Uncovering Zero-Days and advanced fuzzing
How to successfully get the tools to unlock UNIX and Windows Servers

By Nikolaos Rangos (Kingcope)
Year 2012

Slide 1

Welcome everybody to this awesome conference and to my
talk that is about, as the title states, Uncovering Zero-Days and
advanced fuzzing techniques.

You will see several methods in this talk about how to get the
tools to successfully unlock UNIX and Windows Servers, and
more.

If you have questions or comments please ask or comment
right after the presentation.

Slide 2

The course of the presentation is displayed on the current slide
on the screen. We will start with a short introduction about
who | am —then | will introduce you to the topic of the current
presentation and afterwards we are going to discuss the main
topic which | entitled ,,0days and the rush for public
vulnerabilities” plus advanced fuzzing techniques. The reason |
put ,,rush for public vulnerabilities” into the title is that, as
some of you might know, | did put much work into exploiting
vulnerabilities that had been already publicy announced.

As a side note: The discussion in this speech can be applied to
any Operating System including the Windows series of
Operating Systems — most of the details yet directly apply to
UNIX systems like Linux, BSD or Solaris.

The upcoming slide contains information about myself.

Slide 3

Whoami.

Whoami is actually a command in both Windows and Linux and
will display the current logged in user, just to mention that.

My name is Nikolaos Rangos, and as some of you will know, the
nickname | used throughout my time as a hacker is , Kingcope®.
| live and work in Germany, in a village nearby Frankfurt, all my
family is greek, so are both of my parents. As some of you
might have noticed by reading my public vulnerbility advisories
| feel connected to my greek roots.

| have a strong passion, | like hacking software, be it discovering
vulnerabilities, writing exploits, or finding out how the software
| am facing is running.

| started being active with hacking before the date displayed on
the screen, | can remember though that | wrote my first real

working exploit back in 2003.

In the past | have been working as a penetration tester with a
company based in Germany, nearby my village.

Currently | do vulnerability research.

Let’s proceed with the introduction of the topic today.

Slide 4

We can define vulnerabilities in several classes that have been
developed over the course of time.

Every class of vulnerabilities has its advantages and
disadvantages.

Remote Exploits can be defined as exploits that when run by
the attacker gain access to a system silently and without user
intervention. Scanners can be additionally programmed to
support a remote exploit in means of discovering vulnerable
servers.

Sometimes remote exploits do not yield to the desired
privileges on the remote system, so the class of local root
exploits can be used to gain elevated privileges. Local root
exploits can be used uniquely too, in a scenario where the
attacker already has access to the system.

A rather new form of vulnerabilities are the Client-Side
vulnerabilties that when exploited can attack entities in
organizations, companies, individual users, the Client-Side
attacks normally require User-Intervention of the victim.

In this talk | will especially illustrate how remote software
flaws, remote vulnerabilities are discovered and exploited.

Most parts of the discussion can be applied to local and client
vulnerabilities.

Slide 5

Discovering vulnerabilities is Easy

Programmers around the world constantly do mistakes and
introduce flaws especially when new features or versions are
implemented. An interested hacker therefore can be lucky in
discovering vulnerabilities by looking into CVS Diffs or for
example reversing updates.

Every New Technology brings new possibilities for the attacker
the reason for this is that New Technologies are immature and
only get secure after several years of patching and crafting.

Discovering flaws can be fun when you have the appropriate
tools set up, like you will see in the upcoming slide about the
environment that needs to be set up to be successful.

There really is no secret (everyone cooks with water) - Just
needs passion, time, experience and good music.

Slide 6

Now to the environment that needs to be built up before
auditing for vulnerabilities can begin.

You will definitely need Virtual Machines. The reason is Virtual
Machines can be easily installed and used nowadays. VMs are
perfect for our purposes. Many operating systems, let’s say
targets can be installed. The running VM’s can be used for
adding offsets and values for different exploit targets too.

| remember the time | was unaware of Virtual Machines. |
wanted to exploit a Windows Flaw and had burned like ten or
more CDs, every CD containing its own Windows version and
Windows language. So | took the CDs one by one and installed
it on real hardware. What a time overhead if you can have it so
simple with Virtual Machines.

You just install the software inside the VM and if the guest
operating systems fails you won’t lose data (except the work
thats inside the VM but thats a different story)

One example setup is, as you will also see in the next slide, a
Windows 7 Host with several Guests installed, like: Windows,
Linux, FreeBSD, Solaris 86, and so on.

As a side note: You can easily do kernel debugging by using
pipes without using a real serial line on real hardware. So this is
another advantage with Virtual Machines.

There is a lot of software you can use today for this purpose.
VMware Workstation, Oracle VirtualBox, QEMU and so on.
| personally prefer VMware during my audits.

Slide 7

That is a screendump of a virtual machine running FreeBSD
inside a Win7 Host installation, it illustrates quite pretty why
VMs have many advantages. At the left pane you can see the
Operating Systems that were installed and are available for
booting.

By the way FreeBSD runs very stable inside the VM. And the
installation is quick. Another upside is that the harddisks of the
VMs grow according to their usage, so you don’t need like
20Gig in the first place.

The next slide will be about important tools that | personally
prefer and recommend when doing audits.

Slide 8

The tools

A big advantage is the ability to program, write code. So a good
tool I included is a kind of programming language, the one you
like most. Interpreted languages like Perl or Python can be used
to easily fuzz software, develop and write the exploit itself.
Another purpose of the high level programming languages have
is writing own tools, take the example you want to observe
processes, how they run etc.

Some puzzles require native code and need to be programmed
in a compiled language like C. Especially Local Exploits tend to
be written in C, another example are RPC exploits. And of
course it looks much more leet to code in C especially when the
headers comments are larger than the actual exploit :D

The following UNIX tools | present, most of you will have
worked with them already, are important to investigate bugs.
My experience shows me that especially tracers like strace for
Linux, truss/ktrace and kdump on BSD and Solaris are nice to
use because one can see whats happening. For example we
shoot packets to a service, with these tracers we can exactly
see whats happening when the packets arrive, by attaching to
the running service process. Strace is a system call fuzzer like
truss. The ktrace, kdump combination has nearly the same
function, they use information coming directly from the kernel.
Ltrace is nice utility too, it traces library calls in contrast to the
other utilities that trace system calls.

There are equivalent tools for Windows like the Process
Monitor that is distributed by Microsoft, Process Monitor can
be used to reveal bugs by looking at file system access of a
process. This is the tool | discovered the Internet Information
Server WEBDAYV Authentication bypass with by looking closely
at the file system when requesting with special UNICODE
characters. (continued)

Of course debuggers are very important when doing an audit,
gdb is fine and powerful on UNIX, WinDBG can debug both in
Windows Userland and Kernel Space, OllyDbg is a debugger
operating inside Windows in User Space only.

The next screendump shows a tool example used during an
audit.

Slide 9

Namely ,truss” running on FreeBSD.

The illustration appears to Rediscover the FreeBSD FTPD
Remote Root Exploit by using truss. This particular FTP Server
exploit takes advantage of a library load inside a chroot.

The Truss tool, as shown in the illustration, is attaching to the
process inetd, the process that is responsibly for forking the
FTPD server. The pid of the process is 1138. In the screendump
you see two important parts enclosed in red lines.

The first part shows a stat and open call to /etc/nsswitch.conf.
If this file exists inside the chroot the FTP Service will attempt
to open various library files. You see this in the second part
enclosed in red. So if one of these library files, like
,/lib/nss_compat.so” exists on the filesystem, the FTP Server
will gracefully load them into its running process.

That is practically a command execution root hole in the FTP
Server that was discovered using a tracer.

The upcoming slides will cover how to discover vulnerabilities
by reading source code and by doing binary reversing.

Slide 10

To audit by looking at source code of course it is required that
the reader knows the programming language quite well. |
personally prefer reading C code because most of the UNIX
world is built up on C.

Some bugs can be discovered and exploited without reading
one line of code. One good example for this is the Apache
Range-Bytes Denial of Service that, if you heard about it, will
make a remote Apache installation unresponsive when
attacked with the so called ,, Apache Killer”.

The Apache Killer was discovered by fuzzing only, no source
code was traversed, no debuggers used. Just plain fuzzing. This
topic will be covered in the next slides.

In contrast to the apache bug, most of the time flaws need to
be researched by reading source code to understand the
weaknesses and build a stable exploit by taking advantage of
those.

One example is the ProFTPD Remote Exploit | have been
working on in the past and it relied heavily on understanding
the source code.

At the bottom of the slide | included an illustration of one of
the critical code lines that made this publicly announced
vulnerability possible.

In the top while loop the buffer length is verified (while
(buflen...) to be not NULL, this can result in a stack based
buffer overrun if the buflen changes to a negative value and
this is indeed very possible.

Sometimes the source code is not available and the attacker
needs to find other ways to understand the software. One way
to understand binary code is to do...

Slide 11
Binary reversing

Binary reversing requires good knowledge of assembler, it is
very good to understand 86 assembly because this is the most
deployed processor at least in the Desktop and Server world.
Other assemblers including arm for embedded systems and
sparc for especially hardware running Solaris can be learned to
understand disassembled output.

The Interactive Disassembler is a good tool for binary reversing.
| personally tend to look at suspicious code paths and parallely
test these code paths using scripts. Reading source code or
binary reversing is very effective when doing parallel testing in
real scenarios.

Another fact is that binary reversing can be used to develop the
exploit itself.

For example the ProFTPD exploit heavily relied on
disassembling code to find offsets and specific assembler
instructions.

The screendump at the bottom shows an example of a
disassembly — it is a write plt entry point the expoit relied on in
order to be able to leak process memory for further processing.

As described before parallel testing means testing out critical
code paths in real test cases, this includes Fuzzing Around the
Critical Code paths to uncover vulnerabilties. And that takes us
to he next topic | want to present today.

Slide 12
Semi Automatic Fuzzing with perl/python

The title is Semi Automatic Fuzzing because fuzzing is done
partly by the programming language like perl and more
important done by the knowledge of the programmer.

This fuzzing technique can be especially effective for plain-text
protocols because human beings simply understand plain-text
protocols easier and therefore can fuzz more comfortable.

Raw binary protocol fuzzing can be done this way, Sniffer
dumps retrieved from for example the Wireshark Sniffer are
required. One downside is that usually only the initial packets
of the binary protocol can be covered, the reason for this is
that binary protocols tend to be complex and a lot of packets
are exchanged that are only visible in binary form for the
programmer.

As a hint | want to mention that libraries or modules of the
programming language can be used for fuzzing ,high level“. The
advantage is that nearly if not all of the binary protocol is
covered during the fuzzing session since the library or module
has the code already in place and we have the ability to speak
to the server side in a convienient manner.

To make you understand why the knowledge of the
programmer about the protocol is so important | will continue
with a fuzzing template | used alot in the past and will describe
the several parts of it.

Slide 13
This very basic fuzzing template written in perl is very effective
when used properly.

The script when run connects to the remote service (in this
case isowarez.de on port 80 HTTP) sends the payload and reads
the response.

The crucial part is where | wrote ,,put fuzzing ideas here”.

So the programmer takes his knowledge about the protocol to
attack and codes possible packets that might make the service
fail. The packets can include overly large strings, format string
specifiers or packets adjusted to test a specific supicious code
path revealed by using binary reversing or code auditing.

The template can be extended to send several packets by
repeating it. It can be extended in a way that packets are read
after a response and following packets are sent and so on.

Slide 14

The template in the previous slide can be used for binary
protocols by just replacing the payload with binary data.

Each modification of the packet to send is run as a test case
against the service.

Each test case might have resulted in a flaw so the request is
observed on the remote side using tracers like the ones
described in the previous slides, strace, truss. Another tool to
mention is ,,top“ which can be used to inspect Memory and
CPU usage. For example a spike in Memory Usage after a
request is sent can indicate a memory consumption or Denial
of Service flaw.

If during the fuzzing session we successfully found a bug and
are sure about that, the vulnerability is researched and the
exploit written by extending the basic template.

The following example shows how the basic template was
extended to a real exploit after verifying a vulnerability was
found. In this case we will Re-Discover the Apache Remote
Denial of Service and write parts of the Apache Killer.

Slide 15

The slide shows the very basic fuzzing template at the top.
During the fuzzing session | decided to fuzz a specific HTTP
header that is supported by default by the Apache Webserver,
it’s name is Range-Bytes.

So we enter the Range-Byte header in its simple form into the
template and look if we can break Apache with it.

The Range-Byte header in its simple form does not make the
webserver fail so we add a overly long header with overlapping
Ranges to the fuzz template and see if Apache behaves
unexpected.

Slide 16

And indeed, the top tool shows a spike in memory usage, so we
assume this might be a flaw in the handling of the Range-Bytes
header.

To prove the memory leak is real we hammer 50 requests
parallely to the Apache Webserver using the Perl Module
Parallel::Forkmanager.

The result is Apache httpd becomes unresponsive and because
of running out of swap space many processes get killed in the
operating system, the system hangs.

A different way of fuzzing software that especially involves
binary protocols will now be discussed.

Slide 17

Nowadays nearly all critical open source programs in the UNIX
world are written in C or C++.

Shown from experience fuzzing by modifying C source on the
fly can be very effective.

Fuzzing by using C source can be comfortable and easy to do
even with complex protocols.

Now How can we fuzz using this technique?

It’s simple.

The target software is chosen and compiled. Let’s take the
example of SAMBA on Linux, the smbd service is compiled and
executed inside the testing environment so it can be audited.

Now the client sources (like for example smbclient) are
compiled and after the compilation of both parts the audit can
begin.

The client sources are modified during the fuzzing session step
by step and after each modification each test case is compiled
and run against the service.

Slide 18

Using this technique we can discover not only buffer overruns
and alike but also logic bugs. If we want to discover logic bugs
we need a strong understanding of the code-flow and the part
of software we are currently auditing. The suspicious client
code lines are changed in a way to provoke logic bugs on the
server side.

Finding the commonly known vulnerabilities like buffer
overruns, memory corruptions, format string bugs and so on
can be done rather blindly.

To accomplish this we do the following:

We look for the critical code in C source like the network layer
code, command handling code, parsers. As a side note: if we
cannot get results when doing fuzzing tests in the easier parts
of the source it is important to dig deeper into the code, into
the more complex layers of the software as these layers tend to
be more vulnerable.

Now we change the buffer contents and lengths one by one.

Each modification of buffers in the client code is compiled and
tested against the service.

The next slide contains a screendump illustrating code changes
in the smbclient to potentially provoke a buffer overrun.

Slide 19

There are a lot of places we can modify code in Samba.

The screendump shows a very simple location of the client, it is
the very front layer of smbclient. The ,cmd_logon“ function,
that does parts of the SMB session setup, is changed in a
manner that the function will send a long password to the SMB
Service.

| put a buffer with the size 8096 filled with A’s into the source
code. Then | duplicated the cli_session_setup command and
commented one of the copies for later usage. In the other copy
| changed the lines where the buffer and its buffer length is
written.

Now the code can be compiled and a long password will be
sent to the smbd service.

| have to note that sometimes the overly long buffer lengths
are truncated inside the client itself because they are so long,
so sometimes these size checks inside the client source need to
be changed too so that the packet is sent with the correct
overly long buffer size.

Sometimes we have to adjust several buffer sizes because the
buffers that hold the data can overflow in the client and we
might get segmentation violations in the client itself prior to
sending out the packet.

Another note is that buffer overruns sometimes need to be in a
specific range. It’s not enough to make the buffers as large as
possible, sometimes smaller buffer sizes will trigger an overrun
whereas longer buffer sizes will not.

When we have successfully discovered a vulnerability we are
going to exploit it and the several stages to do this are
described in the next section.

Slide 20
Building Exploits

Logic Bugs are nice to have since exploits for logic bugs can be
more stable, effective and easier to develop.

Buffer overruns and memory corruption can be as stable and
effective as logic bugs, exploiting them is, shown from my
personal experience, more time consuming.

The goal ist to retrieve a remote shell, a command line so the
attacker can intrude into the system and later into the network.

A straightforward way to do this is, in the case of buffer
overruns or memory corruptions is to...

Patch memory to hit a good place to...
Control the Instruction Pointer (in x86 it is called the EIP)

Afterwards bypass protections like ASLR (Address Space Layout
Randomization) and NX (the Non-Executable Bit, or Non-
Exectuable mappings on amd64)

Thereafter our payload can be executed to successfully execute
a shell. | personally prefer reverse shells in my exploit codes
because this makes it partly possible to evade firewall
protections.

Most of the work above is done using a debugger like gdb.
At the time we have the exploit running quite stable it is time
to add targets. (continued)

The next stage is to shape and adjust the exploit in the wild, in
real world.

A crucial stage in exploit writing nowadays is to bypass
protections like ASLR, so we will have a look at how it is done in
Linux, on a x86 platform, a bit closer.

Slide 21

Required for bypassing Address Space Layout randomization on
Linux is the full control over the Instruction Pointer. For
example gained through Stack or Heap Smashing or overwriting
a Function Pointer.

So assume we have full control over the Instruction Pointer.
The address space is randomized, so where we jump to?

Stack addresses, addresses of libraries, heaps of libraries are all
randomized.

The image (referred to as the TEXT segment a synonym for the
CODE segment) is not randomized.

That’s an obvious flaw in the ASLR implementation of Linux.

As a side note: The default Linux ASLR implementation is weak
by design, there are other methods which are more complete
to protect systems, like PaX and Exec Shield patchsets or
Position Independent Executables. Since Linux uses this weak
ASLR implementation by default | refer to it here.

What we do is we jump back into the TEXT segment because its
base has a fixed and predictable address.

At the time of this writing | personally verified that this flaw has
not been patched at least not in a recent kernel from 2012 as
the following image illustrates.

Slide 22

The example shows the memory map of proftpd running on
Linux.

The blue region shows the Operating System version and kernel
build date, it is from January this year.

The yellow region shows the virtual memory space that is not
randomized and the red region shows the virtual memory
space that is randomized.

You can obvisouly see by looking at the very top left or the
yellow regions that the base address of the processes TEXT
segment stay the same after proftpd has been restarted. As the
TEXT segment is always marked as being readable and
executable we can jump to it and execute code inside the
segment.

The previously described flaw is important for bypassing ASLR
on Linux, bypassing ASLR though involves much more than the
fact that the address space is only partly randomized.

Slide 23
The goal is again to execute code, to get the shell running.
The steps involved to gain a shell are the following:

We lookup the mmap or mmap64 plt entry using IDA (this
depends on what mmap is available in the process code if at
all).

From the plt entry we can indirectly jump to the randomized
library function.

We lookup the memcpy plt entry using IDA.

We use mmap to map a fixed free memory region with read
write and execute permission enabled so we can copy code
into this memory region.

Next we use memcpy to copy bytes from the TEXT segment to
this newly created memory region, the purpose of the bytes
being copied is to copy the shellcode to the new memory
region.

We jump to the copy routine that will copy the shellcode.

The payload that retrieves the reverse shell is executed.

To actually call the mmap and memcpy functions we need to
use Return Oriented Programming.

| am going to show you an image about the ASLR bypass
technique and will explain it using the illustration now.

Slide 24

The image at the first glimpse looks complex. So | will explain
how to successfully run the shellcode.

At the left side we have the attacker and at the right we have
the proftpd processes memory space. The gray part of the
memory space is the not randomized memory and the red part
is the randomized memory. We can only execute code inside
the gray part. Executing code in the red part is only possible
indirectly as we will see.

So the attacker at number 1. connects to the remote FTP
server, no login credentials are needed to execute code. The
attacker uses ROP (the abbreviation for return oriented
programming) to execute several functions inside the TEXT
segment one by one. The first function we jump to is the mmap
plt entry, plt entries allow us to jump to the randomized
memory block and finally execute the library and system call. At
number 2. mmap is called to create a read write and
executable memory mapping at a fixed address. The newly
created memory mapping is shown in this image at the bottom
as dark yellow.

We need to map this memory because we need a fixed,
unrandomized place where we can write the shellcode to and
we need a place that is executable to execute the shellcode.
Once we have created the mapping we use ROP again at
number 3. to be able to execute a new function. This function is
memcpy at number 4. . Again we make use of the plt entry to
reach the randomized library function in the red region. For the
memcpy two parameters are needed, one is the memcpy
function itself and the other one are the available mnemonics
(assembly instructions) inside the TEXT segment. We copy, by
using memcpy and ROP, special bytes one by one from the
TEXT segment to the newly created memory mapping at the
bottom, (continued)

these bytes are assembler instructions which once collected are
used for later copying the shellcode and executing it. Once we
have fully copied the bytes from the TEXT segment to the new
mapping we jump to these bytes at number 5. The shellcode
copier gets executed and will copy the shellcode from the
STACK further down of the read write execute mapping.

Finally we JUMP to the shellcode itself at number 6.. The
shellcode is executed and sends back a shell to the attacker.

The exploit that uses exactly this technique to bypass ASLR is
publicy available under the name ProFTPD IAC Remote Root
Exploit.

This exploit uses a stack buffer overrun to execute code and the
vulnerability for it was publicly announced by an anonymous
individual in an advisory working with the ZDI the Zero Day
Initiative.

Because logic bugs can be fun too and are known to be
effective we will discuss these now.

Slide 25

Since exploiting logic flaws strongly depends on the nature of
the bug and can be complex | give the FreeBSD ftpd Remote
Exploit ,which once was an 0day, as an example.

The scenario is that we can load an arbritrary dynamically
linked library into the process of the FTP server. We can do that
because the logged in user is inside the chroot environment
and we can write files to the disk using the FTP protocol.

How do we exploit the flaw? We need a way to break the
chroot and execute code.

The easiest way in my opinion is to...
Program a dynamic library that...

Breaks the chroot by using the ptrace system call. Ptrace is a
system call that allows to debug processes.

So we attach to an existing FreeBSD process that runs as root
using ptrace.

Then we copy the shellcode into the root owned process again
by using ptrace.

The last step is to let the process continue at the shellcode
position so the shellcode gets executed.

The NX Bit on amd64 can, in this particular case, be bypassed
easily because on FreeBSD theres a read write execute memory
region in the FTP process, | even guess that is the case in all
FreeBSD processes. So we write the shellcode into this region
and let ptrace run the code inside this region.

| will show you the procedure in a picture now.

Slide 26

In this picture, first there is the Attacker at the left and the
Server running the FTP Service at the right.

The attacker connects to the FTP server and logs in using the
credentials. The FTP service runs inside a chroot environment,
so the attacker uploads the dynamic library onto the file system
and the library breaks out of the chroot by attaching to the root
owned process using ptrace. The process is in a stopped state
now. Process candidates to attach to are inetd, cron, syslogd,
sendmail or any other known by name root owned process.

The shellcode is injected into the running process. We let the
process continue at the shellcode position and as shown in this
example the attacker gets back a reverse rootshell.

We have our desired rootshell, we now need to make the
exploit as stable and powerful as possible. | will describe ideas
about how to make this in the next section.

Slide 27

A way to make the exploit more powerful is by adding targets
to it. The reason is simple, we want to support as many as
possible vulnerable versions that are out there in the internet.

Targets can be defined in two parts.

The Supported operating system.
The Supported software version on the operating system.

We create the environment by installing as many possible
virtual machines with the vulnerable operating systems and
software versions.

We need to get the offsets and possibly other values need to
be examined.

Slide 28

As the first step we add code to the exploit for target
integration and target selection.

The following three examples of three different exploits will
show what has to be added to the exploit to support more
versions.

The ProFTPD Exploit was designed to make it easy to add
targets, the following values are needed: the write() offset can
be found using IDA. The Align and Padding values are found
using a perl script that was written for this purpose by
observing the behaviour of the ProFTPD service.

For the second exploit that attacks FreeBSD ftpd, only the
dynamic libraries need to be compiled on each operating
system version.

The third example, a local root exploit for FreeBSD has to be
adjusted for running both on x86 and amd64 architectures. So
two shellcodes are added to the exploit and the buffer sizes
adjusted for each architecture appropriately.

Now that we are near the end of my presentation | will show
you the last step that can be made to make the exploit even
more effective.

Slide 29

The last step would be Testing, shaping and adjusting the
exploit in the wild.

Reason is exploits can run perfect in a testing environment.

In real world they might not succeed in gaining a shell (this is
not always the case as personal experience shows)

So the exploit can be made stable by testing it in real networks.
How to accomplish that?

Search engines can be nice to use for finding running servers in
the wild to test the exploit against

Additionally Scanners can be developed to seek the internet for
vulnerable servers.

Once vulnerable servers are discovered the exploit can be
tested against them.

Now if no shell was gained we can try and mimic the discovered
vulnerable OS and it’s vulnerable software version in a virtual
machine.

We now can adjust the exploit by addressing the failures in the
exploit code to successfully root the box.

(End of the presentation)

A big thank you to everybody who supported me along time.
| am sure you know who you are <3

If you have Questions, Comments or Suggestions you are free
to ask or tell me now.

