
Hyperion: Implementation of a
PE-Crypter

Christian Ammann
May 8, 2012

Nullsecurity Team Hyperion: Implementation of a PE-Crypter

Crypter
Input
file

Container, acts
as a decrypter
and PE loader

Input file
checksum

Input
file

Encrypted with AES

Figure 1: Brief Overview of the PE Crypter Workflow

1 Introduction

Runtime crypter accepts binary executable files as input and transforms them into an
encrypted version (preserving its original behaviour). The encrypted file decrypts itself
on startup and executes it’s original content. This approach allows the deployment of
malicious executables in protected environments: A pattern based anti virus (AV) solu-
tion detects the signature of suspicious files and blocks their execution. The encrypted
counterpart contains an unknown signature, it’s content can not be analysed by heuris-
tics and is therefore executed normally without an intervention by the AV scanner. Other
uses are protection of binaries against reversing or the replacement of the encryption
routine with a packer to reduce the size of an executable.

This paper reveals the theoretic aspects behind run-time crypters and describes a refer-
ence implementation for Portable Executables (PE) [1] which is the windows file format
for dynamic-link libraries (DLLs), object files and regular executables. The encryption of
Windows executables requires a general understanding of the following aspects:

• PE layout: The PE header, section headers and data directory entries.

• PE loader: How and where are process images loaded and executed in virtual
memory.

We give a beginner friendly introduction to these two important topics in section 2. Af-
terwards, we present and explain the PE crypter reference implementation Hyperion in
section 3 for 32-bit executables which can be divided into two parts (see figure 1 for de-
tails): A crypter and a container. The crypter (which is explained in more detail in section
3.1) gets a PE binary as input, copies the complete input file into memory, calculates
a checksum and prepends the checksum to the input file. Afterwards, a random key is
generated which is used to encrypt the checksum and the input file with the AES-128
[2] encryption algorithm. Finally, the encrypted result is copied into the containers data
section.

The container (described in more detail in section 3.2) acts as a decrypter and PE
loader: It copies the encrypted input file into memory, decrypts it and starts the execu-
tion. The decryption key is missing in the container, Therefore, it has to perform a brute-
force search through the (reduced) key space using the checksum to verify whether a

2

Nullsecurity Team Hyperion: Implementation of a PE-Crypter

key was correct or not. At first sight this is a disadvantage because the encrypted ex-
ecutable needs additional time on startup for the decryption. On the other hand, it is a
great protection against static and dynamic analysis of anti virus products.

The crypters run-time workflow is another advantage of our approach: The container
is provided as flat assembler (FASM) [3] source code. The encrypted executable is
converted into a FASM source code representation (e.g. ”db 0x4d, 0x5a, 0x00, 0x00,
...”) and stored in the input.asm file. Input.asm is copied into the containers source
code directory and is included in the containers source code with the include directive
(e.g. include ”‘input.asm”’). Finally, the crypter calls the assembler which generates the
corresponding binary.

In comparison, an injection of the encrypted input file into a binary form of the con-
tainer (e.g. container.exe) would make it necessary to patch big parts of the container
manually (image base, section sizes, etc). Our approach delegates these tasks to the
compiler which reduces the complexity of the crypter and simplifies extendability and
maintainability.

Some aspects like polymorphism and anti-heuristic are still missing in our implementa-
tion. Therefore, we present and discuss further work in section 4.

2 Portable Executables and the Windows PE Loader

This section describes the the format of windows portable executables and how they are
loaded into memory. There are many papers which cover this topic and we assume that
the reader has at least some basic knowledge of modern operating system concepts,
like virtual memory, sys calls, etc. Therefore, we give just a brief introduction to the
important elements of windows .exe files in the following table:

Name Content
MZ-Stub MS-DOS header, MS-DOS stub,

pointer to the image filer header
Magic PE Value Signature
Image Filer Header size of optional header, number of sections
Image Optional Header Address of entry point, image base,

size of image
Data Directories Pointer to import table, pointer to export table
Section table List of section header
Sections .code section, .data section, etc.

The table contains the structure of a PE image and not the structure of a PE file which is
loaded into memory. Each windows executable starts with a MZ-Stub. The stub is a MS-
DOS program which displays the message ”You can not run this program in DOS mode”

3

Nullsecurity Team Hyperion: Implementation of a PE-Crypter

(or something comparable). Therefore, when executed in an MS-DOS environment, the
DOS exe loader recognizes the DOS header, displays the message and terminates.

The header of the MZ-Stub contains an additional (and last) element pointer to the win-
dows PE header which starts with the magic value ”‘P, E, 0x0, 0x0”’ and is followed by
the image file header. The image file header has a static size and contains information
about the supported machine type (e.g. x86 [4] or ARM [5] architecture), flags (indi-
cating for example whether the PE file is a DLL or not), etc. The important entries for
the implementation of the PE crypter are the total amount of sections and the optional
header size. They are necessary for parsing the PE header because the total amount
of sections and the amount of entries in the data directory are not fixed.

The image file header is followed by the image optional header (which is not optional
at all). It contains various informations like the size of executable code, the size of data,
etc. See [1] for detailled informations. The important entries in the optional header are
the image base and the size of image. We already mentioned that the container of the
PE crypter acts as a decrypter and PE loader. Therefore, the container has to allocate
memory at the image base address (the usage of the image base is not necessary if
the input file provides a relocation table) with a size specified by size of image entry.
Afterwards, the decrypted file is copied to this location and executed.

The data directory is also a part of the image optional header. It is basically a list which
provides the address and size of the relocation table, the export table, the import table,
etc. The most important entry for the PE crypter is the pointer to the import table. The
import table contains a list of API (Application Programming Interface) names. APIs are
functions which are located in DLLs und are used by applications to interact with the
operating system (e.g. an application which wants to display a message box has to call
the API MessageBox() located in the user32.dll). The import table contains basically
the DLL names, the API names and an empty list of function pointers. The container
has to parse the import table of the decrypted input file, load the corresponding DLLs,
get the addresses of the necessary APIs and write them into the function pointer list.

The next part of the PE header is a list of section headers. Sections provide data and
code in a PE file and each section has a corresponding section header. A section
header contains a section name, some flags (read, write execute, etc.), the sections
address and the section size. The section size consists of the size of raw data and the
virtual size. The size of raw data represents the section size in the PE image (e.g. on a
hard disk) while the virtual size is the section size after being loaded into memory. Also
the address entry consists of values: virtual address and pointer to raw data. Again, the
pointer to raw data is the section address in the PE image while the virtual address is
the section address after being loaded into memory. The last section header is followed
by the sections.

We have described the structure of PE files and will now introduce the different tasks of
the PE loader. Before we can describe the PE loader, we have to discuss the addressing
mechanisms in a PE file: Windows 32-bit and 64-bit executables have almost similiar
PE headers, The only difference: Depending on the architecture, some address entries

4

Nullsecurity Team Hyperion: Implementation of a PE-Crypter

(e.g. the entry point) have a width of 32- or 64-bit. The crypter which is described in this
paper supports only 32-bit executables and therefore we assume a 32-bit PE header.

Another import aspect is the absolute and relative addressing: Most entries in a PE
header are relative virtual addresses (RVAs). On the other hand, code in a windows
executable may use absolute addressing and assumes the PE file is loaded at its image
base. If a PE file is loaded to another memory location, the relocation table (which is
not mandatory in a regular .exe file) has to be used to fix the absolute addressing. We
describe now the basic mechanisms of the windos PE loader:

• The amount of memory which is specified in size of image is allocated at the
image base address.

• The complete PE header is copied to the image base address.

• The sections are copied to their corresponding virtual addresses.

• The import table is read and the corresponding DLLs are loaded. The addresses
of the APIs are written into the previously described function pointer list.

• The section permissions are set (read, write, execute).

• Execution is passed to the PE file and the loader jumps the the files entry point.

This is just a basic and simplified description for a better understanding of the following
sections. Some advanced topics are missing and we discuss them in section 4.

3 Hyperion

Hyperion can be divided into two parts: A crypter and a container. The interaction of
both components is shown in figure 2 and described in detail in the following two sec-
tions.

3.1 The Crypter

The crypter is a command line application and developed in C/C++. It encrypts the input
file and injects it into the container. Our first approach was to provide a precompiled
container binary. The injection of an input file into a binary container is challenging
because the PE header of the container has to be heavily modified.

Furthermore, it is possible that the input file does not contain a relocation table and has
to be loaded at its original image base before execution. In this case, the container has
to be loaded at the input files image base address and is overwritten after the encryption

5

Nullsecurity Team Hyperion: Implementation of a PE-Crypter

input.exe

crypter

fasm

output.exe

encrypted_
input.inc

image_
base.inc

image_
size.inc

container assembler source
code

generates

input

generates

ca
lls

Figure 2: Detailled PE Crypter Workflow

by the input file. This makes it necessary to patch the containers image base PE header
entry. The modification of the image base enforces an update of each element in the
container (code or data) which relies on absolute addressing.

This paper avoids these problems and presents a new workflow for run-time PE crypter:
We inject the encrypted input file into an assembler source code representation of the
container. Afterwards, Fasm is called and the container executable is generated. The
advantage is: The modification of the PE header, patching the absolute addressing, etc.
is not neccessary anymore because this is done by Fasm. Therefore, the crypter relies
on the following components:

• The assembler source code of the container.

• A Fasm binary which is called at run-time.

• A DLL which provides 128-bit AES encryption.

We have described the general structure of the crypter and describe now the imple-
mentation details: The crypter is called by the user and gets an input and an output file
as parameters. The input file is opened, copied into memory and validated:

• The MZ header has to begin with the magic MZ value.

6

Nullsecurity Team Hyperion: Implementation of a PE-Crypter

• The pointer to the PE header has to be valid pointer.

• The PE header has to begin with the magic PE value.

• The input file has to be a 32-bit executable (64-bit executables are not supported
yet).

Afterwards, the PE header is analyzed and the Image Base and Size of Image en-
tries are extracted. Some other values are also parsed (e.g. the section headers) but
they are not important for the crypter workflow and just printed on screen as verbose
informations for the user.

The next step is the encryption of the input file. A checksum with a size of 4 bytes is cre-
ated and prepended to the input file buffer in memory. AES is a block cipher and each
block has a size of 16 bytes. Therefore, the input file buffer is increased to a size multi-
ple of 16 (the additional space is filled with zeros). After the modification of the input file
buffer, a random encryption key is generated. Hyperion uses an AES-128 encryption
algorithm which leads to a key size of 16 bytes. The container has to bruteforce the en-
cryption key which would consume a large amount of time if the complete key space is
used. Therefore, the key space is reduced and the key is generated using the following
algorithm:

Listing 1: AES Key Generation Algorithm
1 unsigned char key [AES KEY SIZE] ;
2 for (i n t i =0; i<AES KEY SIZE ; i ++){
3 i f (i<KEY SIZE) key [i] = rand () % KEY RANGE;
4 else key [i] = 0 ;
5 }

The listing uses two important constants (which are defined in the crypters source
code): KEY SIZE and KEY RANGE. KEY RANGE specifies the the key size and can
have a value between 0 and 15 (unused bytes are filled with zeros). The maximum
value of each key element is specified in KEY SIZE and can be a value between 0 and
255.

After the generation of the key, the input file is encrypted. We use an AES implemen-
tation for Fasm [6] and compile it as a DLL to make it accessible for our C/C++ crypter
implementation. The crypter loads the DLL, the API aesEncrypt() and encrypts the input
file buffer (containing the checksum, the input file and the gap to make its size a multiple
of 16) using the generated key. The encrypted file is converted into the following ASCII
representation:

Listing 2: Encrypted Input File converted to Fasm Array
1 db 0xf3 , 0x64 , 0x24 , 0xa , 0x3e , 0x7e , 0x4c , 0xa6 , 0xcd , 0x91 , \
2 0x47 , 0x2b , 0x5b , 0x3d , 0xd1 , 0x2a , 0xa2 , 0 x f f , 0x38 , 0x40 , \
3 0xe5 , 0x5b , 0xa6 , 0x8a , 0x44 , 0 x f f , 0xc , 0x47 , 0x6a , 0x7f , \
4 ; . . .

7

Nullsecurity Team Hyperion: Implementation of a PE-Crypter

The content of the listing is compatible with Fasm, stored in the file input.asm and
copied into the containers source code directory. Afterwards, the Image Base, the Size
of Image, KEY SIZE and KEY RANGE are also converted into a Fasm representation
(the semantic of the corresponding Fasm code is described in section 3.2) and copied
into the containers source code directory because they are necessary at run-time (see
section 3.2 for details).

The Image Base of the input file is converted into the following Fasm representation
(assuming the image base address is 0x1000000), stored in the file imagebase.asm
and copied into the containers source code folder:

Listing 3: Image Base of Input File converted to Fasm Syntax
1 format PE GUI 4.0 at 0x1000000

The Size of Image is converted into the follwing string (assuming its value is 0x8000)
and stored in the file sizeofimage.asm:

Listing 4: Size of Image of Input File converted to Fasm Syntax
1 db 0x8000 dup (?)

Finally KEY SIZE and KEY RANGE are converted into the following Fasm source code:

Listing 5: Key Space Constants converted to Fasm Syntax
1 REAL KEY SIZE equ 6
2 REAL KEY RANGE equ 4

Afterwards, the crypter calls the Fasm binary, compiles the container source code and
generates an encrypted version of the input fle.

3.2 The Container

The container basicallt acts as a decrypter and PE loader and is written with Fasm.
Listing 6 contains a part of the main.asm source code and demonstrates the general
structure of the container. Main.asm begins with an include statement which is compa-
rable to the corresponding C preprocessor directive and includes the content of listing
2. The included statement enforces Fasm to generate a PE file for GUI’s which is loaded
at the specified image base. Due to this technique, we can ensure that the container is
always loaded at the image base of the encrypted input file.

Line 4 contains the entry statement which i used fasm to achieve the address of the
entry point. It is followed by some included files which are comparable to C/C++ header
files for important APIs and libraries. Line 7 includes the file aes.inc which is part of the
Fasm AES implementation [6]. It is used in the crypter for encryption and used in the
container for decryption.

The source code between line 13 and line 20 creates a data section called .bss. The
content of this section is shown in listing 4. It creates an empty byte array which has a

8

Nullsecurity Team Hyperion: Implementation of a PE-Crypter

Listing 6: Main.asm
1 ; Hyperion 32−B i t con ta ine r
2

3 include ’ imagebase . asm ’
4 entry s t a r t
5

6 include ’ . . \ . . \ Fasm\ fasminclude \win32a . inc ’
7 include ’ . . \ . . \FasmAES−1.0\aes\aes . inc ’
8 include ’ hyper ion . inc ’
9 include ’ c r e a t e s t r i n g s . inc ’

10 include ’pe . inc ’
11 include ’ keys ize . inc ’
12

13 ;−−
14

15 ; empty data sec t ion wi th a s ize equal to image s ize
16 ; o f the encrypted inpu t f i l e
17 section ’ . bss ’ data readable writeable
18

19 d e c r y p t e d i n f i l e : include ’ s izeof image . asm ’
20

21 ;−−
22

23 ; data sec t ion which conta ins the encrypted exe
24 section ’ . data ’ data readable writeable
25

26 p a c k e d i n f i l e : include ’ i n f i l e . asm ’
27

28 ;−−
29

30 section ’ . t ex t ’ code readable executable
31

32 s t a r t : stdca l l MainMethod
33

34 proc MainMethod stdca l l
35 ; decrypt i npu t f i l e
36 ; load inpu t f i l e
37 ; execute i npu t f i l e
38 ; . . .
39 endp

9

Nullsecurity Team Hyperion: Implementation of a PE-Crypter

PE-
Header .bss .data .code

filled with zeros
encrypted
input file

decrypter
and PE loader

image base
of input file

image size
of input file

Figure 3: Container in Memory before Decryption

size equal to the image size of the encrypted input fle. Due to this, the .bss section has
a raw size of 0, a virtual size equal to the input files image size and is located directly
after the containers PE header.

The source code between line 21 and 27 creates another data section. It’s content is
shown in figure 2 and is basically a byte array which contains the encrypted input file.
The .data section is followed by the .code section which decrypts and executes the
content of the .data section.

We have explained the basic structure of the container and will now illustrate its memory
layout. Figure 3 illustrates the memory layout of the container directly after being started
and before the decryption process. When the container is executed, it loads dynamically
some missing libraries and allocates the adresses of additional APIs. This is necessary
because the container invokes APIs like MapViewOfFile() for logging support but its
import table contains only the APIs LoadLibrary, GetProcAdress and ExitProcess). Af-
terwards, the container searches for the .data section offset using GetModuleHandle
(which returns its image base) and parsing its PE header. When the .data section is
found, the following decryption algorithm is applied:

1. Copy the encrypted file into memory as a backup.

2. Guess a key.

3. Decrypt the .data section.

4. Verify whether the key was correct using the input files checksum.

5. Wrong key: Restore the .data section from the backup and go to 2.

After the encryption, the containers PE header is overwritten with the input files PE
header. Furthermore, the sections of the input file are copied into the .bss section at
their virtual addresses. Finally, the import table of the decrypted input file is processed:
Each DLL is loaded (using LoadLibrary), the corresponding API offsets are located
(using GetProcAdress, and written into the adress table. Finally, the crypter passes
execution to the input file and jumps to the corresponding entry point. The memory
layout of the container after decrypting and loading the input file is shown in figure 4.

10

Nullsecurity Team Hyperion: Implementation of a PE-Crypter

PE-
Header .bss .data .code

sections of input
file

encrypted
input file

decrypter
and PE loader

image base
of input file

image size
of input file

PE-Header
of input
file

Figure 4: Container in Memory after Decryption

4 Conclusion and Further Work

This paper describes the basic concepts of Hyperion, a runtime PE crypter. The com-
plete source code of Hyperion will be published on the Nullsecurity home page under
an open source license.

Some important aspects are still missing in the Hyperion implementation: .NET exe-
cutables are not yet supported and the code of the container has to be refactored to
make it fool AV heuristics. Furthermore, concepts like late API binding are missing. The
most important part which still has to be implemented is polymorphism: The current
implementation of Hyperion just encrypts the input file. It is a worthwhile goal to encrypt
the complete container and generate a small decrypter stub using polymorphism.

5 Acknowledgement

I would like to express my gratitude to the whole Nullsecurity team for supporting this
work. Special thanks to Kelsey for proof reading and Malfunction for our last coding
session and the inspiring conversations.

License

Hyperion: Implementation of a PE-Crypter by Christian Ammann is distributed under a
Creative Commons Attribution 3.0 Unported License. See http://creativecommons.

org/licenses/by/3.0/ for details.

11

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Nullsecurity Team Hyperion: Implementation of a PE-Crypter

References

[1] Microsoft Cooperation. Microsoft PE and COFF Specification. http://msdn.

microsoft.com/en-us/windows/hardware/gg463119.aspx.

[2] Information Technology Laboratory (National Institute of Standards and Technol-
ogy). Announcing the Advanced Encryption Standard (AES) [electronic resource].
Computer Security Division, Information Technology Laboratory, National Institute
of Standards and Technology, Gaithersburg, MD :, 2001.

[3] Tomasz Grysztar. Flat Assembler. http://flatassembler.net/.

[4] R.C. Detmer. Introduction to 80x86 Assembly Language and Computer Architec-
ture. Jones and Bartlett, 2001.

[5] David Seal. ARM Architecture Reference Manual. Addison-Wesley Longman Pub-
lishing Co., Inc., Boston, MA, USA, 2nd edition, 2000.

[6] Christian Ammann. AES Implementation for Flat Assembler. http://www.

nullsecurity.net/tools/cryptography/fasmaes-1.0.tar.gz.

12

http://msdn.microsoft.com/en-us/windows/hardware/gg463119.aspx
http://msdn.microsoft.com/en-us/windows/hardware/gg463119.aspx
http://flatassembler.net/
http://www.nullsecurity.net/tools/cryptography/fasmaes-1.0.tar.gz
http://www.nullsecurity.net/tools/cryptography/fasmaes-1.0.tar.gz

	Introduction
	Portable Executables and the Windows PE Loader
	Hyperion
	The Crypter
	The Container

	Conclusion and Further Work
	Acknowledgement

