
White Paper

Gursev Singh Kalra, Principal Consultant
McAfee® Foundstone® Professional Services

A Pentester’s Guide to Hacking OData

A Pentester’s Guide to Hacking OData2

Table of Contents
Introduction 3

OData Basics 3

Accessing Feeds and Entries 3

The Service Document 4

The Service Metadata Document 5

OData by Example 8

The READ operation 8

The DELETE operation 9

Creating and updating Entries 10

Pentesting OData 12

Additional considerations 14

Conclusion 14

Acknowledgements 15

About the Author 15

About McAfee Foundstone Professional Services 15

3A Pentester’s Guide to Hacking OData

Introduction
The Open Data Protocol (OData1) is an open web protocol for querying and updating data. OData
enables the creation of HTTP-based RESTful2 data services that can be used to publish and edit resources
that are identified using uniform resource identifiers (URIs) with simple HTTP messages. OData is
intended to be used to expose and access information from a variety of sources including, but not
limited to, relational databases, file systems, content management systems, and traditional websites. It
allows a consumer to query a data source over HTTP protocol and get results back in formats like Atom,
JSON, or plain XML. OData can be termed as JDBC/ODBC for the Internet.

Over the last couple of years, the number of applications that support OData has risen and so has the
number of live OData services. This paper looks at OData from a penetration testing perspective and
introduces various OData concepts as we progress. All examples in this white paper are based on the
OData sample service3 available on the official OData website.

OData Basics
At the core of OData are Feeds, which are collections of typed Entries. Each Entry represents a structured
record with a key that has a list of properties of primitive or complex types. Simple OData services may
consist of just a feed. More sophisticated services can have several feeds, and, in that case, they may
expose a service document that lists all the top-level feeds, so that clients can discover them and find
out the addresses of each of them.

The figure below summarizes the connection between entries, feeds, and the service document.

Feed A Feed B

EntityType A EntityType B

Entry 1 Entry 1

Entry 2 Entry 2

… …

Entry N Entry N

Service Document

Figure 1. Relationship between Entry, Entity Type, Feed, and the Service Document.

Accessing Feeds and Entries

The OData protocol allows URIs to identify and access individual feeds and entries. These URIs are pretty
straightforward to follow; for instance, an individual Entry may look like:

http://localhost:32026/OData/OData.svc/Categories(ID=0)

While its feed URI would be:

http://localhost:32026/OData/OData.svc/Categories

4 A Pentester’s Guide to Hacking OData

Accessing the feed URI will result in the service responding with information concerning the entries that
make up the feed, as shown in Figure 2 below:

Figure 2. An example Feed Retrieval.

Looking at the feed, you may notice that the <id> element of an Entry contains the URI that identifies a
unique Entry. Based on the feed contents, restricted <id> values can be guessed or brute forced to gain
unauthorized data access.

The Service Document

A Service Document lists all the top level feeds exposed by the OData service. To access the Service
Document, simply remove the feed portion from the URI.

For example, if the feed URI is http://localhost:32026/OData/OData.svc/Categories, the Service
Document URI will be http://localhost:32026/OData/OData.svc/.

A typical Service Document should resemble the one provided by the example OData service shown in
Figure 3 below:

Figure 3. An example of a Service Document.

5A Pentester’s Guide to Hacking OData

The URI at which the service document is available is also called the Service Root URI, and it lists all
the top level feeds exposed by the OData service. Individual feeds can be accessed by appending the
href attribute of each collection element to the Service Root URI. Additional data access can be
performed according to the feeds discovered. For example, using the service document from Figure 3
above, you can identify the following feeds:

Table 1. Various feeds.

http://localhost:32026/OData/OData.svc/Products

http://localhost:32026/OData/OData.svc/Categories

http://localhost:32026/OData/OData.svc/Suppliers

The Service Metadata Document

The Service Metadata Document describes the different Entity Types provided by an OData service, its
Service Operations (described below), the links between its resources, and several other traits of the
service. You can access the Service Metadata Document for a particular OData service by appending

“$metadata” to the end of the Service Root Document URI. For example, the Service Metadata
Document for the Service Root URI “http://localhost:32026/OData/OData.svc/” would be:

Table 2. An example of a Service Metadata Document URI.

http://localhost:32026/OData/OData.svc/$metadata

The Service Metadata Document may or may not be publicly available. It uses Conceptual Schema
Definition Language4 to describe the OData service.

Identifying Feeds
If you’re unable to identify potential feeds using the Service Document (as shown above), you can also
use the Service Metadata Document. By looking at Figure 3, it appears that feed names are always the
plural of the OData Entity Type names, but this may not be the case always. The EntitySet child
of the EntityContainer element provides information on the feeds exposed by an OData service.
Below are the attributes of an EntitySet element:

1. Name attribute’s value is the feed name seen in the Service Document.
2. EntityType attribute’s value is the qualified name of the EntityType the feed exposes.

Figure 4. OData Feeds.

Using the information present in Figure 4, we know our Service Root URI (http://
localhost:32026/OData/OData.svc) and valid EntitySet names (Products, Categories
and Suppliers). Putting them together, valid feed retrieval URIs would be as shown in Table 3.

A Pentester’s Guide to Hacking OData6

Table 3. Feed URIs constructed from EntitySet elements.

http://localhost:32026/OData/OData.svc/Products

http://localhost:32026/OData/OData.svc/Suppliers

http://localhost:32026/OData/OData.svc/Categories

Invoking Service Operations
Service Operations are simple functions exposed by an OData service whose semantics are defined by
the author of the function. They typically consist of custom-written code that accepts primitive data as
input parameters via GET or POST requests and return primitive types, complex types, feeds, and even a
void.

Service Operations are listed as the FunctionImport child of the EntityContainer element
inside the Service Metadata Document. The bordered section in the figure below shows a Service
Operation definition.

Figure 5. A Service Operation.

FunctionImport has a number of attributes worth mentioning:

1. The Name attribute of the FunctionImport element is the Service Operation name.
2. The value of EntitySet attribute is the type of Feed returned by the Service Operation. Here, a

“Products” Feed is returned when Service Operation is invoked.
3. The value of m:HttpMethod attribute defines the HTTP verb that should be used for invocation.

Here, GET is required. GET and POST are the common invocation HTTP verbs.
4. The Parameter child element provides details on which parameters are accepted:
 a. Name attribute is the name of the parameter.
 b. Type attribute provides the data type expected.

The Service Operation declaration within the Service Metadata Document can be used to figure out a
valid invocation URI. For instance, using the information present in Figure 5, we know our Service Root
URI (http://localhost:32026/OData/OData.svc), a valid Service Operation (GetProductsByRating), its
parameters (rating), and the type of data the parameter expects (Int32). Putting that all together, a
valid Service Operation invocation URI would be:

Table 4. Example of a Service Operation invocation URI.

http://localhost:32026/OData/OData.svc/GetProductsByRating?rating=4

7A Pentester’s Guide to Hacking OData

Let’s try it out:

Figure 6. Example of a Service Operation invocation.

As you can see, we were successful in getting a valid response back from the server.

Extracting EntityTypes
The service metadata document’s EntityType elements describe the various EntityTypes
exposed by the OData service. The two figures below show an example EntityType and a related
ComplexType:

Figure 7. A supplier EntityType element.

Figure 8. A complex type definition.

8 A Pentester’s Guide to Hacking OData

Using the figures above as guides, there are a number of attributes of the EntityType element
worth mentioning:

1. The Key element groups together several child PropertyRef elements. These elements are the
keys that together identify unique entries. As discussed above, OData uses named key value pairs to
address unique entries.

2. The property element can represent either an OData primitive type or a complex type. Important
attributes of the property element are:

 a. Name—Defines name of a property.
 b. Nullable—Signifies if the value is Nullable5 or not.
 c. Type—This can be either a primitive type (Edm.Binary, Edm.String, Edm.DateTime, Edm.

Int32, and others) or a qualified name of a ComplexType. A ComplexType groups together
logically related primitive types. Complex types do not have keys and cannot be instantiated
on their own. If property’s type attribute value is not one of the primitive types,6 it should
represent a qualified name of a ComplexType definition within the same Service Metadata
Document. Address property in Figure 7 is a ComplexType property and Figure 8 shows the
corresponding ComplexType definition from the same service metadata document.

3. It is important to point out that different EntityTypes can be related to each other, and there can
be one-to-one or one-to-many relationship between entries.

We will visit the NavigationProperty element a little later in this white paper.

OData by Example
The OData protocol supports GET, POST, PUT/MERGE, and DELETE HTTP verbs for its RESTful
operations. These verbs are used to READ, CREATE, UPDATE, and DELETE records respectively.

HTTP Method REST Equivalent

POST CREATE

GET READ

PUT/MERGE UPDATE

DELETE DELETE

Figure 9. HTTP verb and corresponding REST equivalents.

It’s easy to get overwhelmed when learning a new protocol, so we’ll start with the easiest of the four7
types of OData operations: the “READ.”

The READ operation

Figure 10 below shows a READ operation retrieving a single OData record from an OData service.

Figure 10. An OData READ operation with XML data.

9A Pentester’s Guide to Hacking OData

There are a couple of items above that are worth highlighting:

1. Category(0) on the top line that starts with a “GET” identifies a unique OData record. The “(0)”
is the unique record (Entry) identifier that corresponds to primary key “0” within the back-end
database. OData also allows for comma-separated named parameters. For instance, “Category(ID=0,
Name=’Foundstone’)” identifies a unique record from a dataset that uses the named primary keys

“ID” and “Name” to access data. The comma separated name value pairs must be used to access
individual records if multiple keys identify a unique EntityType. For the special case when a single
key is used to identify unique EntityTypes, a value can be used instead of name value pair. For
example, “Category(0)” and “Category(ID=0)” will retrieve the same record.

2. The <id> parameter present on line 3 represents the URI that identifies a single record or Entry. This
parameter is returned for every OData record accessed.

3. Lines 13 to 16 show the properties for the Entry. These properties can be either of primitive8 type or
complex type.

If an attacker has access to any valid Entry/Record identifier, it may be possible to guess other record
identifiers to gain access to additional data.

Extracting Individual Properties
An interesting feature of OData is the ability to request Individual Properties for an Entry. For instance,
if an Entry is named “Categories” and has several properties, you can make a specific request for
Individual Properties, rather than requesting all the data and having to parse it on the requesting side.

For example, if we wanted to retrieve the properties (in XML or JSON format) for the “ID” key within the
“Categories” Entry, we can make the specific request shown in Figure 11.

Figure 11. Retrieving a single property of an Entry.

If we wanted to retrieve the raw value of the “ID” key within the “Categories” Entry, we would just
append “/$value” to the end of our request as shown below in Figure 12:

Figure 12. Retrieving the unformatted value for a property with $value.

The DELETE operation

To invoke the DELETE verb, simply provide a target Entry URI to be deleted. Since DELETE has such
devastating repercussions, it is important to ensure strict restrictions are put in. The GET or READ verb
is equally as simple to invoke, and the target Entry URI is used in this method to define what record
to access.

An example of a DELETE call is shown in the image below, followed by a request to access the
deleted resource.

10 A Pentester’s Guide to Hacking OData

Figure 13. DELETE method invocation and corresponding response.

Figure 14. READ attempt on a deleted Entry.

Creating and updating Entries

CREATE and UPDATE requests allow the application interacting with OData to create or modify entries.
The first important step in building one of these requests is discovering the structure of request that
is specific to the application. Most of this information can be determined from the Service Metadata
Document; you can also use Oyedata (http://www.mcafee.com/us/downloads/free-tools/oyedata.aspx),
a tool that will do it for you and will also allow you to engage the OData service to retrieve and send
information. Here’s a quick look at what a CREATE request looks like in Oyedata:

Figure 15. A successful supplier CREATE operation with JSON data format.

http://www.mcafee.com/us/downloads/free-tools/oyedata.aspx

11A Pentester’s Guide to Hacking OData

There is quite a bit of information available around building CREATE and UPDATE requests, so it’s
recommended that you check out sections 2.2.7 and 4.0 (examples) in the OData documentation to
learn the intricacies of how these requests are built. One nice feature is that these requests can be
formatted in either JSON or XML. The XML version of the request shown in Figure 16 looks like this:

Figure 16. A successful category CREATE operation with XML data format.

The bottom portion of Figure 16 shows the response from the server, indicating the Entry was created.

It’s worth mentioning that UPDATE requests have two major differences when compared to
CREATE requests:

1. OData update operations can target a complete Entry or individual properties.
2. The HTTP PUT and custom OData MERGE verbs are used to update entries when using the UPDATE

method, rather than the POST which is used for CREATEs.

Oyedata also supports both CREATE and UPDATE, so you can use it for whichever you’d like.

12 A Pentester’s Guide to Hacking OData

Pentesting OData
The OData protocol does not include security specifications and suggests the implementers to use what
best fits their target scenario. Since the OData protocol is based on HTTP, AtomPub, and JSON, it is
subjected to the security considerations applicable to each of those technologies. Additionally, there are
a number of other common penetration test cases that should be considered. The tables below provide
areas of focus when approaching OData applications.

1. Discovery and Configuration

Service Document •	Attempt to access the service document. If accessible, enumerate the Feeds

•	Construct feed URIs and try accessing them to check for unrestricted data access

•	 Service document accessibility must be verified as per business requirements

Service Metadata Document •	 Verify if the Service Metadata Document is accessible. If not, obtain a copy for analysis

•	Attempt to enumerate Feeds using the Service Metadata Document

•	 If the OData service is for private consumption, the Service Metadata Document must
not be made available over the Internet. This should be an important test case for each
penetration test.

•	Analyze the contents of Service Metadata Document to construct various attack templates to
engage the OData service

•	 Review EntitySet child elements inside the EntityContainer to determine the feeds
exposed by the OData service and test each one of them

Tools •	 McAfee Foundstone Oyedata can be leveraged to automate Service Metadata Document
analysis and attack template creation process

•	 Explore if Linqpad10 and other tools11 meet your requirements

Insecure HTTP Methods •	 OData relies on GET, POST, DELETE, and PUT HTTP verbs to specify the action to be
performed on resources identified by the unique URIs. It is important to securely configure the
web server to allow insecure methods like DELETE and PUT only for the relevant resources.
Insecure configuration can possibly lead to web server compromise and website defacement.

2. OData Operations

RESTful Operations For each user privilege, identify the EntityTypes for which there is restricted access, no access,
or access to subset of RESTful (CREATE, READ, UPDATE, and DELETE) operations and attempt
the following:

1. Enumerate valid keys and try to access individual Entries.

2. Access individual properties for the restricted Entries to ensure granular access restrictions
are in place.

3. Write operations must be attempted on Entity Sets designated as read-only. Do so by
attempting POST requests on individual Entity Types.

4. Verify if Entries can be removed by sending DELETE requests on the restricted entries.

5. Update operations must be attempted at Entry, individual property, and raw value ($value)
levels. Do so by sending PUT requests.

Service Operations A penetration tester must test Service Operations for various injection attacks, logic flaws,
authorization checks, and more

13A Pentester’s Guide to Hacking OData

3. Authentication, Authorization, and Session Management

General The OData protocol does not define any scheme for authentication or authorization. Penetration
testers must therefore perform comprehensive authentication, authorization, and session
management tests as per the application.

HTTP Verb Tunneling To work with clients that do not support HTTP verbs like DELETE, PUT, or MERGE, OData
protocol offers a technique called “verb tunneling.” In this technique, PUT, DELETE, and MERGE
requests are submitted as a POST request, and an X-HTTP-Method12 header specifies the actual
verb that the recipient should apply to the request.

Penetration testers must test for DELETE, PUT, or MERGE methods with “verb tunneling” to
ensure that consistent access mechanisms are implemented. It is possible that direct invocation
of DELETE or PUT methods may be prohibited on some resources but can be executed via
X-HTTP-Method header.

Navigation Properties for
Additional Data Access

NavigationProperty child elements of an EntityType allow navigation from one Entity
to another via a relationship. The figures in “Creating and Updating Entries” section show a
couple of Entity Types with NavigationProperty elements. These navigation properties can
be accessed by appending the name of navigation property to a single Entry. Example URIs to
retrieve related products and the product feed are provided below:

•	 http://localhost:32026/OData/OData.svc/Categories(1)/$links/Products

•	 http://localhost:32026/OData/OData.svc/Categories(1)/Products

This relationship navigation mechanism can be used as a springboard to other Entry Type’s
additional data, and penetration testers should test for occurrences when otherwise constrained
data can be accessed.

System Query Options System query options13 control the amount and type of data returned by the OData service.
System query option names are prefixed by “$” character. A couple of system query options that
may be of interest while performing penetration tests are summarized below:

$select—$select system query parameter can be used to retrieve subset of available properties.
For example, the URI http://localhost:32026/OData/OData.svc/Categories?$select=Name can
be used to retrieve only the name property for all Entries in the Categories Feed. The $select
option can be potentially used to retrieve hidden properties by specifying the wildcard character

“*” which causes all properties to be included in the returned feed. Additionally, the “*” can be
used to enumerate additional property names.

Example URI: http://localhost:32026/OData/OData.svc/Products?$select=*

$format—$format system query parameter’s value is used by clients to request data in
a particular format. Specifying non-existing format values to this system query option has
generated detailed error messages during the tests.

Figure 17. An error message returned when non-supported format is provided.

System query parameter values may also be tested like regular web application parameters.

Other OData system query options, $expand, $filter, $orderby, $skip, $top,
$skiptoken, and $inlinecount, can be applied to almost every READ request. Penetration
testers are encouraged to review their invocation syntax and incorporate the applicable attack
vectors during their assessments.

http://localhost:32026/OData/OData.svc/Categories(1)/$links/Products
http://localhost:32026/OData/OData.svc/Categories(1)/Products
http://localhost:32026/OData/OData.svc/Categories?$select=Name
http://localhost:32026/OData/OData.svc/Products?$select=*

14 A Pentester’s Guide to Hacking OData

4. Data Validation and Error Handling

Data Validation An OData implementation must be tested for various data validation scenarios based on the type
of back-end system it talks to in order to provide exhaustive penetration test coverage. Injection
attacks and other data validation tests must also be performed as applicable.

Error Handling Malformed JSON and XML request formats and incompatible data types should be sent to ensure
proper error handling schemes exist. I have seen a couple OData services accepting invalid data
during updates and creation of new Entries and then becoming unusable unless those invalid
Entries are manually removed from the database.

Database Integrity Checks Each new Entry inserted to the database has to have a unique key. Strict checks must be enforced
to ensure uniqueness of keys. It was observed that the inability to maintain the uniqueness of
keys leads to a corrupt database leading to a denial-of-service type of condition.

Additional considerations

The Open Data Protocol aims to provide a consistent web access mechanism for file systems, databases,
CMS, and other type of data storage methods. This requires a framework that can generate a great deal
of dynamic code and is customizable for different types of data sources and environments. With several
types of underlying storage, interesting new types of vulnerabilities can creep in, for instance:

1. SQL injection in the dynamic code and queries that are used to interact with the underlying database.
2. File traversal vulnerabilities when files are used as data sources and file access is not appropriately

sandboxed or input character filtering is not performed.
3. XPath injection when the OData implementation extracts information from XML content.
4. Framework specific vulnerabilities.

An OData implementation must be tested for various data validation scenarios based on the type of
back-end system it talks to in order to provide exhaustive penetration test coverage.

Conclusion
As OData evolves and its usage spreads far and wide, more attacks will be discovered. Penetration
testers are encouraged to review the comprehensive documentation available on the official OData
website, familiarize themselves, and gain deeper understanding of this wonderful new protocol. After all,
gaining a deeper understanding is the first step to securing and assessing any new technology.

15A Pentester’s Guide to Hacking OData

Acknowledgements
Brad Antoniewicz provided significant support by reviewing this white paper.

About the Author
Gursev Singh Kalra serves as a principal consultant with McAfee Foundstone Professional Services,
a division of McAfee. Gursev has done extensive security research on CAPTCHA schemes and
implementations. He has written a Visual CAPTCHA Assessment tool, TesserCap, that was voted among
the top 10 web hacks of 2011. He has identified CAPTCHA implementation vulnerabilities like CAPTCHA
Re-Riding Attack, CAPTCHA Fixation and CAPTCHA Rainbow tables among others. OData security
research is also one of his interests, and he has authored the OData assessment tool, Oyedata. He has
also developed open source SSL Cipher enumeration tool, SSLSmart, and has spoken at a wide variety of
conferences, including ToorCon, OWASP, NullCon, Infosec Southwest, and Clubhack.

About McAfee Foundstone Professional Services
McAfee Foundstone Professional Services, a division of McAfee, offers expert services and education
to help organizations continuously and measurably protect their most important assets from the most
critical threats. Through a strategic approach to security, McAfee Foundstone identifies and implements
the right balance of technology, people, and process to manage digital risk and leverage security
investments more effectively. The company’s professional services team consists of recognized security
experts and authors with broad security experience with multinational corporations, the public sector,
and the US military.

About McAfee
McAfee, a wholly owned subsidiary of Intel Corporation (NASDAQ:INTC), is the world’s largest dedicated
security technology company. McAfee delivers proactive and proven solutions and services that help
secure systems, networks, and mobile devices around the world, allowing users to safely connect to the
Internet, browse, and shop the web more securely. Backed by its unrivaled global threat intelligence,
McAfee creates innovative products that empower home users, businesses, the public sector, and service
providers by enabling them to prove compliance with regulations, protect data, prevent disruptions,
identify vulnerabilities, and continuously monitor and improve their security. McAfee is relentlessly
focused on constantly finding new ways to keep our customers safe. http://www.mcafee.com

2821 Mission College Boulevard
Santa Clara, CA 95054
888 847 8766
www.mcafee.com

1 http://www.odata.org/
2 http://en.wikipedia.org/wiki/Representational_state_transfer
3 http://www.odata.org/ecosystem#samplecode
4 http://msdn.microsoft.com/en-us/library/bb399292.aspx
5 http://msdn.microsoft.com/en-us/library/1t3y8s4s(v=vs.80).aspx
6 http://www.odata.org/documentation/atom-format#PrimitiveTypes
7 CREATE, READ, UPDATE, and DELETE are the four RESTful operations supported by the OData protocol.
8 http://www.odata.org/documentation/overview#AbstractTypeSystem
9 http://www.odata.org/media/16352/[ms-odata].pdf
10 http://www.linqpad.net/
11 http://www.odata.org/ecosystem#consumers
12 http://www.odata.org/documentation/operations#AdditionalInteractionModelConsiderations
13 http://www.odata.org/documentation/uri-conventions#SystemQueryOptions

McAfee, the McAfee logo, and McAfee Foundstone are registered trademarks or trademarks of McAfee, Inc. or its subsidiaries in the
United States and other countries. Other marks and brands may be claimed as the property of others. The product plans, specifications and
descriptions herein are provided for information only and subject to change without notice, and are provided without warranty of any kind,
express or implied. Copyright © 2012 McAfee, Inc.
47501wp_hacking-odata_0812_fnl_ETMG

http://www.odata.org/
http://www.odata.org/
http://www.odata.org/ecosystem#samplecode
http://msdn.microsoft.com/en-us/library/bb399292.aspx
http://msdn.microsoft.com/en-us/library/1t3y8s4s(v=vs.80).aspx
http://www.odata.org/documentation/atom-format#PrimitiveTypes
http://www.odata.org/documentation/overview#AbstractTypeSystem
http://www.odata.org/media/16352/[ms-odata].pdf
http://www.linqpad.net/
http://www.odata.org/ecosystem#consumers
http://www.odata.org/documentation/operations#AdditionalInteractionModelConsiderations
http://www.odata.org/documentation/uri-conventions#SystemQueryOptions

