
Forensic analysis of iPhone backups 

 

 

The goal of iPhone Backup Forensics analysis  is extracting data and artefacts from the 

iTunes backups without altering any information. 

iPhone forensics can be performed on the backups made by iTunes or directly on the live device.  
My last article on iPhone forensics detailed the forensic techniques and the technical challenges 

involved in performing live device forensics. Forensic analysis on live device reboots the phone, may 
alter the information stored on the device. In critical investigations, forensic examiners rely on 
analyzing the iPhone logical backups acquired through iTunes. iTunes uses AFC (Apple file 
connection) protocol to take the backup and the backup process does not modify anything on the 
iPhone except the escrow key records. This article explains the technical procedure and challenges 
involved in extracting data and artefacts from the iPhone backups. Understanding the forensic 
techniques on iTunes backups is also useful in cases where we get physical access to the suspect’s 
computer instead of the iPhone directly. When a computer is used to sync with the iPhone, most of 
the information on the iPhone is likely to be backed up onto the computer. So gaining access to the 

computer’s file system will also gives access to the mobile devices’ data. 

Techniques explained in this article works on all Apple Devices which are running with iOS 5.       
 
Note: iPhone 4 GSM model with iOS 5.0.1 is used for the demos. Backups shown in the article are 
captured on Mac OS X Lion 10.6 using iTunes 10.6. 

Researchers at Sogeti Labs have released open source forensic tools (with the support of iOS 5) to 
read normal and encrypted iTunes backups. Below details outline their research and gives an 

overview on usage of backup recovery tools. 

iOS Backups:  
 
With iOS 5, data stored on the iPhone can be backed up to a computer with iTunes or to a cloud 
based storage with iCloud. The article briefs about iCloud backups and provides a deep analysis of 
iTunes backups. 
 

iCloud Backup:  
 
iCloud allows backup & restoring the iPhone contents over Wi-Fi/3G to a cloud with a registered 
Apple account. iCloud backups the photos, application data, device settings, messages and mail, etc. 
iCloud services were introduced to provide a computer free backup solution. It acts as a remote 
backup service and allows moving data seamlessly between different Apple devices like Mac, iPod 
and iPad. iCloud also provide services to track the lost phone, lock the device remotely and wipe the 
data remotely. iCloud limits the free backup storage to 5 Giga Bytes. However additional iCloud data 
storage can be purchased by paying annual fees to Apple. iCloud uses a secure token for 
authentication and secures the content by encrypting it when sent over the internet. Use of a secure 

http://resources.infosecinstitute.com/iphone-forensics/
http://securitylearn.wordpress.com/2012/01/10/iphone-forensics-on-ios-5/


token for authentication eliminates the need to store iCloud password on devices. Apple also claims 
that, all the iCloud data except the emails and notes is stored encrypted on disk using 128 bit 
encryption algorithm. Encrypted data stored on the disk is decrypted on the fly when requested from 
an authentication device. Data stored on the iCloud can also be backed up to a computer. Detailed 
procedure is available at Apple documentation.   

On the iPhone, iCloud backup storage can be turned on/off by navigating to Settings -> iCloud -> 
Storage & Backup.  

iCloud Backup toggle is shown in Figure 1.  

 

               (Figure 1)  
 
iCloud data is effectively safe from hackers as Apple provides the best authentication mechanism by 
enforcing the users to use strong passwords, which would prevent the brute force attacks. As long as 
the user uses a strong password, information stored on the iCloud is safe.   

 

iTunes Backup:  
 
iTunes is used to backup the iPhone to a computer. When the iPhone is connected to a computer for 
the first time and synced with iTunes, iTunes automatically creates a folder with device UDID (Unique 
device ID – 40 hexadecimal characters long) as the name and copies the device contents to the newly 
created folder. The iPhone can be synced with iTunes over Wi-Fi or over an USB connection. If the 
automatic sync option is turned off in iTunes, the user has to manually initiate the backup process 
whenever the device is connected to the computer. Once the backup folder is created on the 
computer, then each time when the device is synced with the iTunes, it will only update the files in the 
existing folder. During first sync iTunes takes a full backup of the device. From there on, iTunes only 
backup and overwrite the files which are modified on the device. The behaviour can be observed by 
looking at different timestamps for the files in the backup. iTunes also initiates an automated backup 
when the iPhone is updated or restored. During an iOS update/restore, iTunes creates a differential 
backup with a folder name [UDID] + ‘-‘ + [Time stamp] in the same backup location.  iTunes backup 

location varies for different operating systems and the exact directory paths are listed in Table-1.  

http://support.apple.com/kb/HT4910


Backup files created by iTunes are platform independent and can be moved from one operating 
system to other.  

 

Operating system Backup Location 
Windows XP C:\Documents and Settings\[user name]\Application Data\Apple 

Computer\MobileSync\Backup\ 

MAC OS X ~/Library/Application Support/MobileSync/Backup/    
 (~ represents user's home directory) 

Windows 7 C:\Users\[user name]\AppData\Roaming\Apple Computer\MobileSync\Backup\ 

(Table-1) 

If a passcode protected iPhone is connected to the computer for the first time, iTunes will require the 
user to enter the passcode (shown in Figure 2) and unlock the device before starting the sync 
process. 
  

 
   (Figure 2) 

 
Upon unlocking the iPhone with a valid passcode, iTunes recognizes the device as authorized and 
allows to backup and sync with the computer. From there on, iTunes will allow to backup or sync the 
iPhone without entering the passcode as long as it connects to the same computer. During backup, 
iTunes also creates a property list file with device UDID as the name and stores the Escrow key bag, 
Device certificate, Host ID, Host certificate and Host private key in it. Escrow Keybag allows a paired 
device (normally a computer) to gain full access to the iPhone file system (circumventing iOS Data 
Protection feature) when the phone is in a locked state. This improves the usability by not asking the 
user to unlock the device during every backup. Escrow key bag location varies for different operating 
systems and the exact directory paths are listed in Table-2. 

 

Operating system Escrow keybag Location 
Windows %AllUsersProfile%\Apple\Lockdown\ 

MAC OS X /private/var/db/lockdown/ 

(Table-2) 



 

Escrow Keybag is encrypted with a key computed from the iPhone hardware (key 0x835) and it is 
protected with a 32 byte passcode which is stored on the iPhone. Escrow Keybag passcode gets 
stored in a PList file ([Host ID].plist) located at - /private/var/root/Library/Lockdown/escrow_records 
directory on the iPhone. With iOS 5, Escrow Keybag is also protected with a passcode key derived 
from the user’s passcode, restricting to perform Escrow Keybag attacks. Escrow Keybag attack 
bypasses the iPhone data protection mechanism and allows decrypting every file on the device 
without requiring the user’s passcode. Escrow Keybag is a copy of the System Keybag and contains a 
collection of protection class keys that are used for data encryption on the iPhone. Protection class 
keys stored in the Escrow Keybag allows the iTunes to access protected files & keychain items when 

the iPhone is locked.  

iTunes also creates a Backup Keybag for each backup. It consists of class keys that are different from 
the ones in the System Keybag. The files in the backup are encrypted using AES 256 in CBC mode, 
with a unique key and a null IV. These file keys are stored wrapped by a class key from the Backup 
Keybag. Keys in the Backup Keybag facilitate to store the backups in a secure manner. By default, 
Backup Keybag is encrypted with a key (key 0x835) derived from the iPhone hardware key (UID key). 
So even if someone gain access to the backup, it is not possible to retrieve all the data from the 
backup unless they know the hardware key, which can be achieved only through physical access to 
the device. As the backup files are encrypted with a hardware key, backup taken from a device can 
only be restored to the original device. With iOS 4, Apple introduced a feature to encrypt the iTunes 
backups, which provides portability and allows restoring the backup files of one device to another 
device. Encrypted backups are designed for data migration between different iOS devices. Data 
migration is achieved by encrypting the backup with a password that a user gives in iTunes instead of 
the devices hardware key.  With encrypted backups, all the backup data can be migrated except the 

content which is protected by ThisDeviceOnly class keys. 

To create encrypted backups, connect the device to the computer and select ‘Encrypt iPhone Backup’ 
option in iTunes. During the encrypted backup, iTunes prompt the user to enter a password as shown 
in the Figure 3. Later the password is used to encrypt all the files in the backup. iTunes also stores 
the backup password in iPhone keychain database. In encrypted backups, Backup Keybag is 
encrypted with the backup password. This would allow decrypting the backups without physical 

access to the device. 



 

(Figure 3) 

iTunes backup makes a copy of everything on the device like contacts, SMS, photos, calendar, music, 
call logs, configuration files, database files, keychain, network settings, offline web application cache, 
safari bookmarks, cookies and application data, etc.  It also backups the device details like serial 

number, UDID, SIM hardware number and the phone number.  

Backup folder contains a list of files which are not in a readable format and it consists of uniquely 
named files with a 40 digit alphanumeric hex value without any file extension. Example file name is: 

f968421bd39a938ba456ef7aa096f8627662b74a. 

iTunes 10.6 backup of an iOS 5 device is shown in the Figure 4.  



 

(Figure 4) 

 
This 40 digit hex file name in the backup folder is the SHA1 hash value of the file path appended to 
the respective domain name with a ‘-‘ symbol. So the hash of DomainName-filepath will match to the 
correct file in the backup. In iOS 5, applications and inside data are classified into 12 domains 
(11 system domains and one application domain). The list of system domains can be viewed from 
/System/Library/Backup/Domains.plist file on the iPhone. Domains.plist file content is shown in 
 Figure 5. 



 

 

(Figure 5) 

The method of managing the backups has changed with every major release of iTunes however the 

method of converting the path names to the file names still remains the same. 

Few examples for path name to backup file name conversions are shown below - 
 
Ex 1: Address book images backup file is - cd6702cea29fe89cf280a76794405adb17f9a0ee and this 
value is computed from SHA-1(HomeDomain-Library/AddressBook/AddressBookImages.sqlitedb).  
*Online hash calculator - http://www.fileformat.info/tool/hash.htm?text=HomeDomain-

Library%2FAddressBook%2FAddressBookImages.sqlitedb 

 
Ex 2: AppDomain is used for the applications which are downloaded from AppStore. 
Skype property list backup file is - bc0e135b1c68521fa4710e3edadd6e74364fc50a and this value is 
computed from SHA-1(AppDomain-com.skype.skype-Library/Preferences/com.skype.skype.plist). 
*Online Hash calculator - http://www.fileformat.info/tool/hash.htm?text=AppDomain-com.skype.skype-
Library%2FPreferences%2Fcom.skype.skype.plist 

 
Ex 3: Keychain sqlite database backup file is - 51a4616e576dd33cd2abadfea874eb8ff246bf0e and 
this value is computed from SHA-1(KeychainDomain-keychain-backup.plist). 
*Online Hash calculator - http://www.fileformat.info/tool/hash.htm?text=KeychainDomain-keychain-
backup.plist 

iTunes stores/reads the domain names and path names from Meta files. Every iOS backup contains 
four Meta files - Info.plist, Manifest.plist, Status.plist and Manifest.mbdb along with the actual file 

contents.  

http://www.fileformat.info/tool/hash.htm?text=HomeDomain-Library%2FAddressBook%2FAddressBookImages.sqlitedb
http://www.fileformat.info/tool/hash.htm?text=HomeDomain-Library%2FAddressBook%2FAddressBookImages.sqlitedb
http://www.fileformat.info/tool/hash.htm?text=AppDomain-com.skype.skype-Library%2FPreferences%2Fcom.skype.skype.plist
http://www.fileformat.info/tool/hash.htm?text=AppDomain-com.skype.skype-Library%2FPreferences%2Fcom.skype.skype.plist
http://www.fileformat.info/tool/hash.htm?text=KeychainDomain-keychain-backup.plist
http://www.fileformat.info/tool/hash.htm?text=KeychainDomain-keychain-backup.plist


Info.plist: The property list file contains the device details like device name, build version, IMEI, phone 
number, last backup date, product version, product type, serial number, sync settings and a list of 

application names that were installed on the device, etc.  

Manifest.plist: The property list file contains the third party application bundle details, Backup Keybag, 
a flag to identify the passcode protected devices (WasPasscodeSet) and a flag to identify the 

encrypted backup (IsEncrypted), etc. 

Status.plist: The property list file contains the details about the backup. It includes backup state, a flag 

to identify the full backup (IsFullBackup), date and version, etc. 

Manifest.mbdb: The binary file contains information about all other files in the backup along with the 
file sizes and file system structure data. Backup file structure in older version of iTunes is managed by 
two files - Manifest.mbdx and Manifest.mbdb. In which, Manifest.mbdx file acts as an index file for the 
backup and indexes the elements that will be found in Manifest.mbdb. Since the introduction of 
iTunes 10, index file (mbdx) is eliminated and the backup is managed by a single mbdb file. 

A sample Manifest.mbdb file is shown in Figure 6. As Manifest.mbdb is a binary file, a Hex editor is 

used to view the contents.  

 

(Figure 6) 



 

Manifest.Mbdb file header and record format is shown in Table 3 & Table 4. 

Header:  Mbdb file header is a fixed value of 6 bytes and the value acts as a magic number to identify 

the mbdb files.  

Type Value 
uint8[6] mbdb\5\0 
 

                                                                 (Table 3) 

 
Record:  Mbdb file contain many records and each record is of variable size. Every record contains 

various details about a file. 

Type Data Description 
string Domain Domain Name 
string Path File path 
string  Target Absolute path for Symbolic Links 
string Digest SHA 1 hash  

Mostly None (0xff 0xff) for directories & AppDomain files 
0x00 0x14 for System domain files 

string Encryption_key None (0xff 0xff) for un encrypted files 

uint16 Mode 

Identifies the File Type 
‘0xa000’ for a symbolic link 
‘0x4000’ for a directory 
‘0x8000’ for a regular file 

uint64 inode number Lookup entry in inode table 
uint32 User ID Mostly 501 
unit32  Group ID Mostly 501 
uint32  Last modified time File last modified time in Epoch format 
uint32  Last accessed time File last accessed time in Epoch format 
uint32  Created time File created time in Epoch format 

uint64 Size 

Length of the file 
‘0’ for a symbolic link  
‘0’ for a directory 
Non zero for a regular file 

uint8 Protection class Data protection class (values 0x1 to 0xB) 
uint8 Number of properties Number of properties 

(Table 4) 

In the backup, most of the information is stored as plist files, sqlite database files and images files. 

Backup files can be viewed directly by adding an appropriate file extension.  

Ex: Adding .plist file extension to bc0e135b1c68521fa4710e3edadd6e74364fc50a file allows viewing 

the contents of Skype property list file using a plist editor.  

There are many free tools available to read iTunes backups. Some of the famous tools are listed 

here. 



MAC OS X - iPhone Backup Extractor - http://supercrazyawesome.com/ 
Windows – iPhone Backup Browser - http://code.google.com/p/iphonebackupbrowser/ 

Mac OS X & Windows – iBackupBot - http://www.icopybot.com/itunes-backup-manager.htm 

These tools parse the information stored in the Mbdb file and create the file structure. The tools 
convert the gibberish backup files into a readable format as shown in Figure 7. 
 

 

 

                                                                 (Figure 7) 

 

Some of these tools leverage the Apple mobile devices API that comes with iTunes to create and 
read backups. The amount of information that can be extracted by the backup extractors is limited as 

the protected files in the backup are encrypted.  

Ex:  Keychain-backup.plist file extracted from the backup can be opened using a plist editor. However 

the contents inside the file are encrypted as shown in Figure 8.  

http://supercrazyawesome.com/
http://code.google.com/p/iphonebackupbrowser/


 

 (Figure 8) 

 

Data protection mechanism introduced in iOS 4 protects the sensitive data in files on the file system 
and items in the keychain by adding another layer of encryption. Data protection uses the user’s 
passcode key and the device specific hardware encryption keys to generate a set of class keys which 
protect the designated data. Developers use the data protection API to add protection class flag to the 
files and the keychain items. On the iPhone, protection class keys are stored in the System Keybag. 
During the backup, iTunes generates a new set of protection class keys and stores them in the 
Backup Keybag. Class keys stored in the System Keybag are different from the keys in the Backup 
Keybag. Protected files and data in the backup are encrypted using the class keys that are stored in 
the Backup Keybag. In normal backups Backup Keybag is protected with a key generated from the 

iPhone hardware (Key 0x835) and in encrypted backups it is protected with the iTunes password. 

Data protection for files can be enabled by setting a value for the NSFileProtection attribute using the 
NSFileManager class setAttributes:ofItemAtPath:error method. List of protection classes available for 

the files are shown in Table 5.  

 

 

 



Key id Protection class Description 
1 NSProtectionComplete File is accessible only after the 

device is unlocked 
 

2 NSFileProtectionCompleteUnlessOpen  File is accessible after the device 
is unlocked  (or) 

 File is accessible if the file 
handle remains open before 
locking the device  
 

3 NSFileProtectionCompleteUntilFirstUserAuthentication File is accessible after the first unlock 
of the device to till reboot 
 

4 NSProtectionNone File is accessible even the device is 
locked 

5 NSFileProtectionRecovery  Undocumented 

(Table 5) 

Data protection for keychain items can be enabled by setting a protection class value inSecItemAdd 
or SecItemUpdate methods. Keychain class keys also define whether a keychain item can be 
migrated to other device or not. List of protection classes available for the keychain items are shown 

in Table 6 

Key id Protection class Description 
6 kSecAttrAccessibleWhenUnlocked Keychain item is accessible only 

after the device is unlocked 
 

7 kSecAttrAccessibleAfterFirstUnlock Keychain item is accessible only 
after the first unlock of the device to 
till reboot 
 

8 kSecAttrAccessibleAlways Keychain item is accessible even the 
device is locked 
 

9 kSecAttrAccessibleWhenUnlockedThisDeviceOnly Keychain item is accessible only 
after the device is unlocked and the 
item cannot be migrated between 
devices 
 

10 kSecAttrAccessibleAfterFirstUnlockThisDeviceOnly Keychain item is accessible after the 
first unlock of the device and the item 
cannot be migrated 
 

11 kSecAttrAccessibleAlwaysThisDeviceOnly Keychain item is accessible even the 
device is locked and the item cannot 
be migrated  
 

(Table 6) 



Jean Sigwald, a researcher at Sogeti ESEC labs has released open source forensic tool kit that can 
be used to decrypt the protected backup files from normal backups and encrypted backups. Below 

details outline their research and gives an overview on usage of the tools.  

Setup:  
 
On Mac OS X, download & install the required python modules (pycrypto, M2crypto, construct and 

progressbar). 

 
       > sudo ARCHFLAGS='-arch i386 -arch x86_64' easy_install pycrypto 
       > sudo easy_install M2crypto construct progressbar 
 

 

Download and install Mercurial (http://mercurial.selenic.com/) to check out the source code from the 

iphone-dataprotection Google code repository.  

 
   >  hg clone https://code.google.com/p/iphone-dataprotection/  
   >  cd iphone-dataprotection 
 

 

Decrypting Normal backups: 
 
In case of normal backups, the data protection class keys stored in the Backup Keybag are protected 
by a hardware generated key (Key 0x835). In order to grab the protection class keys from the Backup 
Keybag Key 0x835 is required and the key is computed only on the device. So decryption of protected 
files in the normal backup is not possible without having access to the actual device. In forensic 
investigations the information recovered from the normal backups is less if physical access to the 

device is not available.  

Steps below explain the procedure to decrypt the protected files stored in the normal backup in case 
physical access to the device is obtained. On the iPhone, Key 0x835 is computed by the 
IOAESAccelerator kernel service at iOS boot by encrypting a static value 
01010101010101010101010101010101 with UID. UID is a hardware encryption key embedded in the 
iPhone application processor AES engine and it is unique for each device. iOS running on the iPhone 
cannot read the hardware key (UID) but it uses the key to compute Key 0x835 in kernel mode. UID is 
not accessible to user land process. This restriction can be bypassed by patching the 

IOAESAccelerator kernel service.  

Steps to extract Key 0x835 from the iPhone: 
1. Jailbreak your iPhone.  
*If you don’t like to Jailbreak the phone, follow the steps explained in the iPhone Forensics article and 
grab the encryption keys.  
2. On the iPhone, install OpenSSH from Cydia. OpenSSH allows connecting to the device over SSH. 
3. On Mac OS X workstation, download device_infos, kernel_patcher and Cyberduck tools. 

http://www.securitylearn.wordpress.com/2012/01/10/iphone-forensics-on-ios-5/
http://www.4shared.com/file/gTl0I_FK/device_infos.html
http://www.4shared.com/file/2ADXfWmT/kernel_patcher.html
http://cyberduck.ch/Cyberduck-4.2.1.zip


4. Connect the iPhone and workstation to the same Wi-Fi network. 
5. On OS X run Cyberduck and connect to the iPhone by typing iPhone IP address, root as username 
and alpine as password. 
6. Copy device_infos and kernel_patcher executables to the iPhone root directory. 
7. Run Mac terminal and SSH to the iPhone by typing iPhone IP, root as username and alpine as 

password. 

 
      > ssh  root@iPhone-IP 
        Password: alpine 
 

 
8. On SSH terminal, run the below commands to change the execution permissions of kernel_patcher 
and device_infos.  

 
       > chmod 777 kernel_patcher 

       > chmod 777 device_infos 

 
9. Patch IOAESAccelerator kernel service to use the hardware encryption key (UID) from user land 
process. Kernel_patcher script modifies the kernel and applies the required patches to 

IOAESAccelerator. 

 
        > ./kernel_patcher 
 

 
* If the kernel is already patched, the above script displays kernel patching failed message. 
* Kernel_patcher script only works for iOS 5 devices 

10. Run device_infos script and supply key835 as a parameter. The script computes the Key 0x835 
and displays on the screen. If key835 parameter is not supplied, the script computes all the encryption 

keys and stores them in a Plist file (Figure 9).  

 
        > ./device_infos key835 
 

 



 

    (Figure 9) 

Once Key 0x835 is grabbed, it is possible to decrypt the Backup Keybag and obtain the data 

protection class keys. Later these class keys are used to decrypt the protected files in the backup.  

11. On Mac OS X terminal, navigate to iphone-dataprotection directory. Run the backup_tool.py script 

by supplying the iTunes backup directory path.  

 
   >  python python_scripts/backup_tool.py /Users/User/Library/Application            
              Support/MobileSync/Backup/[iPhone UDID]/ [output_path] 
 

 
* If output_path is not mentioned, the script creates [iPhone UDID]_extract directory in the backup 
folder and extracts the backup files into it.  

On the backup, the iPhone keychain sqlite database is stored as a Plist file (Keychain-backup.plist). 
The Plist file contents are encrypted with the keychain data protection class keys. Items in the 

keychain can only be viewed after decrypting it with the keychain protection class keys.  

Run keychain_tool.py and supply Key 0x835. The script decrypts the Backup Keybag, grabs the 

protection class keys from 6 to 11 (listed in Table 6) and decrypts the keychain items.  

 
   >  python python_scripts/keychain_tool.py –d /Users/User/Library/Application            
              Support/MobileSync/Backup/[iPhone UDID_extract]/keychain-backup.plist   
              /Users/User/Library/Application            
              Support/MobileSync/Backup/[iPhone UDID_extract]/Manifest.plist  
 

 
The above script dumps the generic passwords, internet passwords, certificates and private keys from 

the keychain backup file.  

 



Decrypting Encrypted backups: 

 
In case of encrypted backups, migratable data protection class keys (6 to 8 listed in Table 6) stored in 
the Backup Keybag are protected by iTunes password and ThisDeviceOnly class keys (9 to 11 listed 
in Table 6) stored in the Backup Keybag are protected by Key 0x835 along with the iTunes password. 
Most of the data stored in the encrypted backups is migratable as the data is encrypted with the 
iTunes password and it is not tied to a specific device. Files in the backup are encrypted with a unique 
key for each file using AES 256 in CBC mode. Encryption keys are stored in the Backup Keybag and 
protected by iTunes password. In order to decrypt the Backup Keybag, grab the protection class keys 
and decrypt backup files iTunes password is required. So decryption of files in the encrypted backup 
is not possible without the iTunes password. In forensic investigations the information recovered from 
the backups is less if the iTunes password is not available. As iTunes does not impose any password 
strength rules on encrypted backups, it is easy to perform a brute force attack and predict the 
password. Encrypted backups add a significant difficulty in data recovering and it may be impossible 

with a complex password in use. 

During the backup iTunes stores the encrypted backup password on the iPhone keychain. So if the 
backup password is unknown and physical access to the device is available, the backup password 
can be retrieved by viewing the iPhone keychain items. On a JailBroken iPhone, all the keychain 
items can be viewed using keychain_dumper tool. Usage of this tool is documented at keychain-

dumper-usage post.  

Tools like iPhone Backup Extractor & iPhone Backup Browser does not work on encrypted backups. 
They can only read & parse the Manifest.mbdb file and prepares a file structure. However the file 

cannot be opened as the content is encrypted.  

Steps below explain the procedure to decrypt the files stored in the encrypted backup with a known 

iTunes password.  

Run backup_tool.py and supply iTunes password to it. In case if the password is unknown, modify the 
backup_tool.py script and attach a brute force script to it. Backup_tool.py script takes the user entered 
password, decrypts the Backup Keybag, grabs all the encryption keys and decrypts the files in the 

backup.  

 
 >  python python_scripts/backup_tool.py /Users/User/Library/Application 
Support/MobileSync/Backup/[iPhone UDID]/ [output_path] 
 

 
* If output_path is not mentioned, the script creates [iPhone UDID]_extract directory in the backup 
folder and extracts the backup files into it.  

On the encrypted backup, the iPhone keychain sqlite database is stored as a Plist file (Keychain-
backup.plist). The Plist file contents are encrypted with the migratable and ThisDeviceOnly keychain 

data protection class keys.  

https://nodeload.github.com/ptoomey3/Keychain-Dumper/zipball/master
http://securitylearn.wordpress.com/2012/03/27/keychain-dumper-usage-explained/
http://securitylearn.wordpress.com/2012/03/27/keychain-dumper-usage-explained/


To view migratable keychain items run keychain_tool.py and supply iTunes password. 

To view ThisDeviceOnly keychain items run keychain_tool.py and supply Key 0x835. 

 
   >  python python_scripts/keychain_tool.py –d /Users/User/Library/Application            
              Support/MobileSync/Backup/[iPhone UDID_extract]/keychain-backup.plist   
              /Users/User/Library/Application            
              Support/MobileSync/Backup/[iPhone UDID_extract]/Manifest.plist  
 

 
The above script dumps the generic passwords, internet passwords, certificates and private keys from 
the keychain backup file.  
 

Forensic investigation on the backup files would allow examiners to gain access to the entire contents 
of its host phone until the point that the backup took place. It is also quite possible that the seized 
system might contain older copies of the backup files or other iPhone backups with a wealth of 

information.  

To view the list of available backups on a system, open iTunes and navigate to Edit->Preferences (on 
windows) or  iTunes->Preferences (on Mac) menu and choose Devices tab. It displays the list of 

backups as shown in the Figure 10.  

 

(Figure 10) 

iTunes also provides an option to delete the backup files. To delete an existing iPhone backup, in the 
Devices Preferences window (shown in the above screenshot) select a backup and click on Delete 
Backup... button. If a backup is deleted from a system, examiners can use data recovery or carving 



tools to recover the deleted files from the system hard disk. It is easy to recover the deleted files from 

the computer when compared with iPhone. 

The iPhone stores a lot of user data in the backup files. The following table list out the common 

sources of potential evidence that can be analyzed in an investigation.  

File Name Description 

AddressBook.sqlitedb 
Contact information and personal data like name, email address, 
birthday, organization, etc... 

AddressBookImages.sqlitedb Images associated with saved contacts 
Calendar.sqlitedb Calendar details and  events information 

Call_history.db 
Incoming and outgoing call logs including phone numbers and 
time stamps 

Sms.db Text and multimedia messages along with their timestamps 
Voicemail.db Voicemail messages 
Sfari/Bookmarks.db Saved URL addresses 
Safari/History.plist User’s internet browsing history 
Notes.sqlite Apple Notes application data 
Maps/History.plist It keeps track of location searches 
Maps/Bookmarks.plist Saved location searches 
consolidated.db Stores GPS tracking data  
En_GB-dynamic-text.dat Keyboard cache 

com.apple.accountsettings.plist 
Maintains data about all email accounts that are configured on the 
Apple Email application 

com.apple.network.identification.plist 
Wireless network data including IP address, router IP address, 
SSID and timestamps 

(Table 7) 

Along with the files listed in the above table, the iPhone backup also contains third party application 
files. Sensitive information stored in the third party application files may also provide possible 
evidence for the investigation.  
 
Example: Facebook and LinkedIn iPhone applications store the authentication tokens and cookie 
values in plist files on the device. During backup, iTunes copies the plist files on the device to the 
backup folder. In such cases, analyzing the backup files gives access to the authentication tokens 
which in turn allows to log into the application without supplying the username and password.   

More details about Facebook plist hijacking are documented at scoopz blog.  

During an iPhone backup, iTunes only stores the existing files to the backup. So it is not possible to 
recover the deleted files on the iPhone from backups. Though it is not possible to recover the deleted 
iPhone data, forensic examiners prefer analyzing the backups to collect the evidence as it does not 

compromise the contents on a live device.  

 

 

 

http://blog.scoopz.com/2012/04/11/how-to-hack-facebook-dropbox-linkedin-and-other-ios-apps-using-a-plist-extracted-from-ios-backups/


Video:  
 
Video - http://www.youtube.com/watch?v=cqj4Z8VkJyU&feature=plcp 

Techniques explained in the article are demonstrated in the video. 

Video Transcript - http://securitylearn.files.wordpress.com/2012/06/analysis-of-ios-backups-video-

transcript.docx 

 

Conclusion:  
 
Techniques illustrated in the article shows that forensics investigation is possible on the latest version 
of iPhone backups. However the information recovered from the backup alone without physical 
access to the device is less. Apple is also changing the backup mechanism with every major release 
of iTunes. So it is always challenging to design the scripts to decrypt the iTunes backups.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.youtube.com/watch?v=cqj4Z8VkJyU&feature=plcp
http://securitylearn.files.wordpress.com/2012/06/analysis-of-ios-backups-video-transcript.docx
http://securitylearn.files.wordpress.com/2012/06/analysis-of-ios-backups-video-transcript.docx


References 
 

1.  iPhone data protection in depth by Jean-Baptiste Bédrune, Jean Sigwald 
http://esec-lab.sogeti.com/dotclear/public/publications/11-hitbamsterdam-

iphonedataprotection.pdf 

2. iPhone data protection tools  
http://code.google.com/p/iphone-dataprotection/ 

3. iPhone wiki 

http://theiphonewiki.com 

4. Processing iPhone backups 

http://www.appleexaminer.com/iPhoneiPad/iPhoneBackup/iPhoneBackup.html 

 

 

About Me:  

Satish B (@satishb3) is an Information Security Professional with 6 years of experience in 

Penetration testing of web applications and mobile applications.  

 

My blog is located at http://securitylearn.wordpress.com 

Email: satishb3@hotmail.com  

 

 

http://esec-lab.sogeti.com/dotclear/public/publications/11-hitbamsterdam-iphonedataprotection.pdf
http://esec-lab.sogeti.com/dotclear/public/publications/11-hitbamsterdam-iphonedataprotection.pdf
http://code.google.com/p/iphone-dataprotection/
http://theiphonewiki.com/
http://www.appleexaminer.com/iPhoneiPad/iPhoneBackup/iPhoneBackup.html
https://twitter.com/satishb3
http://securitylearn.wordpress.com/
mailto:satishb3@hotmail.com

