

Whitepaper
iOS Application (In)Security

May 2012

Prepared by: Dominic Chell

E-Mail: research@mdsec.co.uk

MDSec Consulting Ltd

 iOS Application (In)Security

P ub l ic R e le a s e
Page 2 of 54

v 1.0

Contents
 Introduction... 4 1.

 Background ... 5 2.

 iOS Security Features Primer ... 5 2.1.

Code Signing .. 5

Exploit Mitigation Features ... 5

Sandboxing .. 6

Encryption .. 7

 iOS Application Overview .. 7 2.2.

 Previous Work .. 7 2.3.

 Black Box Assessment .. 8 3.

Introduction ... 8

 Decrypting AppStore Binaries .. 8 3.1.

 Locating the Position Independent Executable 10 3.2.

 Identifying the use of Stack Smashing Protection 12 3.3.

 Identifying the use of Automatic Reference Counting 12 3.4.

 Inspecting the Binary .. 13 3.5.

 Manipulating the Runtime .. 14 3.6.

Example: Bypassing Jailbreak Detection .. 14

 Defending the Binary .. 17 3.7.

 Conclusion ... 19 3.8.

 Auditing Insecure API Usage ... 20 4.

Introduction ... 20

 Evaluating Transport Security .. 20 4.1.

 Abusing Protocol Handlers ... 25 4.2.

 Locating Insecure Data Storage ... 29 4.3.

 Attacking the iOS Keychain ... 33 4.4.

 Conducting Cross-Site Scripting (XSS) through UIWebViews 36 4.5.

iOS Application (In)Security

P ub l ic R e le a s e
Page 3 of 54

v 1.0

 Attacking XML Processors .. 37 4.6.

 SQL Injection ... 39 4.7.

 Filesystem Interaction... 41 4.8.

 Geo-Location.. 43 4.9.

 Logging ... 44 4.10.

 Backgrounding ... 44 4.11.

 Memory Corruption Issues .. 45 5.

Introduction ... 45

 Format Strings ... 45 5.1.

 Object Use-after-Free ... 47 5.2.

 Conclusions ... 49 6.

 iOS App Compliance Checklist ... 50 7.

 About MDSec ... 52 8.

 Acknowledgements... 52 9.

 References... 53 10.

 iOS Application (In)Security

P ub l ic R e le a s e
Page 4 of 54

v 1.0

In the last year, MDSec’s consultants have performed an increasing number of
security assessments of iOS applications and their supporting architecture
where data security is paramount, specifically the retail/business banking
sector.

Smartphones have become commonplace not only in the consumer markets
but now also in the enterprise. Smartphones combine the traditional mobile
features with computer like functionality. The increased processing power and
memory of the modern smartphone has led to a surge in mobile application
development as developers look to take advantage of the feature rich offerings
of the platform. Application development is indeed now so popular that Apple’s
trademark slogan “There’s an app for that” is bordering on reality.

A growing trend that we have witnessed over 2011 has been an increase in
demand for security assessments of mobile applications, with iOS and Android
apps being the front-runners. Market research conducted by NetApplications
[1] shows that iOS devices control approximately 52% of the global mobile
market.

Drawn from MDSec’s hands-on training course on iOS Application Security, the
focus of this whitepaper is to document the categories of issues that typically
affect iOS applications and provide a single reference point for not only
security assessors but also developers wishing to adhere to security best
practice.

 iOS Application (In)Security

P ub l ic R e le a s e
Page 5 of 54

v 1.0

Before discussing the security issues that affect iOS applications, it is
important to have a fundamental understanding of the security features of the
platform, not only to provide context to application vulnerabilities but also to
highlight opt-in features that an application can take advantage of.

The core security features of the iOS platform can be summarised as:

 Code Signing
 Generic native language exploit mitigations

o Address Space Layout Randomisation
o Non executable memory
o Stack Smashing Protection

 Process level sandboxing
o Also known as Seat Belt

 Data at rest encryption

A comprehensive review of these features can be found within the whitepaper
“Apple iOS 4 Security Evaluation” by Dino Dai Zovi [2] which provided much of
the foundation for the details discussed in this section.

Code Signing

Code signing is a runtime security feature of the platform that attempts to
prevent unauthorised applications running on the device by validating the
application signature each time it is executed. Additionally, applications may
also only execute code signed by a valid, trusted signature.

For an application to be run on the device, it must first be signed by a trusted
certificate. Developers can install trusted certificates on a device through a
provisioning profile signed by Apple. The provisioning profile contains the
embedded developer certificate and set of entitlements that the developer
may grant to applications. In production applications, all code must be signed
by Apple, this is performed during the AppStore submission process. This
process allows Apple some degree of control over apps and to govern the APIs
and functionality used by developers. For example, Apple looks to prevent
apps using private APIs or downloading to installing executable code [3].

Exploit Mitigation Features

Address Space Layout Randomisation (ASLR) [4] is a security feature that
attempts to increase the complexity of vulnerability exploitation by
randomising where data and code is mapped in a processes address space.
ASLR was first introduced to iOS in version beta 4.3 and since inception has
gradually improved with each release. The primary weakness in the ASLR

 iOS Application (In)Security

P ub l ic R e le a s e
Page 6 of 54

v 1.0

implementation was the lack of relocation of the dyld, this was addressed with
the release of iOS 5.0. Applications can have ASLR applied in two different
flavours, either partial ASLR or full ASLR depending on whether they have
been compiled with support for Position Independent Execution (PIE). In a full
ASLR scenario, all the application memory regions are randomised and iOS will
load a PIE enabled binary at a random address each time it is executed. An
application with partial ASLR will load the base binary at a fixed address and
use a static location for the dynamic linker (dyld). An in-depth assessment of
ASLR in iOS has been conducted by Stefan Esser and is recommended reading
for those looking to gain a greater understanding [5].

ASLR is designed to frustrate exploitation due to the lack of knowledge an
attacker will have of the process layout in memory and thus the addresses
they need to target. However, there are a number of techniques that can
weaken its effectiveness. The most common of these techniques is memory
revelation. This is where a separate vulnerability is used to leak or confirm
memory layout to an attacker prior exploitation of a vulnerability that will yield
arbitrary code execution.

In an attempt to further mitigate exploitation of native language
vulnerabilities, iOS combines ASLR with the implementation of a “W^X” non-
executable memory policy, meaning that memory pages cannot be marked as
writeable and executable at the same time. As part of this policy, executable
memory pages that are marked as writeable cannot also be later marked back
to executable. In many ways this is similar to the Data Execution Protection
(DEP) features implemented by Microsoft Windows, Linux and Mac OS X
desktop OS’. While non-executable memory alone can be trivially bypassed
using Return Orientated Programming (ROP) based payloads, the complexity
of exploitation is significantly increased when compounded with ASLR and
Mandatory Code Signing.

iOS applications can look to add additional exploit mitigation at compile time
through stack smashing protection. Stack canaries in particular introduce
some protection against buffer overflows by placing a random, known value
before the local variables. The stack canary is checked upon return of the
function. If an overflow occurs and the canary is corrupted, the application is
able to detect and protect against the overflow.

Sandboxing

All third party applications on iOS run within a sandbox; this is a self-
contained environment that isolates applications not only from other
applications but also the operating system. While applications all run as the
“mobile” operating system user, they are contained within a unique directory
on the filesystem and separation is maintained by the XNU Sandbox kernel
extension. The operations that can be performed in the sandbox are governed

 iOS Application (In)Security

P ub l ic R e le a s e
Page 7 of 54

v 1.0

by the seatbelt profile. Third party applications are assigned the “container”
profile which will generally limit file access to the application home directory,
allow read access to media, read and write to the address book as well as
unrestricted access to outbound network connections, with the exception of
launchd’s network sockets. See “The Apple Sandbox” [6] for recommended
further reading.

Encryption

By default, all data on the iOS filesystem is encrypted using block-based
encryption (AES) with the File System Key, which is stored on the flash. The
filesystem is encrypted only at rest; when the device is turned on the
hardware based crypto accelerator unlocks the filesystem.

In addition to the hardware encryption, individual files and keychain items can
be encrypted using the Data Protection (DP) API that uses a key derived from
the device passcode. Consequently, when the device is locked, content
encrypted using the DP API will be inaccessible unless cached in memory.
Third party applications wishing to encrypt sensitive data should employ the
Data Protection API to do so. However consideration should be given for
background processes how they will behave if the at-rest becomes unavailable
due to the device becoming locked.

Third party iOS applications use the Cocoa Touch API to interact with the
device. This framework provides a means of abstraction from the OS and is
written in Objective-C, a superset of C.

Development of iOS applications can be performed using the freely available
XCode IDE for OS X. XCode provides a simulator for compiling and running
applications, however it should be noted that this is simulation rather than
emulation. In order to run the application on a non-jailbroken device, you
must be a member of the subscription-based iOS Developer Program and have
a development certificate.

To our knowledge, there are two noteworthy presentations on evaluating iOS
application security. Both of these presentations are recommended reading for
those performing iOS application assessments:

 “Auditing iPhone and iPad Applications” by Ilja van Sprundel [7]
 “Secure Development on iOS” by David Thiel [8]

 iOS Application (In)Security

P ub l ic R e le a s e
Page 8 of 54

v 1.0

Introduction

A common assumption made by organisations is that an application’s inner
workings are in some way protected from an attacker who does not have
access to the application source code. In practice, it is a relatively
straightforward process for an attacker to access the decrypted application,
locate the key methods it contains, hook into them at runtime, and alter
variables and execution flow. This generally requires the following steps:

Apps originating from the AppStore are protected by Apple’s binary encryption
scheme. These apps will be decrypted at runtime by the kernel’s mach loader;
as such recovering the decrypted files is a relatively straightforward process .
Removing this encryption allows the attacker to get a greater understanding of
how the binary works, the internal class structure and to get the binary in a
suitable state for reverse engineering.

Removing the AppStore encryption can be achieved by letting the loader
decrypt the app then using the debugger to dump out the decrypted image.
This process has been automated by two applications available via Cydia,
namely Crackulous [9] and AppCrack. However, the process can also be
performed manually using GDB.

Encrypted binaries can be identified by the value in the “cryptid” field of the
LC_ENCRYPTION_INFO [10] load command, for example:

mdsec-iPhone:/var/mobile/Applications/E938B6D0-9ADE-4CD6-83B8-
712D0549426D/99Bottles.app root# otool -l 99Bottles | grep -A 4
LC_ENCRYPTION_INFO

 cmd LC_ENCRYPTION_INFO

 cmdsize 20

 cryptoff 4096

 cryptsize 12288

 cryptid 1

In some instances, apps may be compiled for multiple architectures; these are
known as fat binaries. The architectures an app is compiled for can again be
identified using otool:
mdsec-iPhone:/var/mobile/Applications/68E3B644-9203-4B8F-A707-
A52E23B793B6/Kik.app root# otool -f Kik

Fat headers

fat_magic 0xcafebabe

nfat_arch 2

architecture 0

 iOS Application (In)Security

P ub l ic R e le a s e
Page 9 of 54

v 1.0

 cputype 12

 cpusubtype 6

 capabilities 0x0

 offset 4096

 size 865152

 align 2^12 (4096)

architecture 1

 cputype 12

 cpusubtype 9

 capabilities 0x0

 offset 872448

 size 867488

 align 2^12 (4096)

In the above example cputype 12 with cpusubtype 6 corresponds to ARM v6
and cputype 12 with cpusubtype 9 is ARM v7; if required a binary can be
“thinned” to the desired architecture using lipo.

To retrieve the decrypted segment of the app, we must first let the loader run;
this can be achieved by setting a breakpoint on “doModInitFunctions” which
is called after all objects have been loaded:
mdsec-iPhone:/var/mobile/Applications/E938B6D0-9ADE-4CD6-83B8-
712D0549426D/99Bottles.app root# gdb --quiet -e ./99Bottles

Reading symbols for shared libraries . done

(gdb) set sharedlibrary load-rules ".*" ".*" none

(gdb) set inferior-auto-start-dyld off

(gdb) set sharedlibrary preload-libraries off

(gdb) rb doModInitFunctions

Breakpoint 1 at 0x2fe0ce36

<function, no debug info>
__dyld__ZN16ImageLoaderMachO18doModInitFunctionsERKN11ImageLoader11LinkContextE;

(gdb) r

Starting program: /private/var/mobile/Applications/E938B6D0-9ADE-4CD6-83B8-
712D0549426D/99Bottles.app/99Bottles

Breakpoint 1, 0x2fe0ce36 in
__dyld__ZN16ImageLoaderMachO18doModInitFunctionsERKN11ImageLoader11LinkContextE
()

(gdb)

At this stage, the loader has decrypted the app and we can dump the clear
text segments directly from memory. The location of the encrypted segment is
specified by the cryptoff value in the LC_ENCRYPTION_INFO load command,
which gives the offset relative to the header. Consequently, the encrypted
segment begins at offset 0x2000 (cryptoff of 0x1000 (4096) plus the start
address of 0x1000). The address range to dump memory is simply the address

 iOS Application (In)Security

P ub l ic R e le a s e
Page 10 of 54

v 1.0

of the start of the encrypted segment, plus the size of the encrypted segment
that is specified by the cryptsize (12288, 0x3000), resulting in an end address
of 0x5000 (0x2000 + 0x3000). The decrypted segment can be retrieved using
the “dump memory” GDB command:
(gdb) dump memory 99bottles.dec 0x2000 (0x2000 + 0x3000)

(gdb) kill

Kill the program being debugged? (y or n) y

(gdb) q

mdsec-iPhone:/var/mobile/Applications/E938B6D0-9ADE-4CD6-83B8-
712D0549426D/99Bottles.app root# ls -al 99bottles.dec

-rw-r--r-- 1 root mobile 12288 Mar 4 16:31 99bottles.dec

The resultant file should be exactly the same size as our cryptsize value. The
decrypted section can then be written to the original binary, replacing the
original encrypted segment:
mdsec-iPhone:/var/mobile/Applications/E938B6D0-9ADE-4CD6-83B8-
712D0549426D/99Bottles.app root# dd seek=4096 bs=1 conv=notrunc
if=./99bottles.dec of=99Bottles

12288+0 records in

12288+0 records out

12288 bytes (12 kB) copied, 0.471737 s, 26.0 kB/s

Finally, the cryptid value must be set to 0 to denote that the file is no longer
encrypted and the loader should not attempt to decrypt it. Using vbindiff,
search for the location of the LC_ENCRYPTION_INFO command; this can be
found by searching for the hex bytes 2100000014000000. From this location
flip the cryptid value to 0, which is located 16 bytes in advance of the
cmdsize (0x21000000):

Figure 1 - Hex dump of LC_ENCRYPTION_INFO

At this stage, the app should be decrypted and will run as normal once code
signed again.

Position Independent Executable (PIE) is an exploit mitigation security feature
that allows an application to take full advantage of ASLR. In order for this to
happen, the app must be compiled using the “–fPIE –pie” flag;; using XCode
this can be enabled/disabled using the “Generate Position-Dependent Code”
option from the compiler code generation build setting. As previously
mentioned, an app compiled without PIE will load the executable at a fixed
address; consider the following simple example that will print the address of

 iOS Application (In)Security

P ub l ic R e le a s e
Page 11 of 54

v 1.0

the main function:
int main(int argc, const char* argv[])

{

 NSLog(@"Main: %p\n", main);

 return 0;

}

Compiling the above application without PIE and running on the iPhone, we
can see that despite system wide ASLR the main executable is loaded at a
fixed address:
mdsec-iPhone:~ root# for i in `seq 1 5`; do ./nopie-main;done

2012-03-01 16:56:17.772 nopie-main[8943:707] Main: 0x2f3d

2012-03-01 16:56:17.805 nopie-main[8944:707] Main: 0x2f3d

2012-03-01 16:56:17.837 nopie-main[8945:707] Main: 0x2f3d

2012-03-01 16:56:17.870 nopie-main[8946:707] Main: 0x2f3d

2012-03-01 16:56:17.905 nopie-main[8947:707] Main: 0x2f3d

Recompiling the same application with PIE, we can see the app now loads the
main executable at a dynamic address:
mdsec-iPhone:~ root# for i in `seq 1 5`; do ./pie-main;done

2012-03-01 16:57:32.175 pie-main[8949:707] Main: 0x2af39

2012-03-01 16:57:32.208 pie-main[8950:707] Main: 0x3bf39

2012-03-01 16:57:32.241 pie-main[8951:707] Main: 0x3f39

2012-03-01 16:57:32.277 pie-main[8952:707] Main: 0x8cf39

2012-03-01 16:57:32.310 pie-main[8953:707] Main: 0x30f39

From a blackbox perspective, the presence of PIE can be verified using the
otool application, which provides functionality to inspect the Mach-O header.
For example, comparing the two binaries above we can easily detect the PIE
executable:
mdsec-iPhone:~ root# otool -hv pie-main nopie-main

pie-main:

Mach header

 magic cputype cpusubtype caps filetype ncmds sizeofcmds flags

 MH_MAGIC ARM 9 0x00 EXECUTE 18 1948 NOUNDEFS
DYLDLINK TWOLEVEL PIE

nopie-main:

Mach header

 magic cputype cpusubtype caps filetype ncmds sizeofcmds flags

 MH_MAGIC ARM 9 0x00 EXECUTE 18 1948 NOUNDEFS
DYLDLINK TWOLEVEL

In iOS 5, all of the built-in applications are compiled with PIE by default,
however in practice third-party applications do not commonly take advantage

 iOS Application (In)Security

P ub l ic R e le a s e
Page 12 of 54

v 1.0

of this protection feature [5].

As previously noted, iOS applications can apply stack smashing protection at
compile time. This can be achieved by specifying the –fstack-protector-all
compiler flag, as shown below:

Figure 2 – Xcode compile sources

When an app is compiled with stack smashing protection, a known value or
“canary” is placed on the stack directly before the local variables to protect the
saved base pointer, saved instruction pointer and function arguments. The value
of the canary is verified upon the function return to see if it has been
overwritten. The compiler uses a heuristic to intelligently apply stack protection
to a function, typically functions using character arrays.

From a black box perspective, the presence of stack canaries can be identified
by examining the symbol table of the binary. If stack smashing protection is
compiled in to the application, two undefined symbols will be present;
“___stack_chk_fail” and “___stack_chk_guard”. The symbol table from an
app can be dumped using the otool application:
$ otool -I -v DummyApp | grep stack

0x00003fc4 14 ___stack_chk_fail

0x0000400c 14 ___stack_chk_fail

0x0000406c 15 ___stack_chk_guard

Automatic Reference Counting (ARC) was introduced in iOS SDK version 5.0 to
move the responsibility of memory management from the developer to the
compiler. Consequently, ARC also offers some security benefits as it reduces the
likelihood of developers introducing memory corruption (specifically object use -
after-free and double free) vulnerabilities in to apps (See section 5.2).

ARC can be enabled in an application within XCode by setting the compiler
option “Objective-C Automatic Reference Counting” to “yes”. To identify the
presence of ARC in a black box review of a compiled app, an evaluator can look
for the presence of ARC related symbols in the symbol table, as shown below:
$ otool -I -v DummyApp-ARC | grep "_objc_release"

0x00003fe8 181 _objc_release

 iOS Application (In)Security

P ub l ic R e le a s e
Page 13 of 54

v 1.0

0x00004030 181 _objc_release

$

The symbols that highlight the presence of ARC are:

 _objc_retainAutoreleaseReturnValue
 _objc_autoreleaseReturnValue
 _objc_storeStrong
 _objc_retain
 _objc_release
 _objc_retainAutoreleasedReturnValue

At compile time, ARC can be explicitly disabled on specific source files by using
the “-fno-objc-arc” compiler flag and this should be highlighted as part any
white box iOS application assessment.

With a decrypted binary, there is a wealth of information in the __OBJC
segment that can be useful to a reverse engineer. The __OBJC segment
provides details on the internal classes, methods and variables used in the
app; this information is particularly useful when looking to understand how the
app functions, patching the app or hooking the app at runtime.

Parsing the __OBJC segment can be performed using the class-dump-z [11]

application; for example running the previously decrypted 99Bottles app
through class-dump-z yields the following:
@interface BottleLayer : CALayer {

@private

 BOOL flown;

}

@property(assign, nonatomic) BOOL flown;

-(void)drawInContext:(CGContextRef)context;

-(void)jiggle;

-(void)flyAway;

-(void)animationDidStop:(id)animation finished:(BOOL)finished;

-(void)dealloc;

@end

__attribute__((visibility("hidden")))

@interface RootViewController : UIViewController <UIActionSheetDelegate> {

@private

 UILabel* numberDisplay;

 NSMutableArray* marr;

 Player* player;

 UIView* wall;

 iOS Application (In)Security

P ub l ic R e le a s e
Page 14 of 54

v 1.0

 BottleLayer* currentBottle;

 NSArray* names;

 NSArray* names10;

 int count;

 BOOL paused;

In the above example snippet, class-dump-z has identified a number of
methods including “jiggle”, “flyAway” and “drawInContext”; these can all be
hooked and modified at runtime.

Hooking the Objective-C runtime is a powerful method of observing and
modifying the internal behaviour of an application. The most common method
for hooking the runtime is using MobileSubstrate [12], a hooking framework for
jailbroken devices, similar to that of Application Enhancer on OS X.
MobileSubstrate typically comes as default with many of the iOS jailbreaks and
facilitates hooking of not only Objective-C but also C and C++.

Cycript [13] provides a programming language to interface with a JavaScript to
Objective-C bridge from the command line. As well as blending JavaScript and
Objective-C, Cycript allows runtime hooking using MobileSubstrate. Perhaps
one of the most useful features of Cycript is the ability to attach to a running
process and manipulate the runtime. For example, cycript can be used to
inject into the running SpringBoard process on a jailbroken broken device,
disable the passcode requirement and unlock the device, bypassing the
passcode:
mdsec-iPhone:~/Documents/Cracked root# cycript -p SpringBoard

cy# SBAwayController.messages['isPasswordProtected'] = function() {return NO;}

{}

cy# [SBAwayController.sharedAwayController unlockWithSound:1]

cy#

For those looking to write MobileSubstrate extensions, iOSOpenDev provides a
fantastic means of integrating MobileSubstrate into XCode using XCode
templates. iOSOpenDev [14] uses the CaptainHook framework to simplify
writing MobileSubstrate tweaks.

Example: Bypassing Jailbreak Detection

For example, consider an app that attempts to detect and prevent the app
being run on a jailbroken device. The most common way for this to be
accomplished is to check the filesystem for a list of files known to be
associated with jailbreaks, for example:
@implementation AppSecurity

-(BOOL)isJailBroken

 iOS Application (In)Security

P ub l ic R e le a s e
Page 15 of 54

v 1.0

{

 NSString *filePath = @"/Applications/Cydia.app";

 if ([[NSFileManager defaultManager] fileExistsAtPath:filePath])

 {

 return TRUE;

 }

 return FALSE;

}

The above method can be hooked and modified at runtime using a
MobileSubstrate tweak such as the following:
#import <Foundation/Foundation.h>

#import <CaptainHook/CaptainHook.h>

#include <notify.h>

@interface hookDummy : NSObject

@end

@implementation hookDummy

-(id)init

{

 if ((self = [super init])){}

 return self;

}

@end

@class AppSecurity;

CHDeclareClass(AppSecurity);

CHOptimizedMethod(0, self, BOOL, AppSecurity, isJailBroken)

{

 NSLog(@"####### isJailBroken hooked");

 return false;

}

CHConstructor

{

 NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];

 CHLoadLateClass(AppSecurity);

 CHHook(0, AppSecurity, isJailBroken); // register hook

 [pool drain];

}

Once compiled, placing the library in the DynamicLibraries folder causes it to
be loaded every time an application is launched on the device:
-rwxr-xr-x 1 root wheel 10912 Mar 8 10:15
/Library/MobileSubstrate/DynamicLibraries/hookDummy.dylib*

 iOS Application (In)Security

P ub l ic R e le a s e
Page 16 of 54

v 1.0

Mar 8 21:03:56 unknown DummyApp[1722] <Notice>: MS:Notice: Installing:
MDSec.DummyApp [DummyApp] (675.00)

Mar 8 21:03:56 unknown DummyApp[1722] <Notice>: MS:Notice: Loading:
/Library/MobileSubstrate/DynamicLibraries/Activator.dylib

Mar 8 21:03:56 unknown DummyApp[1722] <Notice>: MS:Notice: Loading:
/Library/MobileSubstrate/DynamicLibraries/hookDummy.dylib

Mar 8 21:03:56 unknown kernel[0] <Debug>: launchd[1722] Builtin profile:
container (sandbox)

Mar 8 21:03:56 unknown kernel[0] <Debug>: launchd[1722] Container:
/private/var/mobile/Applications/1F6A9800-DBD0-4831-A7C9-C4826C6F7EAD [69]
(sandbox)

Mar 8 21:03:57 unknown DummyApp[1722] <Warning>: ####### isJailBroken hooked

The library can be configured to only load into specific applications by creating
a plist for the library containing the application bundle identifier, similar to:
Filter = {

 Bundles = (MDSec.DummyApp);

};

Using a real world example, the CommBank Kaching application implements a
similar method to detect jailbroken devices; we can identify the relevant
methods using class-dump:
@interface RootViewController : /private/tmp/KIA_IPHONE_SOURCE/
<UIWebViewDelegate, DILDisplayView, UIAlertViewDelegate>

{

<snip>

- (BOOL)isJailbrokenDevice;

When run on a jailbroken device, the app will
display an NSAlert with an exception and does
not proceed past the alert.

Figure 3 - Jailbroken error in Kaching

 iOS Application (In)Security

P ub l ic R e le a s e
Page 17 of 54

v 1.0

The following MobileSubstrate tweak can be used to bypass this protection and
use the app as normal:
@class RootViewController;

CHDeclareClass(RootViewController);

CHOptimizedMethod(0, self, BOOL, RootViewController, isJailbrokenDevice)

{

 NSLog(@"####### isJailbrokenDevice hooked");

 return false;

}

CHConstructor

{

 NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];

CHLoadLateClass(RootViewController);

 CHHook(0, RootViewController, isJailbrokenDevice);

 [pool drain];

}

Rerunning the app will cause the app to function as normal due to the
isJailBrokenDevice method being hooked and modified:
Mar 8 21:15:46 unknown KIA[1786] <Notice>: MS:Notice: Installing:
au.com.commbank.kaching [KIA] (675.00)

Mar 8 21:15:46 unknown KIA[1786] <Notice>: MS:Notice: Loading:
/Library/MobileSubstrate/DynamicLibraries/Activator.dylib

Mar 8 21:15:46 unknown kernel[0] <Debug>: launchd[1786] Builtin profile:
container (sandbox)

Mar 8 21:15:46 unknown kernel[0] <Debug>: launchd[1786] Container:
/private/var/mobile/Applications/63DC8037-5A2F-4C5C-ADDB-30AF3BF49449 [69]
(sandbox)

Mar 8 21:15:47 unknown KIA[1786] <Notice>: MS:Notice: Loading:
/Library/MobileSubstrate/DynamicLibraries/hookDummy.dylib

Mar 8 21:15:47 unknown securityd[1787] <Notice>: MS:Notice: Installing: (null)
[securityd] (675.00)

Mar 8 21:15:47 unknown securityd[1787] <Notice>: MS:Notice: Loading:
/Library/MobileSubstrate/DynamicLibraries/hookDummy.dylib

Mar 8 21:15:47 unknown KIA[1786] <Warning>: **** READ 60 LOG ENTRIES FROM DISK

Mar 8 21:15:47 unknown KIA[1786] <Warning>: ####### isJailbrokenDevice hooked

Developers looking to mitigate against runtime attacks or increase the
complexity of reverse engineering can employ some defensive strategies to
thwart attackers. However, it should generally be accepted that there is no full
proof method for protecting the app when running on a compromised OS such as
in a jailbroken environment.

One of the most common approaches for defending the runtime is to integrity

 iOS Application (In)Security

P ub l ic R e le a s e
Page 18 of 54

v 1.0

check classes for expected addresses or checksums, allowing an app to
determine if the Objective-C runtime has been hooked or modified. This
approach is typically achieved by retrieving and validating the address of the
class. The runtime provides the class_getMethodImplementation method that
returns a function pointer to a class method, if that class method was invoked.

Consider the following simple implementation:
#import "security.h"

@implementation security

void * perform_sec_check()

{

 void * addr = verify_address("AppSecurity", "isJailBroken");

 fprintf(stderr, "\ncaddr = %p\n", addr);

 if(addr != 0x25a9) take_evasive_action();

}

void * verify_address(const char * cname, const char * method)

{

 id class = objc_lookUpClass(cname);

 SEL selector = sel_registerName(method);

 IMP imp = class_getMethodImplementation(class, selector);

 return imp;

}

void * take_evasive_action() {

 fprintf(stderr, "%s", "Tamper detected\n");

 exit(-1);

}

@end

The above class provides a simple implementation of runtime tamper detection.
The verify_address function retrieves the address of the function pointer for
the AppSecurity: isJailBroken method, taken from the earlier example. This
address is then compared to the known safe address, hardcoded by the
developer. If the address differs, tampering may have occurred and appropriate
action is taken.

Running the application without any runtime hooking, the app jail break
detection executes as normal:
caddr = 0x25a9

2012-04-18 20:51:51.580 DummyApp[595:707] ##### Sorry, you are running on a
jailbroken device

The address printed is the expected address for the AppSecurity:

isJailBroken method. If the application is run again with the MobileSubstrate
library from the above example present, the address of the AppSecurity:

 iOS Application (In)Security

P ub l ic R e le a s e
Page 19 of 54

v 1.0

isJailBroken method has changed:
caddr = 0x76ec5

Tamper detected

While the above anti-tamper detection can be effective, it can also be trivially be
bypassed by hooking the detection or patching the binary. To further improve
the detection, the functions can be in-lined which causes the compiler to fully
insert the function body whenever the function is called. Consequently, the
attacker would need to patch every occurrence of the function each time it is
called. This can be achieved simply by using the keyword inline:
inline void * perform_sec_check()

{

 void * addr = verify_address("AppSecurity", "isJailBroken");

 fprintf(stderr, "\ncaddr = %p\n", addr);

 if(addr != 0x25a9) take_evasive_action();

}

In conclusion, we have reviewed some of the techniques that can be employed
during a black box assessment of an iOS application. Indeed, it is possible to
gain an in depth understanding of the inner workings of an app, even those
protected by the AppStore encryption. Runtime hooking provides a powerful
means to interact, asses and modify an application, in particular it allows an
evaluator to get inside an app and utilise inner functionality such as APIs that
would otherwise need to be reverse engineered to verify functionality.

From a defensive perspective, developers looking to protect their apps from
tampering can do so by using checksums or validating the runtime address of
classes and methods. The effectiveness of these protections can be further
improved by using inline functions. Where possible, developers should look to
refactor code to increase the complexity of reverse engineering and reduce the
amount of information disclosed on class structure.

 iOS Application (In)Security

P ub l ic R e le a s e
Page 20 of 54

v 1.0

Introduction

iOS applications typically leverage a standard set of APIs to interoperate with
servers, local resources and other applications. Whilst many of these
implement secure defaults, MDSec have audited many applications where the
default options are not used, or where an API is simply trusted to operate
securely. The following key touch points in an application should be reviewed
when performing source code reviews of reviewing iOS applications.

Most iOS applications will perform some network communication and due to
the nature of mobile devices this communication may often occur over an
untrusted or insecure network such as hotel or café WiFi, mobile hotspot or
cellular. Consequently, it is imperative that this communication is performed in
a secure manner.

iOS apps will commonly interact with online web applications or web
technology based RPC mechanisms; these interactions are often performed
using the NSURLConnection class. This class takes an NSURLRequest object
and performs an HTTP(S) request with it. The API uses a default set of SSL
ciphers to perform secure connections; unfortunately the API is not granular
enough to allow the developer to select which ciphers from the suite to
negotiate with. There are some differences between the transports that are
negotiated for different versions of the SDK, these are summarised in the
table below:

SDK Version Protocol “Weak” Cipher
Suites

Total Cipher
Suites

4.3 TLS 1.0 5 29

5.0 TLS 1.2 0 37

5.1 TLS 1.2 0 37

The table highlights an improvement in the cipher suites negotiated over time
with the release of the newer versions of the SDK.

 iOS Application (In)Security

P ub l ic R e le a s e
Page 21 of 54

v 1.0

Consider the following example, which will perform a simple HTTPS connection
to the localhost:
@implementation insecuressl

int main(int argc, const char* argv[])

{

 NSString *myURL=@"https://localhost/test";

 NSURLRequest *theRequest = [NSURLRequest requestWithURL:[NSURL
URLWithString:myURL]];

 NSURLResponse *resp = nil;

 NSError *err = nil;

 NSData *response = [NSURLConnection sendSynchronousRequest:

theRequest returningResponse: &resp error: &err];

 NSString * theString = [[NSString alloc] initWithData:response
encoding:NSUTF8StringEncoding];

 [resp release];

 [err release];

 return 0;

}

Compiling the application with both the 5.0 or 5.1 and 4.3 SDKs and then
running it while monitoring the communication produces different results.

For version 4.3 of the SDK, the application negotiates a TLS1.0 session with
one of 29 cipher suites, as shown in figures 3 and 4:

Figure 4 - 4.3 SSL Negotiation

 iOS Application (In)Security

P ub l ic R e le a s e
Page 22 of 54

v 1.0

Figure 5 - 4.3 SSL Ciphers

Using version 5.0 or 5.1 of the SDK, the application negotiates a TLS1.2
session with one of 37 cipher suites, as shown in figures 5 and 6:

Figure 6 – iOS 5.0/5.1 SSL Client Hello

 iOS Application (In)Security

P ub l ic R e le a s e
Page 23 of 54

v 1.0

Figure 7 - iOS 5.0/5.1 SDK Cipher Suites

In the above 4.3 SDK negotiation, the following cipher suites can be seen as
weak:

 TLS_RSA_WITH_DES_CBC_SHA
 TLS_RSA_EXPORT_WITH_RC4_MD5
 TLS_RSA_EXPORT_WITH_DES40_CBC_SHA
 TLS_DHE_RSA_WITH_DES_CBC_SHA
 TLS_DHE_RSA_EXPORT_WITH_DES40_CBC_SHA

In order to prevent Man-in-the-Middle attacks, it is essential for iOS
applications to prohibit the use of self-signed certificates. The default
behaviour for the NSURLRequest class is to reject self-signed certificates and
raise an NSURLErrorDomain exception. However, it is not uncommon to see
developers override this behaviour to accept any certificate, frequently to
allow the use of self-signed certificates deployed in pre-production
environments. The certificate validation can be disabled for the requested
domain using the allowsAnyHTTPSCertificateForHost method, similar to
that in the following example:

 iOS Application (In)Security

P ub l ic R e le a s e
Page 24 of 54

v 1.0

#import "loadURL.h"

@interface NSURLRequest (DummyInterface)

+ (BOOL)allowsAnyHTTPSCertificateForHost:(NSString*)host;

+ (void)setAllowsAnyHTTPSCertificate:(BOOL)allow forHost:(NSString*)host;

@end

@implementation loadURL

-(void) run

{

 NSURL *myURL = [NSURL URLWithString:@"https://localhost/test"];

 NSMutableURLRequest *theRequest = [NSMutableURLRequest requestWithURL:myURL
cachePolicy:NSURLRequestReloadIgnoringCacheData timeoutInterval:60.0];

 [NSURLRequest setAllowsAnyHTTPSCertificate:YES forHost:[myURL host]];

 [[NSURLConnection alloc] initWithRequest:theRequest delegate:self];

}

@end

The allowsAnyHTTPSCertificateForHost method is a private method and
using it in production code may result in the application being rejected from
the App Store. An alternate approach for bypassing SSL verification that is not
uncommon is using the
continueWithoutCredentialForAuthenticationChallenge selector,
implemented within the NSURLConnection delegate method
didReceiveAuthenticationChallenge, as shown below:
- (void)connection:(NSURLConnection *)connection
didReceiveAuthenticationChallenge:(NSURLAuthenticationChallenge *)challenge

{

 if ([challenge.protectionSpace.authenticationMethod
isEqualToString:NSURLAuthenticationMethodServerTrust])

 {

 [challenge.sender useCredential:[NSURLCredential
credentialForTrust:challenge.protectionSpace.serverTrust]forAuthenticationChallen
ge:challenge];

 [challenge.sender
continueWithoutCredentialForAuthenticationChallenge:challenge];

 return;

 }

The CFNetwork framework provides an alternate API for implementing SSL,
indeed the framework allows greater control and customisation of the SSL
session for the developer. Similarly to NSURLRequest, it is not uncommon to
see developers weaken the SSL configuration. CFNetwork however provides
more granular controls, allowing the application to accept expired certificates
or roots, allow any root or even perform no validation on the certificate chain.

Consider the following onSocket delegate method, taken from a real-world
application:

 iOS Application (In)Security

P ub l ic R e le a s e
Page 25 of 54

v 1.0

- (void)onSocket:(AsyncSocket *)sock didConnectToHost:(NSString *)host
port:(UInt16)port {

NSMutableDictionary *settings = [[NSMutableDictionary alloc]
initWithCapacity: 3];

[settings setObject:[NSNumber numberWithBool:YES]

forKey:(NSString *)kCFStreamSSLAllowsExpiredCertificates];

[settings setObject:[NSNumber numberWithBool:YES]

forKey:(NSString *)kCFStreamSSLAllowsAnyRoot];

[settings setObject:[NSNumber numberWithBool:NO]

forKey:(NSString *)kCFStreamSSLValidatesCertificateChain];

[sock startTLS:settings];

Unfortunately, when using the CFNetwork framework, there is no clear method
of modifying the cipher suite and again, the SDK default set of ciphers is used.

In conclusion, it is imperative for mobile applications to implement transport
methods in a secure manner and in the default mode and using the latest
SDK, this is likely to be the case when developing an iOS application.
However, the APIs do allow the transport security to be weakened and it is not
uncommon to see this implemented by developers. Developers looking to
temporarily weaken transport security for development or staging
environments should be cautious to ensure that this code does not persist in
to production. This simplest way to achieve this is to use a pre-processor
macro to include the code for development builds only.

Due to the restrictions imposed by the iOS sandbox, Inter-Process
Communication (IPC) is generally prohibited. However, a simple form of IPC is
supported by the API if the application registers a custom protocol handler.

There are many reasons why a developer might want to support IPC ; some
examples that we’ve seen in practice include determining the presence of
other apps, allowing the app to be launched from Safari or passing data
between apps.

There are two API methods commonly used to implement protocol handlers on
iOS, “application:openURL” and “application:handleOpenURL”, the latter
now deprecated. The advantage of using the “openURL” method is that it
supports validation of the source application that instantiated the URL request.

A custom URL scheme can be registered in an iOS application by adding a URL
type to the application plist file, as shown in the VulnerableiPhoneApp project
below which registers the “vuln” protocol handler:

 iOS Application (In)Security

P ub l ic R e le a s e
Page 26 of 54

v 1.0

Figure 8 - Registering an IPC in XCode

The protocol handling code can then be implemented using the application
delegate methods handleOpenURL or openURL similar to the following which
will simply display an alertView with the requested URL text:
- (BOOL)application:(UIApplication *)application handleOpenURL:(NSURL *)url {

UIAlertView *alertView;

NSString *text = [[url host]

stringByReplacingPercentEscapesUsingEncoding:NSUTF8StringEncoding];

alertView = [[UIAlertView alloc] initWithTitle:@"Text" message:text
delegate:nil cancelButtonTitle:@"OK" otherButtonTitles:nil];

[alertView show];

return YES;

}

An assessment of a real world application found a custom URL handler used to
implement configuration changes: a feature initially built in to the application
for developer convenience but which had persisted through to production
release. Consider the following implementation of the handleOpenURL method:
- (BOOL)application:(UIApplication *)application handleOpenURL:(NSURL *)url {

 if (!url) { return NO; }

 NSString *method = [[url host]

stringByReplacingPercentEscapesUsingEncoding:NSUTF8StringEncoding];

 if([method isEqualToString:@"setHomeURL"])

 {

 Settings *s = [[Settings alloc] init];

 NSString *querystr = [[url query]
stringByReplacingPercentEscapesUsingEncoding:NSUTF8StringEncoding];

 NSArray *param = [querystr componentsSeparatedByString:@"="];

 NSString *value = [param objectAtIndex:1];

 [s setHomeURL:value];

 }

 return YES;

 iOS Application (In)Security

P ub l ic R e le a s e
Page 27 of 54

v 1.0

In this example, the custom URL handler is used to update the default URL
that the application opens when it is started. The method accepts an NSURL
object which is then parsed; if the host that is passed is “setHomeURL” the
method will call the “setHomeURL” method of the Settings object with an
argument of the first URL parameter’s value.

The setHomeURL method of the Settings object configures the application
preferences and is implemented as follows:
@implementation Settings

- (void) setHomeURL:(NSString*)url

{

 NSUserDefaults *prefs = [NSUserDefaults standardUserDefaults];

 [prefs setObject:url forKey:@"homeURL"];

 [prefs synchronize];

}

An attacker could exploit this issue to reconfigure the default landing page for
the application using a malicious iframe, similar to:
<iframe src=”vuln://setHomeURL?url=http://mdattacker.net”></iframe>

A possible solution to this issue is to use the updated API call “openURL” that
also provides information on the application from which the URL request
originated. The following example will verify that the URL was invoked from
within the application itself:
- (BOOL)application:(UIApplication *)application openURL:(NSURL *)url
sourceApplication:(NSString *)sourceApplication annotation:(id)annotation {

 NSString* myBid = [[NSBundle mainBundle] bundleIdentifier];

 if ([sourceApplication isEqualToString:myBid])

 {

 return NO;

 }

 else if (!url) { return NO; }

 NSString *method = [[url host]
stringByReplacingPercentEscapesUsingEncoding:NSUTF8StringEncoding];

 if([method isEqualToString:@"setHomeURL"])

 {

 Settings *s = [[Settings alloc] init];

 NSString *querystr = [[url query]
stringByReplacingPercentEscapesUsingEncoding:NSUTF8StringEncoding];

 NSArray *param = [querystr componentsSeparatedByString:@"="];

 NSString *value = [param objectAtIndex:1];

 [s setHomeURL:value];

 }

 return YES;

 iOS Application (In)Security

P ub l ic R e le a s e
Page 28 of 54

v 1.0

Alternatively, if the developer wishes to ensure that the URL can only be
invoked from another app, for example Safari, this could be implemented as
follows:
- (BOOL)application:(UIApplication *)application openURL:(NSURL *)url
sourceApplication:(NSString *)sourceApplication annotation:(id)annotation {

 NSString *SafariPath = @"/Applications/MobileSafari.app";

 NSBundle *bundle = [NSBundle bundleWithPath:SafariPath];

 if ([sourceApplication isEqualToString:[bundle bundleIdentifier]])

 {

 return No;

 }

A public real-world vulnerability example could be found in the Skype iOS
application that registers the “skype” protocol handler which could be used to
instantiate calls and chats. An attack to perform a call without authorization
using a malicious iframe was first documented by Nitesh Dhanjani [15]. The
attack payload could be triggered from MobileSafari to launch the Skype app,
which would perform the call as shown below:
<iframe src=”skype://123456789?call"></iframe>

Skype resolved this issue by displaying a UIView that allows the user to accept
or decline the call.

A simple method of identifying valid URLs in AppStore apps is to take the
decrypted app and check for protocol strings, an example using the Facebook
application (truncated from 558 URLs):
bash-3.2# strings Facebook.app/Facebook | grep "://" | grep -v "http"

fb://upload/actions/newalbum

fb://root

fb://birthdays

fb://messaging

fb://notifications

fb://requests

fb://publish

fb://publish/profile/(gatePublishWithUID:)

fb://oldpublish

fb://oldpublish/profile/(initWithUID:)

fb://publish/post/(initWithPostId:)

fb://publish/photo/(initWithUID:)/(aid:)/(pid:)

fb://publish/mailbox/(initWithFolder:)/(tid:)

fb://publish/privacy

fb://place/create

fb://compose

fb://compose/profile/(initWithUID:)

 iOS Application (In)Security

P ub l ic R e le a s e
Page 29 of 54

v 1.0

In conclusion, protocol handlers can provide a convenient method for
developers to perform inter-process communication. However, developers
should be careful to perform validation on the source and content of any data
entering the application and avoid using protocol handlers to access sensitive
or dangerous functionality.

The protection of data stored on a mobile device is perhaps one of the most
important issues that an application developer has to deal with. It is
imperative that developers protect sensitive data that is stored client-side in a
secure manner. As previously noted, developers wishing to encrypt sensitive
content on the device should employ the Data Protection API. Unfortunately, it
is common practice to find even apps from large multinationals storing their
sensitive data in clear text. A good example of this was highlighted in 2010
where vulnerabilities in the Citigroup online banking application caused it to be
pulled from the AppStore, as reported by The Register:

“In a letter, the US banking giant said the Citi Mobile app saved user
information in a hidden file that could be used by attackers to gain
unauthorized access to online accounts. Personal information stored in the file
could include account numbers, bill payments and security access codes…”
[16].

While this paper will only focus on app data storage and how applications can
use the Data Protection API, an in depth presentation on iPhone encryption
has been performed by Jean-Baptiste Bedrune and Jean Sigwal of ESEC [17].

C lient-side data can be stored in a number of forms, including but not limited
to:

 Custom created files,
 Databases,
 System logs,
 Cookie stores,
 Plists,
 Data caches.

All of these may contain sensitive data that should be protected if the handset
were lost or stolen. This data will generally be stored within the application’s
sandboxed container.

 iOS Application (In)Security

P ub l ic R e le a s e
Page 30 of 54

v 1.0

Applications are stored on the file-system as the “mobile” user under the
“/var/mobile/Applications” directory where a unique GUID is used as a sub
directory container to store the app data. The application directory structure is
as follows:

Directory Description

Application.app Stores the static content of the application and
compiled app. This content is signed and
checked at runtime.

Documents A persistent store for application data; this
data will be synched and backed up to iTunes.

Library This folder contains support data used by the
app such as configurations, preferences, cache
data and cookies.

tmp This folder is used to store temporary files.

An attacker looking to extract application data is likely to find it within this
directory structure in one form or another. However, such exploration of the
filesystem will first require a jailbroken device.

Let’s take a look at a real world app, taken from the AppStore. Kik Messenger
is a social networking application with a 4+ star rating from 6405 ratings on
the AppStore and well over 1 million users. The application allows users to
send free instant messages via the devices data connection. In order to do
this, the user must sign-up for a free Kik account.

Within the Kik application directory is the preferences plist,
“Library/Preferences/com.kik.chat.plist” that is used by the app to store
configuration information, including the user ’s username, password and e-mail
address, as shown below (obscured for reader):

Figure 9 - Kik Messenger plist

 iOS Application (In)Security

P ub l ic R e le a s e
Page 31 of 54

v 1.0

The plist detailed above is not protected by the Data Protection API and
therefore resides unencrypted on the file-system while the device is enabled,
regardless of lock state. This is a classic example of misuse of data storage as
sensitive information such as credentials should be stored in the keychain
rather than on the filesystem as a plist.

In addition to the above, Kik stores other information on the device, including
the SMS chat history and contact information. This data is stored in a sqlite
database in “Documents/kik.sqlite” which again is not encrypted:

Figure 10 - Kik SQLite Database

A common dilemma and one faced by the Kik application is that it is a real-
time app that receives messages while backgrounded and regardless of lock
state. If the app was to apply NSFileProtectionComplete, it would not be
able to access the SQLite store when the phone is locked. Partial mitigation
might be achieved by encrypting the data until the first phone unlock by
setting the NSFileProtectionCompleteUntilFirstUserAuthentication
constant. Subsequent reboots would cause the data to be encrypted, however
this feature is only available from iOS 5.

The Kik app also allows users to send attachments such as photos within IMs,
these are stored unencrypted in the “Documents/fileAttachments” directory.
For example, the following shows a photo sent via an IM attachment:
mbp:Documents $ file fileAttachments/057a8fc9-0daf-4750-b356-5b28755f4ec4

fileAttachments/057a8fc9-0daf-4750-b356-5b28755f4ec4: JPEG image data, JFIF
standard 1.01 mbp:Documents $

It is worth considering that iOS itself does not apply data protection to photos
stored on the device; however it is a risk that the application could potentially
avoid.

The Data Protection API allows four levels of file-system protection that are
configurable by passing an extended attribute to the NSData or
NSFileManager classes. The possible levels of protection are:

Level Description

No Protection The file is not encrypted on the file-system.

Complete
Protection

The file is encrypted on the file-system and inaccessible
when the device is locked.

 iOS Application (In)Security

P ub l ic R e le a s e
Page 32 of 54

v 1.0

Complete Unless
Open

The file is encrypted on the file-system and inaccessible
while closed. When a device is unlocked an app can
maintain an open handle to the file even after it is
subsequently locked, however during this time the file
will not be encrypted.

Complete Until
First User
Authentication

The file is encrypted on the file-system and inaccessible
until the device is unlocked for the first time. This helps
offer some protection against attacks that require a
device reboot.

In order to apply one of the above levels of protection, one of the following
extended attributes must be passed to the relevant class:

NSData NSFileManager

NSDataWritingFileP rotec tionNone NSFileP rotec tionNone

NSDataWritingFileP rotec tionC omplete NSFileP rotec tionC omplete

NSDataWritingFileProtectionCompleteUnlessO p
en

NSFileProtec tionC ompleteUnlessO pen

NSDataWritingFileProtectionCompleteUntilFirs t
UserA uthentication

NSFileProtectionCompleteUntilFirstUserA
uthentication

For example, consider an application that needs to save some data to the file -
system, but it does not require access to the file while the device is locked,
such as an app that allows you to download documents and then later view
them. As the app does not require access to the files when the device is
locked, it can take advantage of the complete protection by setting the
NSDataWritingFileProtectionComplete or NSFileProtectionComplete
attributes:
-(BOOL) getFile

{

 NSString *fileURL = @"http://www.mdsec.co.uk/training/wahh-live.pdf";

 NSURL *url = [NSURL URLWithString:fileURL];

 NSData *urlData = [NSData dataWithContentsOfURL:url];

 if (urlData)

 {

 NSArray *paths =
NSSearchPathForDirectoriesInDomains(NSDocumentDirectory, NSUserDomainMask, YES);

 NSString *documentsDirectory = [paths objectAtIndex:0];

 NSString *filePath = [NSString stringWithFormat:@"%@/%@",
documentsDirectory,@"wahh-live.pdf"];

 NSError *error = nil;

 [urlData writeToFile:filePath options:NSDataWritingFileProtectionComplete
error:&error];

http://developer.apple.com/library/ios/documentation/Cocoa/Reference/Foundation/Classes/NSData_Class/Reference/Reference.html#//apple_ref/c/econst/NSDataWritingFileProtectionNone
http://developer.apple.com/library/ios/documentation/Cocoa/Reference/Foundation/Classes/NSFileManager_Class/Reference/Reference.html#//apple_ref/c/data/NSFileProtectionNone
http://developer.apple.com/library/ios/documentation/Cocoa/Reference/Foundation/Classes/NSData_Class/Reference/Reference.html#//apple_ref/c/econst/NSDataWritingFileProtectionComplete
http://developer.apple.com/library/ios/documentation/Cocoa/Reference/Foundation/Classes/NSFileManager_Class/Reference/Reference.html#//apple_ref/c/data/NSFileProtectionComplete
http://developer.apple.com/library/ios/documentation/Cocoa/Reference/Foundation/Classes/NSFileManager_Class/Reference/Reference.html#//apple_ref/c/data/NSFileProtectionCompleteUnlessOpen
http://developer.apple.com/library/ios/documentation/Cocoa/Reference/Foundation/Classes/NSFileManager_Class/Reference/Reference.html#//apple_ref/c/data/NSFileProtectionCompleteUntilFirstUserAuthentication
http://developer.apple.com/library/ios/documentation/Cocoa/Reference/Foundation/Classes/NSFileManager_Class/Reference/Reference.html#//apple_ref/c/data/NSFileProtectionCompleteUntilFirstUserAuthentication
http://www.mdsec.co.uk/training/wahh-live.pdf

 iOS Application (In)Security

P ub l ic R e le a s e
Page 33 of 54

v 1.0

 return YES;

 }

 return NO;

}

In this scenario, the document will only be accessible while the device is
unlocked. The OS provides a 10 second window between locking the device
and this file being unavailable. The following shows an attempt to access the
file while the device is locked:
mdsec-iPhone:/var/mobile/Applications/7F5ED565-781E-47FD-8787-4C76CD7A4DD5 root#
ls -al Documents/ total 372

drwxr-xr-x 2 mobile mobile 102 Jan 20 15:24 ./

drwxr-xr-x 6 mobile mobile 204 Jan 20 15:23 ../

-rw-r--r-- 1 mobile mobile 379851 Jan 20 15:24 wahh-live.pdf

mdsec-iPhone:/var/mobile/Applications/7F5ED565-781E-47FD-8787-4C76CD7A4DD5 root#
strings Documents/wahh-live.pdf

strings: can't open file: Documents/wahh-live.pdf (Operation not permitted)

mdsec-iPhone:/var/mobile/Applications/7F5ED565-781E-47FD-8787-4C76CD7A4DD5 root#

Developers wishing to apply the relevant protection levels to data stored on
the device can achieve this in a similar manner to the above by passing the
relevant attribute that best fits the developer’s requirement for file access.

In conclusion, iOS leaves data protection very much in the developer’s hands,
providing granular controls to configure the level of protection that can be
applied to data written to the filesystem. Unfortunately, it is common to find
that developers do not take advantage of this protection and leave sensitive
data at risk of compromise.

The iOS keychain is an encrypted container used for storing sensitive data
such as credentials whilst restricting apps to accessing only their own keychain
items unless they are a member of a keychain access group. Similar to files on
the filesystem, a protection level can be applied using the Data Protection API.
The following table describes the available protection levels for keychain
items:

Attribute Description

kSecAttrAccessibleAlways The keychain item is always
accessible.

kSecAttrAccessibleWhenUnlocked The keychain item is only accessible
when the device is unlocked.

 iOS Application (In)Security

P ub l ic R e le a s e
Page 34 of 54

v 1.0

kSecAttrAccessibleAfterFirstUnlock They keychain item is only accessible
after the first unlock from boot. This
helps offer some protection against
attacks that require a device reboot.

kSecAttrAccessibleAlwaysThisDevic
eOnly

The keychain item is always
accessible but cannot be migrated to
other devices.

kSecAttrAccessibleWhenUnlockedT
hisDeviceOnly

The keychain item is only accessible
when the device is unlocked and may
not be migrated to other devices.

kSecAttrAccessibleAfterFirstUnlock
ThisDeviceOnly

The keychain item is accessible after
the first unlock from boot and may
not be migrated to other devices.

Keychain items can be added using the SecItemAdd or updated using the
SecItemUpdate methods, which accept one of the above attributes to define
the protection level to apply. By default all keychain items are created with a
protection level of kSecAttrAccessibleAlways which will allow access at any
time and allows migration to other devices.

Applications’ access to keychain items is limited by the entitlements they are
granted. The keychain uses application identifiers stored in the “keychain-
access-group” entitlement of the provisioning profile for the app; a sample
provisioning profile that allows keychain access only to the app’s keychain is
shown overleaf:
<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"

"http://www.apple.com/DTDs/PropertyList-1.0.dtd">

<plist version="1.0">

<dict>

 <key>application-identifier</key>

 <string>my.company.VulnerableiPhoneApp</string>

 <key>get-task-allow</key>

 <true/>

 <key>keychain-access-group</key>

 <array>

 <string>my.company.VulnerableiPhoneApp</string>

 </array>

</dict>

</plist>

As previously noted, an app can add an item to the keychain using the
SecItemAdd method; consider the following example app that wishes to store

http://www.apple.com/DTDs/PropertyList-1.0.dtd

 iOS Application (In)Security

P ub l ic R e le a s e
Page 35 of 54

v 1.0

a license key in the keychain and only requires access to the item when the
device is unlocked:
- (NSMutableDictionary *)getkeychainDict:(NSString *)service {

 return [NSMutableDictionary dictionaryWithObjectsAndKeys:

 (id)kSecClassGenericPassword, (id)kSecClass,
service,(id)kSecAttrService, service, (id)kSecAttrAccount,
(id)kSecAttrAccessibleWhenUnlocked, (id)kSecAttrAccessible, nil];

}

- (BOOL) saveLicense:(NSString*)licenseKey {

 static NSString *serviceName = @"my.company.VulnerableiPhoneApp";

 NSMutableDictionary *myDict = [self getkeychainDict:serviceName];

 SecItemDelete((CFDictionaryRef)myDict);

 NSData *licenseData = [licenseKey dataUsingEncoding:NSUTF8StringEncoding];

 [myDict setObject:[NSKeyedArchiver archivedDataWithRootObject:licenseData]
forKey:(id)kSecValueData];

 OSStatus status = SecItemAdd((CFDictionaryRef)myDict, NULL);

 if (status == errSecSuccess) return YES;

 return NO;

}

Firstly, the app creates a dictionary of key-value pairs which are the
configuration attributes for the keychain. In this instance the app sets the
kSecAttrAccessibleWhenUnlocked attribute to allow access to the keychain
item whenever the device is unlocked. The app then sets the kSecValueData
attribute to the value of the data that it wishes to store in the keychain, in this
instance the license key data, and adds the item to the keychain using the
SecItemAdd method.

Under the hood, the keychain is simply a SQLite database and can be queried
like any other database. For example, to find out the list of the keychain
groups the following query can be executed:
mdsec-iPhone:/var/Keychains root# sqlite3 keychain-2.db "select agrp from genp"

apple

apple

apple

ichat

com.apple.apsd

apple

apple

T84QZS65DQ.platformFamily

T84QZS65DQ.platformFamily

apple

apple

 iOS Application (In)Security

P ub l ic R e le a s e
Page 36 of 54

v 1.0

my.company.VulnerableiPhoneApp

mdsec-iPhone:/var/Keychains root#

On a jailbroken phone, it is possible to dump all the keychain items for any
application under the same caveats previously detailed with the Data
Protection API. This is achieved by creating an app that is assigned to all the
relevant keychain-access-groups and querying the keychain service to retrieve
the protected items [18].

UIWebView is the iOS rendering engine for displaying text; it supports a
number of different file formats, including:

 HTML
 PDF
 RTF
 Office Documents (doc, xls, ppt)
 iWork Documents (Pages, Numbers and Keynote)

The web view is built upon WebKit and uses the same core frameworks as
Safari and MobileSafari. Consequently, a web view is also a web browser and
can be used to fetch and display remote content. As would be expected of a
web browser, web views also support JavaScript, allowing apps to perform
dynamic, client-side scripting; however there is no configurable option to
disable this feature within the API. Consequently, just like a traditional web
application, iOS apps can be affected by Cross-Site Scripting (XSS).

Cross-Site Scripting in iOS apps can often be much more severe than
traditional XSS attacks such as session theft, as developers commonly expose
native iOS functionality by implementing a JavaScript to Objective-C bridge;
some examples MDSec have witnessed in practice include taking a photo,
accessing geolocation and sending SMS/E-Mails from JavaScript. Cross-Site
Scripting can occur in an iOS in any scenario where user supplied input is
blindly populated in to a UIWebView without sanitisation. Often this can
happen when a developer needs to use a user controlled objective C variable
in a web view. The Skype iOS application was affected by such a vulnerability
when displaying a user’s “Full Name” for an incoming call. The Skype app used
a local HTML file as a template for a UIWebView without sanitising the user’s
“Full Name” from the incoming call. In this instance the attacker could access
the local file system due to the file being loaded in a local context; a proof of
concept exploit was developed to retrieve and upload the device’s address
book [19].

Consider the following simple example where a username from an objective C
variable is added to the DOM of the UIWebView:
NSString *javascript = [[NSString alloc] initWithFormat:@"var myvar=\"%@\";",
username];

 iOS Application (In)Security

P ub l ic R e le a s e
Page 37 of 54

v 1.0

[mywebView stringByEvaluatingJavaScriptFromString:javascript];

[mywebView loadRequest:[NSURLRequest requestWithURL:[NSURL
fileURLWithPath:[[NSBundle mainBundle] pathForResource:@"index"
ofType:@"html"]isDirectory:NO]]];

Firstly, the username is added to an NSString object that represents the
JavaScript, this is then added to the DOM of the web view using the
“stringByEvaluatingJavaScriptFromString” method. Whilst there is also
Cross-Site Scripting at this point as the JavaScript is directly evaluated by the
UIWebView, the variable is also populated into the local HTML file stored in the
bundle directory:
<html>

 <p>

 Cross-Site Scripting in UIWebView:

 </p>

 <p>

 This is an example of XSS:

 <script>document.write(myvar);</script>

 </p>

</html>

Much like the traditional Cross-Site Scripting attacks, the key to prevention is
strictly sanitising all data on arrival into the iOS application and ensuring that
data is suitably encoded when presenting it in the UIWebView.

XML is widely used in mobile application deployments to represent data and
the iPhone SDK provides two options for parsing XML, the NSXMLParser and
libxml2. However, there are also a number of popular third party XML parser
implementations.

A common attack often associated with XML parsers is the “billion laughs” [20]
attack in which the parser is supplied with a number of nested entities which if
expanded can cause a Denial of Service. The default parsers included with the
iOS SDK are not vulnerable to this attack; when a nested entity is detected
the NSXMLParser will raise an NSXMLParserEntityRefLoopError exception,
while the libxml2 parser will throw an error stating “Detected an entity
reference loop”.

Another common attack scenario with XML parsers is the parsing of external
XML entities. While parsing of external XML entities is not enabled by default
on the NSXMLParser, it is enabled by default if the developer uses the
alternate LibXML2 parser. To enable the parsing of external entities with
NSXMLParser, the developer must set the
setShouldResolveExternalEntities option which causes the delegate
method foundExternalEntityDeclarationWithName to be invoked when an

 iOS Application (In)Security

P ub l ic R e le a s e
Page 38 of 54

v 1.0

entity is found.

A simple, vulnerable NSXMLParser implementation might look something like
the following:
#import "XMLParser.h"

@implementation XMLParser

- (void)parseXMLStr:(NSString *)xmlStr {

 BOOL success;

 NSData *xmlData = [xmlStr dataUsingEncoding:NSUTF8StringEncoding];

 NSXMLParser *addressParser = [[NSXMLParser alloc] initWithData:xmlData];

 [addressParser setDelegate:self];

 [addressParser setShouldResolveExternalEntities:YES];

 success = [addressParser parse];

}

- (void)parser:(NSXMLParser *)parser didStartElement:(NSString *)elementName
namespaceURI:(NSString *)namespaceURI qualifiedName:(NSString *)qName
attributes:(NSDictionary *)attributeDict {}

- (void)parser:(NSXMLParser *)parser foundCharacters:(NSString *)string {}

- (void)parser:foundExternalEntityDeclarationWithName:publicID:systemID {}

- (void)parser:(NSXMLParser *)parser parseErrorOccurred:(NSError *)parseError{

 NSLog(@"Error %i, Description: %@", [parseError code],

 [[parser parserError] localizedDescription]); }

@end

The developer has enabled the parsing of external entities by setting the
parser option “setShouldResolveExternalEntities”. When the
implementation is called, the parser will attempt to resolve the entity:
NSString *xmlStr = @"<?xml version=\"1.0\" encoding=\"ISO-8859-1\"?>\

 <!DOCTYPE foo [\

 <!ELEMENT foo ANY > \

 <!ENTITY xxe SYSTEM \"http://192.168.0.7/hello\"> \

]> \

 <foo>&xxe;</foo>";

XMLParser *xp = [[XMLParser alloc] init];

[xp parseXMLStr:xmlStr];

When the parser attempts to resolve the entity, it will force a HTTP request
from the device to the web server:
bash-3.2# nc -lvp 80

listening on [any] 80 ...

http://192.168.0.7/hello/

 iOS Application (In)Security

P ub l ic R e le a s e
Page 39 of 54

v 1.0

192.168.0.2: inverse host lookup failed: Unknown host connect to [192.168.0.7]
from (UNKNOWN) [192.168.0.2] 49287 GET /hello HTTP/1.0

Host: 192.168.0.7

Accept-Encoding: gzip

An implementation of the same attack vector using the libxml2 parser might
look like the following:
#import <libxml/xmlmemory.h>

@implementation LibXml2

-(BOOL) parser:(NSString *)xml {

xmlDocPtr doc = xmlParseMemory([xml UTF8String], [xml
lengthOfBytesUsingEncoding:NSUTF8StringEncoding]);

xmlNodePtr root = xmlDocGetRootElement(doc);

}

@end

In this example, the external entity is parsed when the “xmlParseMemory”
method is called on the XML string and will result in an outbound HTTP
connection from the device. In other circumstances, developers should be
aware that it may also be possible to open local files using the “file://”
protocol handler, under the constraints of the sandbox.

iOS apps will typically need to store some application data client-side; one of
the simplest ways to achieve this is to use a SQLite data store. Much like when
SQL is used within web applications, if the statement is not formed correctly it
can lead to SQL injection. While in most circumstances this has little impact as
the data store is client-side, it is an exploitable condition if untrusted data
supplied by a malicious user is retrieved from the server . To perform data
access on client-side SQLite databases, iOS provides the built-in SQLite data
library. If using SQLite, the application will be linked to the
“libsqlite3.dylib” library.

Similarly to traditional web applications, iOS app SQL injection occurs when
un-sanitised user input is used to construct a dynamic SQL statement. In
order to compile a SQL statement, the statement must first be defined as a
constant character array and passed to one of the SQLite prepare methods.

Consider the following example of a social networking application that reads
multiple users’ status messages and stores the results for offline viewing in a
SQLite database. The application reads from multiple user feeds and renders a
link to the user’s profile and their display name in the app. The following code
example shows a dynamically created SQLite statement that is executed when
the user’s message feed is read:

 iOS Application (In)Security

P ub l ic R e le a s e
Page 40 of 54

v 1.0

sqlite3 *database;

sqlite3_stmt *statement;

if(sqlite3_open([databasePath UTF8String], &database) == SQLITE_OK)

{

 NSString *sql = [NSString stringWithFormat:@"INSERT INTO messages VALUES('1',
'%@','%@','%@')", msg, user, displayname];

 const char *insert_stmt = [sql UTF8String];

 sqlite3_prepare_v2(database, insert_stmt, -1, &statement, NULL);

 if (sqlite3_step(statement) == SQLITE_DONE)

In the above code excerpt, the developer first opens the SQLite database,
stored in the “databasePath” variable. If the database was successfully
opened, an NSString object is initialised to create a dynamic SQL statement
using the unsanitised, attacker-controlled “msg”, “user” and “displayname”
variables. The SQL query is then converted to a constant character array and
compiled as a SQL statement using the “sqlite3_prepare_v2” method.
Finally, the SQL statement is executed using the “sqlite3_step” method.

As the parameters that are used to construct the statement originate from the
user, the resultant statement can be user controlled. For example, consider a
malicious user setting a status message as follows:
Check out my cool site http://mdattacker.net', 'Goodguy', 'Good guy');/*

This would result in the following SQL query being executed:
INSERT INTO messages VALUES('1', 'Check out my cool site http://mdattacker.net',
'Goodguy', 'Good guy');/*','originaluser','Original User');

Consequently, the attacker is able to control the subsequent fields in the query
and make the message appear as though it originated from another user.

The resolution is similar to SQL injection prevention in traditional applications;
the query structure should be defined using bind variables and parameterised
queries. SQLite provides the sqlite3_bind_text function for binding text
values to prepared statements. The previous example can be resolved as
follows:
const char *insert_stmt = “INSERT INTO messages VALUES(‘1’, ?, ?, ?)”;;

sqlite3_prepare_v2(database, insert_stmt, -1, &statement, NULL);

sqlite3_bind_text(&insert_stmt, 1, [msg UTF8String], -1, SQLITE_TRANSIENT);

sqlite3_bind_text(&insert_stmt, 2, [user UTF8String], -1, SQLITE_TRANSIENT);

sqlite3_bind_text(&insert_stmt, 3, [displayname UTF8String], -1,
SQLITE_TRANSIENT);

if (sqlite3_step(statement) == SQLITE_DONE)

Using the parameterised query, the msg variable will be bound in to the bind
variable in the compiled statement and cannot be escaped.

http://mdattacker.net/
http://mdattacker.net/

 iOS Application (In)Security

P ub l ic R e le a s e
Page 41 of 54

v 1.0

Filesystem interaction in iOS can be achieved using the NSFileManager or
NSFileHandle classes. While the NSFileManager class is explicitly used for the
filesystem, NSFileHandle also allows access to sockets, pipes and devices.

The NSFileManager class offers robust file system interaction with a number
of instance methods to perform file operations, including:

Instance Methods Description

fileExistsAtPath Determines if a file exists.

contentsEqualAtPath Compares the contents of two files.

isReadableFileAtPath,
isWritableFileAtPath,
isExecutableFileAtPath,
isDeletableFileAtPath

Determines if a file is readable, writeable,
executable or deletable.

moveItemAtPath Renames the specified file.

copyItemAtPath Copies a file to the specified destination.

remoteItemAtPath Deletes the specified file.

createSymbolicLinkAtPath Creates a symbolic link to the specified
file.

The NSFileHandle class provides a more advanced means of interacting with
a file descriptor. This class is closer to the traditional C file operations and
provides a means to seek to offsets within the file and leaves the responsibility
of closing the handle to the developer.

Both the NSFileManager and NSFileHandle classes can be affected by
directory traversal issues in a scenario where by the attacker can control part
of the filename.

Consider the following implementation to read a file ’s contents using both
classes:
- (NSData*) readContents:(NSString*)location

{

 NSFileManager *filemgr;

 NSData *buffer;

 filemgr = [NSFileManager defaultManager];

 buffer = [filemgr contentsAtPath:location];

 return buffer;

}

 iOS Application (In)Security

P ub l ic R e le a s e
Page 42 of 54

v 1.0

- (NSData*) readContentsFH:(NSString*)location

{

 NSFileHandle *file;

 NSData *buffer;

 file = [NSFileHandle fileHandleForReadingAtPath:location];

 buffer = [file readDataToEndOfFile];

 [file closeFile];

 return buffer;

}

In the above methods, the developer has made no attempt to sanitise the
location string prior to opening the file, leading to a directory traversal
vulnerability using traditional traversal strings such as “../../”:
NSString *fname = @"../Documents/secret.txt";

NSString *sourcePath = [[NSString alloc] initWithFormat:@"%@/%@", [[NSBundle
mainBundle] resourcePath], fname];

NSLog(@"####### PATH = %@", sourcePath);

NSString *contents = [[NSString alloc] initWithData:[fm
readContentsFH:sourcePath] encoding:NSUTF8StringEncoding];

NSLog(@"####### File contents: %@", contents);

In the above example, the fname variable originates from a user controlled
string allowing the attack to traverse outside of the resource bundle directory
and in to the Documents directory:
2012-02-11 15:58:18.029 VulnerableiPhoneApp[3291:707] ####### PATH =
/var/mobile/Applications/E84D97BB-79E7-4603-93D3-
09A88CB4FA71/VulnerableiPhoneApp.app/../Documents/secret.txt

2012-02-11 15:58:18.040 VulnerableiPhoneApp[3291:707] ####### File contents:
Password=abc123

Developers should also be aware of the risks of mixing Objective-C and C, in
particular when performing file operations. Objective C does not use null bytes
to terminate a string in an NSString object. If a developer uses an NSString
object with a user controlled file path and later file operations are performed in
C, the attacker may be able to terminate the string early. For example,
consider the following:
NSString *fname = @"../Documents/secret.txt\0";

NSString *sourcePath = [[NSString alloc] initWithFormat:@"%@/%@.jpg", [[NSBundle
mainBundle] resourcePath], fname];

char line[1024];

FILE *fp = fopen([sourcePath UTF8String], "r");

fread(line, sizeof(line), 1024, fp);

NSString *contents = [[NSString alloc] initWithCString:line];

fclose(fp);

In the above example the developer expects the string to provide a location to

 iOS Application (In)Security

P ub l ic R e le a s e
Page 43 of 54

v 1.0

a JPG file, and attempts to restrict the extension by manually defining it within
the initialisation of the sourcePath variable. However, the null byte in the
fname variable causes the string to be terminated early when converted to a C
string, allowing the attacker to open any file type.

Apple provides a means of accessing the device ’s geo-location features using
the Core Location framework. Device coordinates can be determined using
GPS, cell tower triangulation or WiFi network proximity. When using geo-
location data, there are two main privacy concerns that developers should
consider: how and where data is logged and the requested accuracy of
coordinates.

Core Location is event driven and an app looking to receive location
information must register to receive event updates. Event updates can provide
longitude and latitude coordinates for use in the app. As previously mentioned,
an important consideration when reviewing an app is to evaluate how this
coordinate data is stored. If the app must store coordinate information client-
side, the developer should protect this data using one of the previously
detailed methods. However, to avoid the app being used to track a user’s
movements, it is generally recommended that location information is not
stored on the device. In addition to client-side logging, if the app passes
coordinate information to a server, developers should ensure that if this
information is logged, it is done so anonymously.

Another consideration for developers when requesting event updates is the
accuracy of the information they require. For example, if the app is used for
satellite navigation, then it is likely to require very accurate location
information. Whereas, an app that provides information about the closest
restaurant does not need to be as accurate. Similarly to location logging, the
accuracy of the coordinates raises privacy concerns and should be considered
by developers when writing iOS applications.

When using CLocationManager, an app can request accuracy using the
CLLocationAccuracy class that offers the following constants:

 kCLLocationAccuracyBestForNavigation
 kCLLocationAccuracyBest
 kCLLocationAccuracyNearestTenMeters
 kCLLocationAccuracyHundredMeters
 kCLLocationAccuracyKilometer
 kCLLocationAccuracyThreeKilometers

 iOS Application (In)Security

P ub l ic R e le a s e
Page 44 of 54

v 1.0

Logging can prove a valuable resource for debugging during development,
however in some cases it can leak sensitive or proprietary information, which
is then cached on the device until the next reboot. Logging in objective C is
typically performed using the NSLog method that causes a message to be sent
to the Apple System Log. These console logs are not only accessible using the
Xcode organiser application but by any app installed on the device, using the
ASL library.

In some cases jailbreaking a device will cause NSLog output to be redirected to
syslog. In this scenario, it is possible that sensitive information may be stored
on the file system in syslog. As such, best practice recommends that
developers avoid using NSLog to log sensitive or proprietary information.

The simplest way for developers to avoid compiling NSLog into production
releases is to redefine it with a dummy pre-processor macro such as “#define
NSLog(…)”.

If an application is open, it is possible that it can be sent in to the background
by a change in state, such as the user pressing the Home button or from an
incoming call. When an application is suspended in the background, iOS will
take a “snapshot” of the app and store it in the application caches directory.
When the application is reopened, the device will use the screenshot to create
the appearance that the application loads instantly rather than the small
amount of time it actually takes to reload the application and for it to become
useable again.

If any sensitive information is open in the application when it enters the
background, the snapshot is written to the filesystem in clear text. However,
the UIApplication delegate method applicationDidEnterBackground can
be used to detect when an application is entering the background and modify
the display accordingly. For example, if there are specific fields that contain
sensitive information, the application can hide these using the “hidden”
attribute:
- (void)applicationDidEnterBackground:(UIApplication *)application {

viewController.creditcardNumber.hidden = YES;

}

Conversely, when the application restarts, it can unhide these by doing the
reverse in the applicationDidBecomeActive delegate:
- (void)applicationDidBecomeActive:(UIApplication *)application {

viewController.creditcardNumber.hidden = NO;

}

 iOS Application (In)Security

P ub l ic R e le a s e
Page 45 of 54

v 1.0

Introduction

iOS apps are typically resilient to classic memory corruption issues such as
buffer overflows if the developers rely on Objective-C to perform memory
allocations as the developer cannot specify fixed sizes for buffers. However, as
previously mentioned, C can be intermingled in to iOS apps; it is not
uncommon to see the use of external libraries or performance dependent code
such as cryptography developed in C. These scenarios give rise to the
traditional memory corruption vulnerabilities. There is however a small
number of memory corruption issues that have transcended into Objective-C
and are detailed below.

Format String vulnerabilities are a class of memory corruption bug that arise
through improper use of Objective-C methods that accept a format specifier.
Vulnerable Objective-C methods include the following:

 NSLog
 [NSString stringWithFormat]
 [NSString stringByAppendingFormat]
 [NSString initWithFormat]
 [NSMutableString appendFormat]
 [NSAlert alertWithMessageText]
 [NSAlert informativeTextWithFormat]
 [NSException format]
 [NSMutableString appendFormat]
 [NSPredicate predicateWithFormat]

Format string vulnerabilities arise when an attacker is able to provide the
format specifier in part or as a whole to the relevant method. For example,
consider the following:
NSString *myURL=@"http://10.0.2.1/test";

NSURLRequest *theRequest = [NSURLRequest requestWithURL:[NSURL
URLWithString:myURL]];

NSURLResponse *resp = nil;

NSError *err = nil;

NSData *response = [NSURLConnection sendSynchronousRequest: theRequest
returningResponse:&resp error: &err];

NSString * theString = [[NSString alloc] initWithData:response
encoding:NSASCIIStringEncoding];

NSLog(theString);

In this example a request is made to a web server running on 10.0.2.1, the
response is then stored in a NSData object, converted to a NSString and
logged using NSLog. The documented usage of the NSLog function where

 iOS Application (In)Security

P ub l ic R e le a s e
Page 46 of 54

v 1.0

NSLog is a wrapper for NSLogv and args is a variable number of arguments is:
void NSLogv (
 NSString *format,
 va_list args
);

However, in this instance the developer has supplied only a single argument,
allowing the attacker to specify the type of parameter that would be logged.

Running the above example in a debugger, we can see how the format string
vulnerability can be triggered using a simple HTTP web server response:
bash-3.2# nc -lvp 80

listening on [any] 80 ...

10.0.2.2: inverse host lookup failed: Unknown host

connect to [10.0.2.1] from (UNKNOWN) [10.0.2.2] 52141

GET /test HTTP/1.1

Host: 10.0.2.1

User-Agent: fmtstrtest (unknown version) CFNetwork/548.0.4 Darwin/11.0.0

Accept: */*

Accept-Language: en-us

Accept-Encoding: gzip, deflate

Connection: keep-alive

HTTP/1.1 200 OK

Content-Type: text/html; charset=utf-8

Content-Length: 16

aaaa%x%x%x%x%x%x

The HTTP response body is logged to NSLog and triggers the format string
vulnerability, causing stack memory to be dumped to the console log, as
shown below:
(gdb) r

Starting program: /private/var/root/fmtstrtest

objc[8008]: Object 0x11f0b0 of class NSURL autoreleased with no pool in place -
just leaking - break on objc_autoreleaseNoPool() to debug

objc[8008]: Object 0x11e310 of class NSURLRequest autoreleased with no pool in
place - just leaking - break on objc_autoreleaseNoPool() to debug

objc[8008]: Object 0x11f540 of class NSThread autoreleased with no pool in place
- just leaking - break on objc_autoreleaseNoPool() to debug

2012-02-29 17:02:36.304 fmtstrtest[8008:303] aaaa124a600782fe5b84411f0b00

Program exited normally.

(gdb)

Exploitation of traditional format string vulnerabilities can be accomplished
using the “%n” format specifier, allowing an attacker to write to an arbitrary

 iOS Application (In)Security

P ub l ic R e le a s e
Page 47 of 54

v 1.0

memory address read from the stack. However, this format specifier is not
available in Objective-C. Instead, iOS format string vulnerabilities can be
exploited using the “%@” specifier which defines an Objective-C object.
Consequently, this may allow an arbitrary function pointer to be called.

Consider the following example (taken from [7]) that simply passes the value
from argv[1] to NSLog:
int main(int argc, const char* argv[])

{

 NSAutoreleasePool *pool =[[NSAutoreleasePool alloc] init];

 NSString *n = [[NSString alloc] initWithCString:argv[1]];

 NSLog(n);

 [pool drain];

 return 0;

}

Popping enough data to reach the user controlled part of stack memory, we
can see how the %@ specifier causes a crash when dereferencing our pointer:
(gdb) r
bbbbbbbbbbbbbbbb%x%x%x%x%x%x%x%%x%x%x%x%x%x%x%%x%x%x%x%x%x%x%%x%x%x%x%x%x%x%%x%x%
x%x%x%x%x%%x%x%x%x%x%x%x%%x%x%x%x%x%x%x%%x%x%x%x%x%x%x%%x%x%x%x%x%x%x%x%x%x%@

Starting program: /private/var/root/fmtstrtest
bbbbbbbbbbbbbbbb%x%x%x%x%x%x%x%%x%x%x%x%x%x%x%%x%x%x%x%x%x%x%%x%x%x%x%x%x%x%%x%x%
x%x%x%x%x%%x%x%x%x%x%x%x%%x%x%x%x%x%x%x%%x%x%x%x%x%x%x%%x%x%x%x%x%x%x%x%x%x%@

Program received signal EXC_BAD_ACCESS, Could not access memory.

Reason: KERN_INVALID_ADDRESS at address: 0x62626262

0x320f8fb6 in ?? ()

(gdb)

However in most situations Objective-C will use the heap for storing objects
and therefore in practice, exploitation is unlikely. Further information on
exploiting format string vulnerabilities can be found in [7].

Object use-after-free vulnerabilities occur when a reference to an object still
exists after the object has been freed. If this freed memory is reused and an
attacker is able to influence the reused memory, in some circumstances it may
be possible to gain arbitrary code execution. Exploitation of use after free
vulnerabilities in Objective-C is documented in-depth within [21]. Consider the
following example:
MDSec *mdsec = [[MDSec alloc] init];

[mdsec release];

[mdsec echo: @"MDSec!"];

In the example above, an instance of the MDSec class is first created then

 iOS Application (In)Security

P ub l ic R e le a s e
Page 48 of 54

v 1.0

freed using release. However after the object has been released, the echo
method is called on the previously freed pointer. In this instance a crash is
unlikely, as the memory will not have been corrupted through reallocation or
deconstruction.

However, consider an example whereby the heap has been sprayed with user-
controlled data:
MDSec *mdsec = [[MDSec alloc] init];

[mdsec release];

for(int i=0; i<=50000; i++) {

 char *buf = strdup(argv[1]);

}

[mdsec echo: @"MDSec!"];

Running the above example will cause an access violation when the echo
method is called due to the reuse of heap memory used by the previously
freed object instance:
(gdb) r AAAA

Starting program: /private/var/root/objuse AAAA

Program received signal EXC_BAD_ACCESS, Could not access memory.

Reason: KERN_INVALID_ADDRESS at address: 0x41414149

0x320f8fbc in ?? ()

(gdb)

The release of iOS 5 saw the introduction of Automatic Reference Counting
(ARC) (See section 3.4) which passes the responsibility of memory
management from the developer to the compiler. Consequently, for apps using
ARC there is likely to be a significant reduction in the number of use-after-free
issues as the developer no longer bears the responsibility for releasing or
retaining objects.

 iOS Application (In)Security

P ub l ic R e le a s e
Page 49 of 54

v 1.0

In conclusion, thanks to the increase in adoption of mobile computing, mobile
security has never been so important. With the growing use of mobile apps
both in the consumer and enterprise markets, mobile app security will
continue to come under increasing scrutiny.

Perhaps the two most important issues in mobile app security are how data
transport and storage are implemented as these pose the greatest risk to
individuals and businesses. While there are many API specific injection style
attacks and memory corruption flaws the attack surface often relies on a
compromised server or insecure transport mechanisms that allow an attacker
to manipulate communications to the device.

The security features offered by the platform provide a growing number of
hurdles that an attacker must overcome to successfully exploit memory
corruption flaws on the device. Indeed memory corruption flaws in third party
apps pose little risk to the platform unless these can be combined with
vulnerabilities in iOS itself.

Going forwards, while it is unlikely mobile app vulnerabilities will disappear in
the near future; the advent of mobile security projects such as that of
OWASP’s [22] will raise the awareness of mobile security issues and hopefully
help raise the bar in mobile development. Organisations looking to implement
secure mobile applications should integrate security assessments throughout
the development lifecycle and ensure developers and QA teams receive
sufficient security education.

 iOS Application (In)Security

P ub l ic R e le a s e
Page 50 of 54

v 1.0

During iOS application assessments, it is often useful to have a base line of
compliance that an app should conform to, providing guidelines not only for
security evaluators but also developers. Below, MDSec provides a possible
platform to guide iOS assessments:

Issue Compliance

Compiler Protection

Application is compiled with PIE PASS/FAIL

Application is compiled with stack cookies PASS/FAIL

Application uses Automatic Reference Counting PASS/FAIL

Transport Security

Application rejects self-signed certificates:
allowsAnyHTTPSCertificateForHost /
continueWithoutCredentialForAuthenticationChallenge

PASS/FAIL

Application rejects expired certificates:
kCFStreamSSLAllowsExpiredCertificates

PASS/FAIL

Application validates root certificates:
kCFStreamSSLAllowsAnyRoot

PASS/FAIL

Application validates certificate chain:
kCFStreamSSLValidatesCertificateChain

PASS/FAIL

Inter Process Communication

Application validates the source bundle : handleOpenURL PASS/FAIL

Application validates content of IPC parameters PASS/FAIL

Data Storage

Application encrypts data written with NSData PASS/FAIL

Application encrypts data written with NSFileManager PASS/FAIL

Keychain

Keychain items are protected using the Data Protection API :
SecItemAdd / SecItemUpdate

PASS/FAIL

UIWebViews

Application does not load UIWebView from a local resource PASS/FAIL

 iOS Application (In)Security

P ub l ic R e le a s e
Page 51 of 54

v 1.0

Application validates user controlled content populated in to a
UIWebView: stringByEvaluatingJavaScriptFromString

PASS/FAIL

XML Processing

Application disables external entities with NSXMLParser:
setShouldResolveExternalEntities

PASS/FAIL

Application disables external entities with LibXML2 PASS/FAIL

Application builds XML with user controllable strings PASS/FAIL

SQL

Application uses parameterized queries for data access :
sqlite3_prepare_v2

PASS/FAIL

File System

Application sanitises path for traversal characters PASS/FAIL

Application validates NSString paths for null bytes PASS/FAIL

GeoLocation

Application uses suitable level of accuracy: CLLocationAccuracy PASS/FAIL

Application does not log location data client-side PASS/FAIL

Logging

NSLog is disabled in production builds PASS/FAIL

Custom logs contain no sensitive data PASS/FAIL

Backgrounding

Application removes sensitive data from view when
backgrounded: applicationDidEnterBackground

PASS/FAIL

Memory Corruption

Application uses correct format specifiers for vulnerable functions PASS/FAIL

Application does not reference freed objects PASS/FAIL

 iOS Application (In)Security

P ub l ic R e le a s e
Page 52 of 54

v 1.0

MDSec, the company behind the Web Application Hacker’s Handbook, is a
global authority with a passion for information security. This has helped
establish our role in defining, formalising and expanding information
security through publications, tools and worldwide training. As a vendor-
neutral organisation with no external investment, we can draw on our team's
years of blended experience to provide security advice on technical and non-
technical subjects.

The company was founded in 2011 and has seen an explosive growth in its
client base which includes prestigious companies across all sectors and
throughout the world. If you would like to find out how MDSec can help
improve the security of your organisation, please feel free to contact
sales@mdsec.co.uk for a friendly and open discussion.

The author would like to thank Marcus Pinto of MDSec, Ollie Whitehouse of Recx,
and Hubert Seiwert for advice and recommendations during the development
and review of this whitepaper.

mailto:sales@mdsec.co.uk

 iOS Application (In)Security

P ub l ic R e le a s e
Page 53 of 54

v 1.0

[1] Mobile/Tablet Top Operating System Share Trend - NetMarketShare
http://www.netmarketshare.com/operating-system-market-
share.aspx?qprid=9&qpcustomb=1

[2] Apple iOS 4 Security Evaluation – Dino Dai Zovi

https://media.blackhat.com/bh-us-
11/DaiZovi/BH_US_11_DaiZovi_iOS_Security_WP.pdf

[3] iOS Standard Agreement

https://developer.apple.com/programs/terms/ios/standard/ios_standard_agre
ement_20100909.pdf

[4] Address Space Layout Randomization

http://en.wikipedia.org/wiki/Address_space_layout_randomization

[5] Steffan Esser’s ASLR Research

http://antid0te.com/CSW2012_StefanEsser_iOS5_An_Exploitation_Nightmare
_FINAL.pdf

http://www.suspekt.org/

[6] Apple Sandbox - Dionysus Blazakis

http://securityevaluators.com/files/papers/apple-sandbox.pdf

[7] Auditing iPhone and iPad Applications – Ilja van Sprundel

http://cansecwest.com/csw11/iPhone%20and%20iPad%20Hacking%20-
%20van%20Sprundel.ppt

[8] Secure Development on iOS – David Thiel

http://www.isecpartners.com/storage/docs/presentations/iOS_Secure_Develo
pment_SOURCE_Boston_2011.pdf

[9] Crackulous

http://hackulo.us/wiki/Crackulous

[10] Mach-O File Format Reference

https://developer.apple.com/library/mac/#documentation/developertools/conc
eptual/MachORuntime/Reference/reference.html

[11] Class-Dump-Z

http://code.google.com/p/networkpx/wiki/class_dump_z

[12] MobileSubstrate

http://iphonedevwiki.net/index.php/MobileSubstrate

http://www.netmarketshare.com/operating-system-market-share.aspx?qprid=9&qpcustomb=1
http://www.netmarketshare.com/operating-system-market-share.aspx?qprid=9&qpcustomb=1
https://media.blackhat.com/bh-us-11/DaiZovi/BH_US_11_DaiZovi_iOS_Security_WP.pdf
https://media.blackhat.com/bh-us-11/DaiZovi/BH_US_11_DaiZovi_iOS_Security_WP.pdf
https://developer.apple.com/programs/terms/ios/standard/ios_standard_agreement_20100909.pdf
https://developer.apple.com/programs/terms/ios/standard/ios_standard_agreement_20100909.pdf
http://en.wikipedia.org/wiki/Address_space_layout_randomization
http://antid0te.com/CSW2012_StefanEsser_iOS5_An_Exploitation_Nightmare_FINAL.pdf
http://antid0te.com/CSW2012_StefanEsser_iOS5_An_Exploitation_Nightmare_FINAL.pdf
http://www.suspekt.org/
http://securityevaluators.com/files/papers/apple-sandbox.pdf
http://cansecwest.com/csw11/iPhone%20and%20iPad%20Hacking%20-%20van%20Sprundel.ppt
http://cansecwest.com/csw11/iPhone%20and%20iPad%20Hacking%20-%20van%20Sprundel.ppt
http://www.isecpartners.com/storage/docs/presentations/iOS_Secure_Development_SOURCE_Boston_2011.pdf
http://www.isecpartners.com/storage/docs/presentations/iOS_Secure_Development_SOURCE_Boston_2011.pdf
http://hackulo.us/wiki/Crackulous
https://developer.apple.com/library/mac/#documentation/developertools/conceptual/MachORuntime/Reference/reference.html
https://developer.apple.com/library/mac/#documentation/developertools/conceptual/MachORuntime/Reference/reference.html
http://code.google.com/p/networkpx/wiki/class_dump_z
http://iphonedevwiki.net/index.php/MobileSubstrate

 iOS Application (In)Security

P ub l ic R e le a s e
Page 54 of 54

v 1.0

[13] Cycript: Objective-Javascript

http://www.cycript.org/

[14] iOSOpenDev

http://www.iosopendev.com/

[15] Insecure Handling of URL Schemes in Apple’s iOS – Nitesh Dhanjani

http://software-security.sans.org/blog/2010/11/08/insecure-handling-url-
schemes-apples-ios/

[16] Citigroup iPhone Data Storage Issues

http://www.theregister.co.uk/2010/07/27/citi_iphone_app_weakness/

[17] iPhone data protection in depth

http://esec-lab.sogeti.com/dotclear/public/publications/11-hitbamsterdam-
iphonedataprotection.pdf

[18] Keychain Dumper

https://github.com/ptoomey3/Keychain-Dumper

[19] Skype iOS XSS

https://superevr.com/blog/2011/skype-xss-explained/

[20] Billion Laughs

http://en.wikipedia.org/wiki/Billion_laughs

[21] Abusing the Objective-C Runtime

http://www.phrack.org/issues.html?issue=66&id=4

[22] OWASP Mobile Security Project

https://www.owasp.org/index.php/OWASP_Mobile_Security_Project

http://www.cycript.org/
http://www.iosopendev.com/
http://software-security.sans.org/blog/2010/11/08/insecure-handling-url-schemes-apples-ios/
http://software-security.sans.org/blog/2010/11/08/insecure-handling-url-schemes-apples-ios/
http://www.theregister.co.uk/2010/07/27/citi_iphone_app_weakness/
http://esec-lab.sogeti.com/dotclear/public/publications/11-hitbamsterdam-iphonedataprotection.pdf
http://esec-lab.sogeti.com/dotclear/public/publications/11-hitbamsterdam-iphonedataprotection.pdf
https://github.com/ptoomey3/Keychain-Dumper
https://superevr.com/blog/2011/skype-xss-explained/
http://en.wikipedia.org/wiki/Billion_laughs
http://www.phrack.org/issues.html?issue=66&id=4
https://www.owasp.org/index.php/OWASP_Mobile_Security_Project

