
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entity is found. 

A simple, vulnerable NSXMLParser implementation might look something like 
the following: 
#import "XMLParser.h" 

@implementation XMLParser 

- (void)parseXMLStr:(NSString *)xmlStr { 

    BOOL success; 

    NSData *xmlData = [xmlStr dataUsingEncoding:NSUTF8StringEncoding]; 

    NSXMLParser *addressParser = [[NSXMLParser alloc] initWithData:xmlData]; 

    [addressParser setDelegate:self]; 

    [addressParser setShouldResolveExternalEntities:YES]; 

    success = [addressParser parse]; 

} 

 

- (void)parser:(NSXMLParser *)parser didStartElement:(NSString *)elementName 
namespaceURI:(NSString *)namespaceURI qualifiedName:(NSString *)qName 
attributes:(NSDictionary *)attributeDict {} 

 

- (void)parser:(NSXMLParser *)parser foundCharacters:(NSString *)string {} 

- (void)parser:foundExternalEntityDeclarationWithName:publicID:systemID {} 

 

- (void)parser:(NSXMLParser *)parser parseErrorOccurred:(NSError *)parseError{ 

    NSLog(@"Error %i, Description: %@", [parseError code], 

          [[parser parserError] localizedDescription]); } 

@end 

The developer has enabled the parsing of external entities by setting the 
parser   option   “setShouldResolveExternalEntities”.   When   the  
implementation is called, the parser will attempt to resolve the entity: 
NSString *xmlStr = @"<?xml version=\"1.0\" encoding=\"ISO-8859-1\"?>\ 

        <!DOCTYPE foo [  \ 

                       <!ELEMENT foo ANY > \ 

                       <!ENTITY xxe SYSTEM \"http://192.168.0.7/hello\"> \ 

        ]> \ 

        <foo>&xxe;</foo>"; 

         

XMLParser *xp = [[XMLParser alloc] init]; 

[xp parseXMLStr:xmlStr]; 

When the parser attempts to resolve the entity, it will force a HTTP request 
from the device to the web server: 
bash-3.2# nc -lvp 80 

listening on [any] 80 ... 

http://192.168.0.7/hello/
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192.168.0.2: inverse host lookup failed: Unknown host connect to [192.168.0.7] 
from (UNKNOWN) [192.168.0.2] 49287 GET /hello HTTP/1.0 

Host: 192.168.0.7 

Accept-Encoding: gzip 

An implementation of the same attack vector using the libxml2 parser might 
look like the following: 
#import <libxml/xmlmemory.h> 

@implementation LibXml2 

-(BOOL) parser:(NSString *)xml { 

xmlDocPtr doc = xmlParseMemory([xml UTF8String], [xml 
lengthOfBytesUsingEncoding:NSUTF8StringEncoding]); 

 

xmlNodePtr root = xmlDocGetRootElement(doc); 

} 

@end 

In   this   example,   the   external   entity   is   parsed   when   the   “xmlParseMemory”  
method is called on the XML string and will result in an outbound HTTP 
connection from the device. In other circumstances, developers should be 
aware   that   it   may   also   be   possible   to   open   local   files   using   the   “file://”  
protocol handler, under the constraints of the sandbox. 

 

iOS apps will typically need to store some application data client-side; one of 
the simplest ways to achieve this is to use a SQLite data store. Much like when 
SQL is used within web applications, if the statement is not formed correctly it 
can lead to SQL injection. While in most circumstances this has little impact as 
the data store is client-side, it is an exploitable condition if untrusted data 
supplied by a malicious user is retrieved from the server . To perform data 
access on client-side SQLite databases, iOS provides the built-in SQLite data 
library. If using SQLite, the application will be linked to the 
“libsqlite3.dylib”  library.   

Similarly to traditional web applications, iOS app SQL injection occurs when 
un-sanitised user input is used to construct a dynamic SQL statement. In 
order to compile a SQL statement, the statement must first be defined as a 
constant character array and passed to one of the SQLite prepare methods.  

Consider the following example of a social networking application that reads 
multiple   users’   status  messages   and stores the results for offline viewing in a 
SQLite database. The application reads from multiple user feeds and renders a 
link  to  the  user’s  profile  and  their  display  name  in  the  app.  The  following  code  
example shows a dynamically created SQLite statement that is executed when 
the  user’s  message  feed  is  read: 
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sqlite3 *database; 

sqlite3_stmt    *statement; 

if(sqlite3_open([databasePath UTF8String], &database) == SQLITE_OK) 

{         

    NSString *sql = [NSString stringWithFormat:@"INSERT INTO messages VALUES('1', 
'%@','%@','%@')", msg, user, displayname]; 

    const char *insert_stmt = [sql UTF8String]; 

    sqlite3_prepare_v2(database, insert_stmt, -1, &statement, NULL); 

    if (sqlite3_step(statement) == SQLITE_DONE) 

In the above code excerpt, the developer first opens the SQLite database, 
stored   in   the   “databasePath”   variable.   If   the   database   was   successfully  
opened, an NSString object is initialised to create a dynamic SQL statement 
using the unsanitised, attacker-controlled   “msg”,   “user”   and   “displayname”  
variables. The SQL query is then converted to a constant character array and 
compiled   as   a   SQL   statement   using   the   “sqlite3_prepare_v2”   method.  
Finally,  the  SQL  statement  is  executed  using  the  “sqlite3_step”  method. 

As the parameters that are used to construct the statement originate from the 
user, the resultant statement can be user controlled. For example, consider a 
malicious user setting a status message as follows: 
Check out my cool site http://mdattacker.net', 'Goodguy', 'Good guy');/* 

This would result in the following SQL query being executed: 
INSERT INTO messages VALUES('1', 'Check out my cool site http://mdattacker.net', 
'Goodguy', 'Good guy');/*','originaluser','Original User'); 

Consequently, the attacker is able to control the subsequent fields in the query 
and make the message appear as though it originated from another user.  

The resolution is similar to SQL injection prevention in traditional applications; 
the query structure should be defined using bind variables and parameterised 
queries. SQLite provides the sqlite3_bind_text function for binding text 
values to prepared statements. The previous example can be resolved as 
follows: 
const char  *insert_stmt  =  “INSERT  INTO  messages  VALUES(‘1’,  ?,  ?,  ?)”;; 

sqlite3_prepare_v2(database, insert_stmt, -1, &statement, NULL); 

sqlite3_bind_text(&insert_stmt, 1, [msg UTF8String], -1, SQLITE_TRANSIENT); 

sqlite3_bind_text(&insert_stmt, 2, [user UTF8String], -1, SQLITE_TRANSIENT); 

sqlite3_bind_text(&insert_stmt, 3, [displayname UTF8String], -1, 
SQLITE_TRANSIENT); 

if (sqlite3_step(statement) == SQLITE_DONE) 

Using the parameterised query, the msg variable will be bound in to the bind 
variable in the compiled statement and cannot be escaped. 

 

http://mdattacker.net/
http://mdattacker.net/
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Filesystem interaction in iOS can be achieved using the NSFileManager or 
NSFileHandle classes. While the NSFileManager class is explicitly used for the 
filesystem, NSFileHandle also allows access to sockets, pipes and devices. 

The NSFileManager class offers robust file system interaction with a number 
of instance methods to perform file operations, including: 

Instance Methods Description 

fileExistsAtPath Determines if a file exists. 

contentsEqualAtPath Compares the contents of two files. 

isReadableFileAtPath, 
isWritableFileAtPath, 
isExecutableFileAtPath, 
isDeletableFileAtPath  

Determines if a file is readable, writeable, 
executable or deletable. 

moveItemAtPath Renames the specified file. 

copyItemAtPath Copies a file to the specified destination. 

remoteItemAtPath Deletes the specified file. 

createSymbolicLinkAtPath Creates a symbolic link to the specified 
file. 

The NSFileHandle class provides a more advanced means of interacting with 
a file descriptor. This class is closer to the traditional C file operations and 
provides a means to seek to offsets within the file and leaves the responsibility 
of closing the handle to the developer. 

Both the NSFileManager and NSFileHandle classes can be affected by 
directory traversal issues in a scenario where by the attacker can control  part 
of the filename. 

Consider the following implementation to read a file ’s contents using both 
classes: 
- (NSData*) readContents:(NSString*)location 

{ 

    NSFileManager *filemgr; 

    NSData *buffer; 

    filemgr = [NSFileManager defaultManager]; 

    buffer = [filemgr contentsAtPath:location]; 

    return buffer; 

} 
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- (NSData*) readContentsFH:(NSString*)location 

{ 

    NSFileHandle *file; 

    NSData *buffer;   

    file = [NSFileHandle fileHandleForReadingAtPath:location]; 

    buffer = [file readDataToEndOfFile]; 

    [file closeFile]; 

    return buffer; 

} 

In the above methods, the developer has made no attempt to sanitise the 
location string prior to opening the file, leading to a directory traversal 
vulnerability  using  traditional  traversal  strings  such  as  “../../”: 
NSString *fname = @"../Documents/secret.txt"; 

NSString *sourcePath = [[NSString alloc] initWithFormat:@"%@/%@", [[NSBundle 
mainBundle] resourcePath], fname];         

NSLog(@"####### PATH = %@", sourcePath); 

NSString *contents = [[NSString alloc] initWithData:[fm 
readContentsFH:sourcePath] encoding:NSUTF8StringEncoding]; 

NSLog(@"####### File contents: %@", contents); 

In the above example, the fname variable originates from a user controlled 
string allowing the attack to traverse outside of the resource bundle directory 
and in to the Documents directory: 
2012-02-11 15:58:18.029 VulnerableiPhoneApp[3291:707] ####### PATH = 
/var/mobile/Applications/E84D97BB-79E7-4603-93D3-
09A88CB4FA71/VulnerableiPhoneApp.app/../Documents/secret.txt 

2012-02-11 15:58:18.040 VulnerableiPhoneApp[3291:707] ####### File contents: 
Password=abc123 

Developers should also be aware of the risks of mixing Objective-C and C, in 
particular when performing file operations. Objective C does not use null bytes 
to terminate a string in an NSString object. If a developer uses an NSString 
object with a user controlled file path and later file operations are performed in 
C, the attacker may be able to terminate the string early. For example, 
consider the following: 
NSString *fname = @"../Documents/secret.txt\0"; 

NSString *sourcePath = [[NSString alloc] initWithFormat:@"%@/%@.jpg", [[NSBundle 
mainBundle] resourcePath], fname]; 

char line[1024]; 

FILE *fp = fopen([sourcePath UTF8String], "r"); 

fread(line, sizeof(line), 1024, fp); 

NSString *contents = [[NSString alloc] initWithCString:line];     

fclose(fp); 

In the above example the developer expects the string to provide a location to 
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a JPG file, and attempts to restrict the extension by manually defining it within 
the initialisation of the sourcePath variable. However, the null byte in the 
fname variable causes the string to be terminated early when converted to a C 
string, allowing the attacker to open any file type. 

 

Apple provides a means of accessing the device ’s geo-location features using 
the Core Location framework. Device coordinates can be determined using 
GPS, cell tower triangulation or WiFi network proximity. When using geo-
location data, there are two main privacy concerns that developers should 
consider: how and where data is logged and the requested accuracy of 
coordinates. 

Core Location is event driven and an app looking to receive location 
information must register to receive event updates. Event updates can provide 
longitude and latitude coordinates for use in the app. As previously mentioned, 
an important consideration when reviewing an app is to evaluate how this 
coordinate data is stored. If the app must store coordinate information client-
side, the developer should protect this data using one of the previously 
detailed   methods.   However,   to   avoid   the   app   being   used   to   track   a   user’s  
movements, it is generally recommended that location information is not 
stored on the device. In addition to client-side logging, if the app passes 
coordinate information to a server, developers should ensure that if this 
information is logged, it is done so anonymously. 

Another consideration for developers when requesting event updates is the 
accuracy of the information they require. For example, if the app is used for 
satellite navigation, then it is likely to require very accurate location 
information. Whereas, an app that provides information about the closest 
restaurant does not need to be as accurate. Similarly to location logging, the 
accuracy of the coordinates raises privacy concerns and should be considered 
by developers when writing iOS applications. 

When using CLocationManager, an app can request accuracy using the 
CLLocationAccuracy class that offers the following constants: 

 kCLLocationAccuracyBestForNavigation 
 kCLLocationAccuracyBest 
 kCLLocationAccuracyNearestTenMeters 
 kCLLocationAccuracyHundredMeters 
 kCLLocationAccuracyKilometer 
 kCLLocationAccuracyThreeKilometers 
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Logging can prove a valuable resource for debugging during development, 
however in some cases it can leak sensitive or proprietary information, which 
is then cached on the device until the next reboot. Logging in objective C is 
typically performed using the NSLog method that causes a message to be sent 
to the Apple System Log. These console logs are not only accessible using the 
Xcode organiser application but by any app installed on the device, using the 
ASL library. 

In some cases jailbreaking a device will cause NSLog output to be redirected to 
syslog. In this scenario, it is possible that sensitive information may be stored 
on the file system in syslog. As such, best practice recommends that 
developers avoid using NSLog to log sensitive or proprietary information. 

The simplest way for developers to avoid compiling NSLog into production 
releases is to redefine it with a dummy pre-processor macro such as “#define  
NSLog(…)”. 

 

If an application is open, it is possible that it can be sent in to the background 
by a change in state, such as the user pressing the Home button or from an 
incoming call. When an application is suspended in the background, iOS will 
take   a   “snapshot”   of   the   app   and   store   it   in   the  application  caches  directory.  
When the application is reopened, the device will use the screenshot to create 
the appearance that the application loads instantly rather than the small 
amount of time it actually takes to reload the application and for it to become 
useable again. 

If any sensitive information is open in the application when it enters the 
background, the snapshot is written to the filesystem in clear text. However, 
the UIApplication delegate method applicationDidEnterBackground can 
be used to detect when an application is entering the background and modify 
the display accordingly. For example, if there are specific fields that contain 
sensitive information,   the   application   can   hide   these   using   the   “hidden”  
attribute: 
- (void)applicationDidEnterBackground:(UIApplication *)application { 

viewController.creditcardNumber.hidden = YES; 

} 

Conversely, when the application restarts, it can unhide these by doing the 
reverse in the applicationDidBecomeActive delegate: 
- (void)applicationDidBecomeActive:(UIApplication *)application { 

viewController.creditcardNumber.hidden = NO; 

}  
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Introduction 

iOS apps are typically resilient to classic memory corruption issues such as 
buffer overflows if the developers rely on Objective-C to perform memory 
allocations as the developer cannot specify fixed sizes for buffers. However, as 
previously mentioned, C can be intermingled in to iOS apps; it is not 
uncommon to see the use of external libraries or performance dependent code 
such as cryptography developed in C. These scenarios give rise to the 
traditional memory corruption vulnerabilities. There is however a small 
number of memory corruption issues that have transcended into Objective-C 
and are detailed below. 

 

Format String vulnerabilities are a class of memory corruption bug that arise 
through improper use of Objective-C methods that accept a format specifier. 
Vulnerable Objective-C methods include the following: 

 NSLog 
 [NSString stringWithFormat] 
 [NSString stringByAppendingFormat] 
 [NSString initWithFormat] 
 [NSMutableString appendFormat] 
 [NSAlert alertWithMessageText] 
 [NSAlert informativeTextWithFormat] 
 [NSException format] 
 [NSMutableString appendFormat] 
 [NSPredicate predicateWithFormat] 

Format string vulnerabilities arise when an attacker is able to provide the 
format specifier in part or as a whole to the relevant method. For example, 
consider the following: 
NSString *myURL=@"http://10.0.2.1/test"; 

NSURLRequest *theRequest = [NSURLRequest requestWithURL:[NSURL 
URLWithString:myURL]]; 

NSURLResponse *resp = nil; 

NSError *err = nil; 

NSData *response = [NSURLConnection sendSynchronousRequest: theRequest 
returningResponse:&resp error: &err]; 

NSString * theString = [[NSString alloc] initWithData:response 
encoding:NSASCIIStringEncoding]; 

NSLog(theString); 

In this example a request is made to a web server running on 10.0.2.1, the 
response is then stored in a NSData object, converted to a NSString and 
logged using NSLog. The documented usage of the NSLog function where 
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NSLog is a wrapper for NSLogv and args is a variable number of arguments is: 
void NSLogv ( 
   NSString *format, 
   va_list args 
); 

However, in this instance the developer has supplied only a single argument, 
allowing the attacker to specify the type of parameter that would be logged. 

Running the above example in a debugger, we can see how the format string 
vulnerability can be triggered using a simple HTTP web server response: 
bash-3.2# nc -lvp 80 

listening on [any] 80 ... 

10.0.2.2: inverse host lookup failed: Unknown host 

connect to [10.0.2.1] from (UNKNOWN) [10.0.2.2] 52141 

GET /test HTTP/1.1 

Host: 10.0.2.1 

User-Agent: fmtstrtest (unknown version) CFNetwork/548.0.4 Darwin/11.0.0 

Accept: */* 

Accept-Language: en-us 

Accept-Encoding: gzip, deflate 

Connection: keep-alive 

 

HTTP/1.1 200 OK 

Content-Type: text/html; charset=utf-8 

Content-Length: 16 

 

aaaa%x%x%x%x%x%x 

The HTTP response body is logged to NSLog and triggers the format string 
vulnerability, causing stack memory to be dumped to the console log, as 
shown below: 
(gdb) r 

Starting program: /private/var/root/fmtstrtest  

objc[8008]: Object 0x11f0b0 of class NSURL autoreleased with no pool in place - 
just leaking - break on objc_autoreleaseNoPool() to debug 

objc[8008]: Object 0x11e310 of class NSURLRequest autoreleased with no pool in 
place - just leaking - break on objc_autoreleaseNoPool() to debug 

objc[8008]: Object 0x11f540 of class NSThread autoreleased with no pool in place 
- just leaking - break on objc_autoreleaseNoPool() to debug 

2012-02-29 17:02:36.304 fmtstrtest[8008:303] aaaa124a600782fe5b84411f0b00 

Program exited normally. 

(gdb) 

Exploitation of traditional format string vulnerabilities can be accomplished 
using   the   “%n”   format   specifier,   allowing   an   attacker   to   write   to  an  arbitrary  
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memory address read from the stack. However, this format specifier is not 
available in Objective-C. Instead, iOS format string vulnerabilities can be 
exploited   using   the   “%@”   specifier   which   defines   an   Objective-C object. 
Consequently, this may allow an arbitrary function pointer to be called. 

Consider the following example (taken from [7]) that simply passes the value 
from argv[1] to NSLog: 
int main(int argc, const char* argv[]) 

{ 

    NSAutoreleasePool *pool =[[NSAutoreleasePool alloc] init]; 

    NSString *n = [[NSString alloc] initWithCString:argv[1]]; 

    NSLog(n); 

    [pool drain]; 

    return 0; 

} 

Popping enough data to reach the user controlled part of stack memory, we 
can see how the %@ specifier causes a crash when dereferencing our pointer:  
(gdb) r 
bbbbbbbbbbbbbbbb%x%x%x%x%x%x%x%%x%x%x%x%x%x%x%%x%x%x%x%x%x%x%%x%x%x%x%x%x%x%%x%x%
x%x%x%x%x%%x%x%x%x%x%x%x%%x%x%x%x%x%x%x%%x%x%x%x%x%x%x%%x%x%x%x%x%x%x%x%x%x%@ 

Starting program: /private/var/root/fmtstrtest 
bbbbbbbbbbbbbbbb%x%x%x%x%x%x%x%%x%x%x%x%x%x%x%%x%x%x%x%x%x%x%%x%x%x%x%x%x%x%%x%x%
x%x%x%x%x%%x%x%x%x%x%x%x%%x%x%x%x%x%x%x%%x%x%x%x%x%x%x%%x%x%x%x%x%x%x%x%x%x%@ 

 

Program received signal EXC_BAD_ACCESS, Could not access memory. 

Reason: KERN_INVALID_ADDRESS at address: 0x62626262 

0x320f8fb6 in ?? () 

(gdb) 

However in most situations Objective-C will use the heap for storing objects 
and therefore in practice, exploitation is unlikely. Further information on 
exploiting format string vulnerabilities can be found in [7]. 

 

Object use-after-free vulnerabilities occur when a reference to an object still 
exists after the object has been freed.  If this freed memory is reused and an 
attacker is able to influence the reused memory, in some circumstances it may 
be possible to gain arbitrary code execution. Exploitation of use after free 
vulnerabilities in Objective-C is documented in-depth within [21]. Consider the 
following example: 
MDSec *mdsec = [[MDSec alloc] init]; 

[mdsec release]; 

[mdsec echo: @"MDSec!"]; 

In the example above, an instance of the MDSec class is first created then 
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freed using release. However after the object has been released, the echo 
method is called on the previously freed pointer. In this instance a crash is 
unlikely, as the memory will not have been corrupted through reallocation or 
deconstruction. 

However, consider an example whereby the heap has been sprayed with user-
controlled data: 
MDSec *mdsec = [[MDSec alloc] init]; 

[mdsec release]; 

for(int i=0; i<=50000; i++) { 

    char *buf  = strdup(argv[1]); 

} 

[mdsec echo: @"MDSec!"]; 

Running the above example will cause an access violation when the echo 
method is called due to the reuse of heap memory used by the previously 
freed object instance: 
(gdb) r AAAA 

Starting program: /private/var/root/objuse AAAA 

 

Program received signal EXC_BAD_ACCESS, Could not access memory. 

Reason: KERN_INVALID_ADDRESS at address: 0x41414149 

0x320f8fbc in ?? () 

(gdb) 

The release of iOS 5 saw the introduction of Automatic Reference Counting 
(ARC) (See section 3.4) which passes the responsibility of memory 
management from the developer to the compiler. Consequently, for apps using 
ARC there is likely to be a significant reduction in the number of use-after-free 
issues as the developer no longer bears the responsibility for releasing or 
retaining objects. 
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In conclusion, thanks to the increase in adoption of mobile computing, mobile 
security has never been so important. With the growing use of mobile apps 
both in the consumer and enterprise markets, mobile app security will 
continue to come under increasing scrutiny. 

Perhaps the two most important issues in mobile app security are how data 
transport and storage are implemented as these pose the greatest risk to 
individuals and businesses. While there are many API specific injection style 
attacks and memory corruption flaws the attack surface often relies on a 
compromised server or insecure transport mechanisms that allow an attacker 
to manipulate communications to the device. 

The security features offered by the platform provide a growing number of 
hurdles that an attacker must overcome to successfully exploit memory 
corruption flaws on the device. Indeed memory corruption flaws in third party 
apps pose little risk to the platform unless these can be combined with 
vulnerabilities in iOS itself. 

Going forwards, while it is unlikely mobile app vulnerabilities will disappear in 
the near future; the advent of mobile security projects such as that of 
OWASP’s [22] will raise the awareness of mobile security issues and hopefully 
help raise the bar in mobile development. Organisations looking to implement 
secure mobile applications should integrate security assessments throughout 
the development lifecycle and ensure developers and QA teams receive 
sufficient security education.  
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During iOS application assessments, it is often useful to have a base line of 
compliance that an app should conform to, providing guidelines not only for 
security evaluators but also developers. Below, MDSec provides a possible 
platform to guide iOS assessments: 

Issue Compliance 

Compiler Protection 

Application is compiled with PIE PASS/FAIL 

Application is compiled with stack cookies  PASS/FAIL 

Application uses Automatic Reference Counting  PASS/FAIL 

Transport Security 

Application rejects self-signed certificates: 
allowsAnyHTTPSCertificateForHost / 
continueWithoutCredentialForAuthenticationChallenge 

PASS/FAIL 

Application rejects expired certificates: 
kCFStreamSSLAllowsExpiredCertificates  

PASS/FAIL 

Application validates root certificates: 
kCFStreamSSLAllowsAnyRoot 

PASS/FAIL 

Application validates certificate chain: 
kCFStreamSSLValidatesCertificateChain 

PASS/FAIL 

Inter Process Communication 

Application validates the source bundle : handleOpenURL PASS/FAIL 

Application validates content of IPC parameters  PASS/FAIL 

Data Storage 

Application encrypts data written with NSData  PASS/FAIL 

Application encrypts data written with NSFileManager PASS/FAIL 

Keychain 

Keychain items are protected using the Data Protection API : 
SecItemAdd / SecItemUpdate  

PASS/FAIL 

UIWebViews 

Application does not load UIWebView from a local resource  PASS/FAIL 
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Application validates user controlled content populated in to a 
UIWebView: stringByEvaluatingJavaScriptFromString  

PASS/FAIL 

XML Processing 

Application disables external entities with NSXMLParser: 
setShouldResolveExternalEntities  

PASS/FAIL 

Application disables external entities with LibXML2  PASS/FAIL 

Application builds XML with user controllable strings  PASS/FAIL 

SQL 

Application uses parameterized queries for data access : 
sqlite3_prepare_v2 

PASS/FAIL 

File System 

Application sanitises path for traversal characters PASS/FAIL 

Application validates NSString paths for null bytes  PASS/FAIL 

GeoLocation 

Application uses suitable level of accuracy: CLLocationAccuracy PASS/FAIL 

Application does not log location data client-side PASS/FAIL 

Logging 

NSLog is disabled in production builds  PASS/FAIL 

Custom logs contain no sensitive data  PASS/FAIL 

Backgrounding 

Application removes sensitive data from view when 
backgrounded: applicationDidEnterBackground 

PASS/FAIL 

Memory Corruption 

Application uses correct format specifiers for vulnerable functions  PASS/FAIL 

Application does not reference freed objects  PASS/FAIL 
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MDSec, the company behind the Web   Application   Hacker’s   Handbook, is a 
global authority with a passion for information security. This has helped 
establish our role in defining, formalising and expanding information 
security through publications, tools and worldwide training. As a vendor-
neutral organisation with no external investment, we can draw on our team's 
years of blended experience to provide security advice on technical and non-
technical subjects. 

The company was founded in 2011 and has seen an explosive growth in its 
client base which includes prestigious companies across all sectors and 
throughout the world. If you would like to find out how MDSec can help 
improve the security of your organisation, please feel free to contact 
sales@mdsec.co.uk for a friendly and open discussion. 

 
The author would like to thank Marcus Pinto of MDSec, Ollie Whitehouse of Recx, 
and Hubert Seiwert for advice and recommendations during the development 
and review of this whitepaper. 

 

mailto:sales@mdsec.co.uk
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