SecurityXploded

Reversing and
Malware Analysis
Training Articles
[2012]

A Free Training Project From SecurityXploded
(http//securityxploded.com/security-training.php)

We Recommend:
http://www.securityphresh.com

Course Q&A:

Join our mailing list:

http://groups.google.com/qgroup /securityxploded

7

SecurityXploded Research Group
11/24/2012

http://www.securityphresh.com/
http://groups.google.com/group/securityxploded

Contents

DISCLAIMER, ACKNOWLEDGMENT AND CREDITS 5
DY Y11 [TN
ACKNOWLEDGMENT
CREDITS uteuteuteseeueeueeueestetestesuesuesut et estesessessessesaesssessessessessesseeat e st eneens e st eaeeaeeaeemsensansa s eeseese e s s e s esseseesaesateatent et e s eseententensansansanen

ASSEMBLY PROGRAMMING: A BEGINNERS GUIDE 6
IINTRODUCTION. ..uteuteutetestessersesstestessesseestesteseestesessassassesatestentessesesseaseesteseeseeab e b e ebeebeshe e R e e ab e b e b e b e aeea e et e b e b e b e s b enbesbesheenbenbesbeas 6
REQUIRED TOOLS ...utiieieierienieiititete sttt ettt e sb s bbb e b e bbbttt b e b e s b s b s b e e b s et e b e b e b e s b b e b e b e b e b e s b e s b e s b e s be s b e b e bt s 6
INSTALLATION ...utiutetetestessesiesstetessesbesstestese et s st sb e b e sae s st et e b e b e b e b e e bt e b e e Rt e b e b e eb e e b e s b e e R e e st e b e b e b e e bt e Rt e Rt et e b e b e b enbesbesbe st enbesbeas 6
CONFIGURING WINASM.....cutieterterierutetetestesseestetetessessessessessessesssessessessssstententensensansessesatsnsensensessessessesstententessessessesseensssensensense 7
PROGRAMMING IN ASM USING IMASIM & WINASMcoveerririemiereeenintetesesseseeseseeesseseesesseseeseseesessesesseseenessessesessensenessensesessenees 7

BIOCK 4 ettt ettt ettt ettt h bkt bbbt h et etk et ettt eseanees 10

1] o Yol G OSSOSOt 10

BUIIA QNG RUN TNE PIOGIG M ...ttt tsts ettt ta et s s ss e sa et sa st esessetesssennssassessssanssssnsansssens 10

REFERENCES ..vvevteteteuetesesesesesesesasssssssssssssesssssssestsssssenssesessssssssssssensssssesessssesssssesesssssessssssesssssnsesesesesesesesesesesesesasesesesesssssasanes 11

AUTOMATION OF REVERSING THROUGH SCRIPTING 12
INTRODUCTION. ...vevvveuereneuesesesesesesesesesssesesessassestsssssentsssssssssessssssetssssesessssssssesesesssssesesesssesesssesesesssesesesesesesesesesesesesesesasesenanes

OLLYDBG - PLAYING WITH OLLYSCRIPT...

PrODICIMN STALEMENT: ...ttt ettt sttt sttt s e ettt s s et st sessaenens
SONULION .ttt ettt sttt ettt sttt ae st e s s etk at st s et e et st e s e et e s e as b st ek ettt etsae et e st tens 13
IMMUNITY DEBUGGER......ceeccuteeiteeeiiteeeteeeteeesteeeiseeessseeessseeasseeesaeaessesasseesasaasassesasseesasaeaasseeasseessseesssesssssesssseenseesnsseesssensees 15
PrODICIMN SEALEIMENT: ...ttt ettt sttt s et s e et e st s s ettt eseannens 15
Ko (V11 ToY N Yelg <X OSSO 15
0 1R 16
PrODICIMN STALEMENL: ...ttt ettt sttt ettt ettt ettt s sttt et e s s st nsessannens 16
Y [T 1o OO 16
WINDBG
PrODICIMN STATEMENT: ...ttt ettt ettt stttk as st ae et e se et et e sttt e s s sessanneas
SOMUBLION : .ttt sttt sttt sttt et s et e s s et h et s s s e et s e et ens 18
CONCLUSION. 1. ttteetreeitreesiteeeisaeesseesesaesastesasseeseseesassassssssesssesssssansssssssesssssssssssssnsssssssssenssssssssessssssnssesssseessseessssssssseessseessnsasnnns 19
REFERENCES
API CALL TRACING - PEFILE, PYDBG AND IDAPYTHON 20
INTRODUCTION. ... tteetteeeuteeeiteeeiteeeessaeseseeaasseesasessasseaasseesssseeessseassaseasssassssasnsssensessastssassssensessasesansssssnsssesssssssssssnsseessseessssesnssenn 20
N Y I I 12X o R 20
AP| CALLS LOGGING WITH PEFILE & PYDBGcccteeteeiteeieeitesiteeieesteeteestesteseesaesseesssesssessessssessesssssnsesssesssssssessesnsesssenssesnsens 21
Unpacking UPX USING APl COIl TIACING «...veuvvrveeeersieieiersisiersisieiesitsieissstssssssasssssssssssssssssssssssssssssssssasessssassssssssnsssens 25
BinAry BEAGVIOUI PIOSIlINGvoveeeeeeieeeiesieieieeisestetsts e eteststssts s te st tests et e s sessssassesssessessssensssansessssanssssssansssens 26
Finding INTEIreStiNgG FUNCLIONSc.ccueeeeueeieieteseeieeeteisssessesstesessestsssssessessasasesssessasassssssessassssessssassessssessasassssssessasens 26
EXTENDING AP| TRACING WITH IDAPYTHONveietieeeeeeeieeeceeeeteeeeteeeeteeeeseeeeseeeseeessseeessseessseesssessssesssseessnsesesssensssesssessnes 27
CONCLUSION. 1. ttteetreeiureesiteeeisaesseseeseseesaseesaseeseseesasssssssssssssesansssanssssssssssnsssssssssssssssssssessssssssssssssssnsssssnseessssessssesssseessseesensessnns 28
REFERENCESeeeeuteeetteeetteeeiteeeiteeeeeseeeesaeaasseeeseeeasaeaassseeassseessaeasaeaasssessssaansseessseessseanseeasseessaeansseessaeessseeensaeeasseeasseessnseannseenn 28

Reversing and Malware Analysis Training [2012] Page 2

MANUAL UNPACKING OF UPX USING OLLYDBG 29

INTRODUCTION. ¢ tttetteisuteeeeesasseesssseessseessssessoseesassessssesssssessssssssessssssessssssssssssssessoseessssesssseessseessseessssssesssesssssesssseessseessseessssees
PACKING EXE USING UPX ...coiiiiiiiiiieiiteciie e stiese e s e ste e seiee s s ee s ssta e s ebaeesabaesaaeasabeesasaesssseasssae s sasaastaeassasenssesansaesssseessaesnssessssenns
UPX UNPACKING PROCESS
MANUAL UNPACKING OF UPX....eiiiiiiiiieiiieisiee sttt st esetee s s ee s ste e s s beessseaessaseasssaesasaaasssessssessnsasassssssnsesessssssnssssnssssssseessseesssseens 30
FIXING IIMIPORT TABLEutteiitteecteeeeteeeeiteeeteeeteeesseeeeuseaesaeeasaeeesaeaastaaasseesasaaaasseaanseasansaeessaesaseesasaeassesesseeaassaeanseseasseenssaesnsens 31
VIDEO DEMONSTRATION ...uuveeeitreeetreeeiteeeiseeeaseeseseeeeseeeeseesesessssssesasssessssessssssssssessssessssesssssssasssessssesssessssesessssssssssessssessssesssseens 33
REFERENCES ...uteteteeetteietteseteaaisseesseesasaeasssesssessssesssssesnsssesssssansssensssessssssssssssssessssesnssessssessseesnsssssnsssesssesensesensseesssesssssessssess 33
MALWARE MEMORY FORENSICS 34
INTRODUCTION. ¢ vttetteeeuteesseeeasseessssaesaseessssessaseessseessssessssssesssssassssssssssssssssssssssssesssseessssesssseesssesssseessssssesssessssseesssesssseessseeesssees 34
W HY IMIEIVIORY FORENSICS ?veveeiteeeteeiteeereesteeseesseesseeseesesseessesssessssessesssesssesssssssesssssssessessssesssessessssessessssesesssesnssensesssesnsenns 34
VOLATILITY = A QUICK OVERVIEWeesueeeueeseerereesteseseesseesseessesssesssessessssssessssssesssesssesssessesssesssesssessssesssessssssesssssssesssesssessseessees 35
VOIQLIlItY SYNTAX & USAGC...o.eeeveeeeeeeieieteseeietesteietestetestestetestesstestesssesessssssesta s ess st assstassa s essasessssessesasasssssnsessssensessass 35
DEMONSTRATION = IMIEMORY FORENSICSceeeiteeeiieeeieeeieeeitteesetteeeteeeseeseseeaesseeesnseesssesassesasseesassessssesssssesansesssessessesesesssens 35
Demo Scenario
PrEDAIATION STEPS ..uveeeeeeeeeeieesteectee ettt et et et s st sste s e e st estaseseste st e s ste s st assse st asasasstesasanstesssansesnssessssnssessssssnessesnss 35
DEMONSTRATION = IMIEMORY ANALYSIS ...uvveeeereeeerteeereeeereeeeiseeesseeesssessseeessseessseesassssssssssssessasssassssssssessesssesssssessssessssessssesssseen 35
Step 1: StArt With WAGE YOU KNOW ...ttt e et ss e te et et eses s s sesss e assassasesssse st essssansssssassssasssssass 35
SteP 2: INfO ADOUL 208.91.197.54 .ottt s sttt sttt ss s st s s s s sssaasssssassssssssassssssnsansens 36
R =] Lo R o 1o B S 36
Step 4: Process NANAIES Of @XPIOIEI.EXEuuceeeeeeieeeieiesieieestsesesteiestsssete e sssssse s ssssssssasesssssssssssse s sssssassssassessans 37
SEPD 5: APl HOOKS IN @XPIOIEI.EXE ...ttt tsie sttt ettt be st st st be st et snsse s ssasssnssassssnaes
StEP 6: EXPIOIING the HOOKSvceveeveveeeeriteieteieieesie s te e testets e ste s s ts e s e esa s s s seseta s essssaatessssansssasassssansssansensessass
Step 7: Embedded EXE in explorer.exe
Step 8: DUMPING the @MBEAUEA EXE.........ooueeeeeieieeeeieieesiecisiesisistestsiestssstes s ssssssssasssssssasssssssssssssssssssssssssssnssssnes
SteP 9: VIrUSTOTAI SUDMISSION ...ttt ettt e e st e st e s se e te s e s st et assess s ess st s s ssansesssasseseass
Step 10: CAN W GO MOTE INFOP ...ttt sttt sttt sttt sttt sttt sttt ettt tssssssssssssnsnsnsns 39
Step 11: Printing the Registry Key
Step 12: Finding the Malicious EXE on INfeCted M CRINEceceeueeeeeereeeeeeeeeeeseeeeteiesiesessstesresesesnesassessns 40
CONCLUSION. ...euteeuteseeesseesseessessseessesaseessesaseessesseansesssesasesssesseansesssesssesssessessssesssesssessseassesssssseessesassesseessesssesssesnsesnsesssesssnsssenns 41
REFERENCES ...uteeeteeetteiitteeeteaeiteeesseesasteaasseesseesasaeaassseaasssessssasssaseesssassssaansssesssessnstesssssnssessseesnsssssnsesessesenssssnssesssseessnsesnssens 41
DLL INJECTION AND HOOKING 42
INTRODUCTION. ¢ . utttetteieuteeeitesasireessseesaseeasssessaseesassesssssssssssssssssassssssssssssssessssssssessssssssssessssessssesssssessssssesssesssssessssesssseesssneesssees
DILL INJECTION ... tteeeteeeeuteeeiteeeiteeeeteeeeeeeeaeeeeseeeesaeaesseesaseesssaaensaeeassseasseaassae e nseesasseaasseeenseessaeasseaeasseesaseeessesasseeenseeessesanseenn

DLL INJECTION USING CREATEREMOTETHREAD ...
HOOKING ...ttt ettt b e sttt be b s b e bt st st e b e b e b e b e e b e s b e e R e e ae e s b e b e e bt e Rt e b et et e b e b e besab e b ennebens

INLINE HOOKINGcuveveeeneeetesetsaeseseseesesesessssssesssssasessssssassssessssssesesenensssesensssesesssesessssssesesesensesesanssesensssesesenessesesenessesasesssesens
CONCLUSION....vveteveuereteteresesssetesesssssssssssssssssssssssssssssssssenestsssssssssssssessssssssstsssssssssssssssssssessasssssnssssssnsesssssssesssssnsesssnsssssssesesesns 52
REFERENCES .v.vvvetetetetetesesesesesesasesssssesssssssesssssssestssssssnssssssssssesssssssessssssssssssssesssesesesssesesesssasessssesesesesesesesesesesesesesasesesesesssssasanes 52
IN-MEMORY EXECUTION OF AN EXECUTABLE 53
INTRODUCTION. ..tveveveveuereussssasesasssssesssesssssesesssssestsssssesssssssssssesssssssessssesssssssessesasesesesesasesasanes 53
TECHNICAL INTRODUCTION ... cututtereneseetessneseesesesseseseessesesensssssesessssesensssesesessssesssensesesensnsssesssesessnsssesessnsssesesessesesessssesesssesesans 53
IN-IMIEMIORY EXECUTION w..cvvveueueurueuesesssesesesessaesesssssssesssssenentsssssesssesssssssessssssssssssssssnsssssssssssssssssesssesssesesssssesesesesssesesesesssesesesas 54
o [0 [XX N o Yo Lol =2 OSSOSO 55
Sections MAPPEA iNtO AGAIESS SPACE..........cveeeveeieretecisisiectseste s e steestess et sstsssstesessssss s tssessssssassessesssssssssensesenes 56
Imported APl addresses

Reversing and Malware Analysis Training [2012] Page 3

MEMORY EXECUTION —PROTOTYPE CODEceutitiieitesierieriesstestessessesseeseeseesesstssesseseesaesst et etessessassesseeseensansensessessessessesntensans 56
CONCLUSION. c..vtrteutereeenerteee et ese st se e s s esa et s et e s e se st et a e e s s e e e st s e et s st e eae e at s eae e st s e st e s e st e st s e st s e e s s et e R et st s entene s enteneneenesrenene 60
REFERENCEStuttuteuteitetestesie st sttt sttt sttt st st b e sh e sbe et et b e b e b e b b e b s b e b e b e b e s b e e b e s R e s b e e R b e b e s b e e b b e Rt et et et e b e b e besbe s b ebenbens 60

Reversing and Malware Analysis Training [2012] Page 4

Disclaimer, Acknowledgment and Credits

Disclaimer

The Content, Demonstration, Source Code and Programs presented here is "AS IS" without
any warranty or conditions of any kind. Also the views/ideas/knowledge expressed here are
solely of the trainer’s only and nothing to do with the company or the organization in which
the trainer is currently working.

However in no circumstances neither the trainer nor SecurityXploded is responsible for any
damage or loss caused due to use or misuse of the information presented here.

Acknowledgment

Special thanks to null & Garage4Hackers community for their extended support and
cooperation.

Thanks to all the trainers who have devoted their precious time and countless hours to make it
happen.

Thanks to Keon and Thoughtworks for providing beautiful venue.

Credits

Following people served as the backbone of this project, without their efforts it was not
possible to make it happen.

Monnappa ; Infosec investigator, Cisco Inc.

Swapnil Pathak : Security Researcher, McAfee Inc.

Harsimran Walia : Security Researcher, McAfee Inc.

Nagareshwar Talekar : Security Researcher and Founder of SecurityXploded
Amit Malik : Security Researcher, McAfee Inc.

The trainers would also like to thank their employer and seniors for allowing them to deliver
these lectures.

Reversing and Malware Analysis Training [2012] Page 5

Assembly Programming: A Beginners Guide
Author: Amit Malik

Introduction

This article is specially designed to help beginners to understand and develop their first
Assembly Program from scratch. Through step by step instructions it will help you to use
tools, setup the environment and then build sample'Hello World' program in Assembly
language with detailed explaination.

s In 1L

— ¥

e 0 Egd I mi g

This article is the part of our free ""Reverse Engineering & Malware Analysis
Course™ [Reference 4]. It is written as pre-learning guide for our session on'Part 4 -
Assembly Programming Basics® where in we are going to cover Assembly Programming
from the reverse engineering perspective.

Here we will be demonstrating Assembly programming using MASM as it is the Microsoft

assembler and provide much flexibility when it comes to development on Windows
environment over various other assemblers like NASM etc.

Required Tools

= MASM [Reference 2] - MASM is a Microsoft assembler.

= WinAsm [Reference 3] - WinAsm is IDE. It provides a nice interface for coding and
moreover you don't have to type different-2 command for assembler and linker to
compile a binary, with one click it will generate EXE for you.

Installation

= MASM - By default MASM tries to install itself in windows drive mostly ¢ drive but
you can install it in any Drive/directory. We need the full path of MASM installation
to configure WinAsm so note down the drive/directory where you installed MASM.

Reversing and Malware Analysis Training [2012] Page 6

= WinAsm - Download and extract the WinAsm package. WinAsm comes with all files
you require so you don't have to install it. Just copy the folder to "c:\program files\"
and make a shortcut to desktop so that you can access directly from desktop.

Configuring WinAsm

Launch WinAsm by double clicking on the shortcut created on the desktop. In order to
integrate it with MASM we need to setup the MASM path in WinAsm configurations. Here

are the steps,

Click onthe tools tab
In tools click on options
In options click on file & path tab

agrowDdE

Click on Ok.

Options

Change the all entries with path to MASM installation folder

e

API Structures
API Constants
Help File
Projects Path

| General | Files &Paths | Editor | Intellisense | Keywords | Colors | Miscellaneous

Binary Path C:\WMasm32\8in

Indude Path C:\Masm32\Include

Library Path C:WMasm32\Lib

Keyword File C:\WinASMKeyFies\MASM.vas
API Functions C:\WinASM\Api\MasmApiCall.vaa

C:\WinAsm\API\MasmApiStruct.vaa
C:\WinAsm\API\MasmApiConst.vaa
C:\WMasm32Help\Win32.hip
C:\WinAsm

| ok

| nonoonn

After this you should be able to write programs in WinAsm.

Programming in ASM using MASM & WinAsm

Launch the WinAsm window, click on the “file" tab. Then click on the new projects and it

will show you couple of options as shown below.

New Project l—=|
Empty Project | Executable | Dos | pDialog | Bare Bone |
53 o -, P
=S e B = e =
e a-l— Standard DLL Console Static Library
Applicaton
<S>~ Leil) >
Other (EXE) Other DOS Project
MNon-£XE)

Reversing and Malware Analysis Training [2012]

Page 7

= Console Application - For creating console (command-line) applications
= Standard EXE - For creating GUI based applications

Here we willl use Standard EXE because we want to make a GUI Application. Now you
will see the editor window in which you can write your programs.

My First ASM Program

Here is a typical assembly program structure,

1. Architecture - Define the architecture because assembly is Hardware (processor)
dependent language so you have to tell to assembler the architecture for which you are
writing your program.

2. Data Section - All your initialized and uninitialized variables reside in data section.

3. Code Section - Entire code of your program reside in this section.

Now we will write a program that will display the message box saying "*Hello World!"'

include u

includelib
inclu
includelib

Jm—m————— - ——

o= ———— Block

invoke Me geBox, NULL, addr szMsg,addr szCaption,MB OK

mov retvalue, eax

Reversing and Malware Analysis Training [2012] Page 8

| divided the above code in 5 blocks. Below | will explain the purpose and functionality of
each block.

Block 1

2) .model flat,stdcall

)option casemap:none

#1 - This line defines the architecture for which we want to make this program. (.386)
represent Intel architecture

#2 - This line defines the model and the calling convention that we want to use for this
program. We will explain it in detail in our "Assembly Basics" session.

#3 - function names, variable names etc. are case sensitive

All these three lines are required in each program.

Block 2

nclude windows.inc

y nclude user32.inc

2

nclude kernel32.inc
ncludelib kernel32.1ib

i
i
includelib user32.1lib
i
i

a s W N

include and includelib are two keywords. Include is used with .inc files while includelib is
used with .lib files.

.nc files are header files. for eg: windows.inc is windows.h, you can convert any .h file into
.nc file using H2INC utility that comes with MASM.

ib files are required by linker to link the used functions with the systemdlls. In our program
we used two .lib files (user32.lib & kernel32.lib). For each .lib file we have to include its
corresponding .inc file.

Block 3

.data is the section for initialized variables. Every initialized variable should be initialized in
this section. In our code we have two variables of char type <string>.

For eg: in #2 szCaption is the variable name, db is the type means char type, "Hello", O is the
value.

Here important point to note is that every char or string value should be terminated with zero

0).

Reversing and Malware Analysis Training [2012] Page 9

Block 4

.data? is the section for uninitialized variables. Every uninitialized variable should be
declared in this section.

Block 5

szMsg,addr szCaption,MB OK

.code represents the start of code. All your code should be written in this section

#2 start: It is a label and it is like main function. You can name it anything but you have to
use the same name in #7 otherwise linker will generate an error.

Fore.g.:
main:

end main

#3 invoke - is the keyword, its operation is similar to "call”. But in call you have to manually
push parameters on the stack while invoke will do everything for you.

Syntax: function name parameterl, parameter2, parameter3, etc.

In our code MessageBox is the APl from user32.dll and it requires 4 arguments.

Here important point to note is that we used "addr™ with some of our variables. addr will give
address of the wvariable instead of its wvalue, it is like pointer in c.

#7 end start - it says the end of the code and file.

Build and Run the Program

Now paste the above code in WinAsmand click on "make" tab, in "make™ click on
"Assemble™. After that click on "link" which will be the executable for this program.

Finally run the EXE file by double clicking on it, it should display "Hello World!".

This is a basic program to help you to learn Assembly Language in easier way. For more
advanced details refer/attend our FREE Reversing/Malware Analysis course [Reference 4]

Reversing and Malware Analysis Training [2012] Page 10

References

Icezelion's Win32 Assembly Tutorials

MASM - http://www.masm32.com/

WInASM - http://www.winasm.net/

Reverse Engineering & Malware Analysis Course

PO

Reversing and Malware Analysis Training [2012] Page 11

http://win32assembly.online.fr/tutorials.html
http://www.masm32.com/
http://www.winasm.net/
http://securityxploded.com/security-training.php

Automation of Reversing Through Scripting
Author: Amit Malik

Introduction

This article teaches you how to become smart reverser by automating your reverse
engineering tasks through Scripting.

It is the part of our free ""Reverse Engineering & Malware Analysis Course™ [Reference
1]. It is primarily written to act as additional learning material for our session on 'Part 5 -
Reverse Engineering Tools' where in we are going to demonstrate important reversing tools.

You can visit our training page here [Reference 1] and all the presentations of previous
sessions here [Reference 2]

Reverse engineering is a sophisticated task especially when we analyse large applications or
packed files like malware or normal applications for vulnerabilities.

Some of the common tasks include

= Tracking memory allocation

= Tracking specific API calls

= Unpacking a family of malwares

= Intelligent decision making based on some specific events

These are just some simple examples where automation will help in a great way. For
example, lets say that we want to monitorHeapAlloc calls in an application and application
may call HeapAlloc for hundreds of times but we want to log the call for some specific
values like if allocation request is greater than 1024 bytes etc.

Reversing and Malware Analysis Training [2012] Page 12

A simple script will give us all the information virtually on the spot while in manual task we
have to manually create breakpoints on HeapAlloc and have to check if the allocation size is
greater than 1024 bytes or not which eventually increase the analysis time for such a simple
task.

In this article, 1 will show you how to automate some of these common tasks through

Scripting for main reversing debuggers i.e Ollydbg, Immunity Debugger, Pydbg & Windbg
with practical code samples.

Ollydbg - Playing with OllyScript

Ollydbg [Reference 3] is one of the best ring 3 (user-land) debugger. It has a very nice gui
interface. It is one of the most popular debugger on the planet and has very mature
community support. Ollydbg is my all time favourite debugger :)

But ollydbg doesn't support scripting natively instead ollydbg support plugins. So people
written scripting plugins for ollydbg, the one that i will use in this article is Ollyscript by
ShaG.

You can download Ollyscript from here [Reference 4].

Ollyscript comes with a nice help file. It has similar syntax like assembly programming and
very easy to understand. It supports almost all functionalities like dumping memory, decision
making etc.

But when you compare it with other debuggers scripting environment then it will seems to be
arigid type of scripting environment, 1 will discuss more about it later in this article.

So let's understand Ollydbg scripting environment i.e Ollyscript with the help of a simple
example.

Problem Statement:

Let say we are analysing an application for a simple bug and we want to identify the function
that is actually causing the problem. But the function is deep inside the application and
manually it will take hours of analysis time.

So here we want to track the execution flow after a specific point up to the function that is
causing the problem, more precisely | want to log the return address of each function.

Solution:

The above problem can be solved by multiple methods but to demonstrate it in a very simple
way | will use the following steps,

1. Fromcurrent EIP, search for calls and create breakpoint on that call
2. Step into the call

Reversing and Malware Analysis Training [2012] Page 13

Log the value at ESP (i.e return address) and search for calls at return address and
Breakpoint on the call

Repeat step 1, 2, 3 inside the call

Run

ok w

Below is the tiny script to accomplish this task. Please note that the script is just to
demonstrate the concept, it may fail when call used after decision instructions.

Amit Malik

infunction,EIP

mov return,EIP

findop return, #E8+#

mov x, SRESULT

findop infunction, #E8#

breaksetx:

Jmp backx|

Reversing and Malware Analysis Training [2012] Page 14

Jjmp backy]

Please refer to the Ollyscript help file [Reference 4] for more details. Here | will explain only
important keywords and terms.

The script start with EOB (Execute over breakpoint), as name states it will execute the code
inside the label that is specified with EOB when a breakpoint hit. In this code it will execute
the breakprocess label code.

var - declares a variable.

mov — is similar to assembly

findop - search for opcode from the specified address &
into a SRESULT variable

run - is similar to F9 in ollydbg

sti - step into - similar to F7 in ollydbg

msg - will show a messagebox - (log should be used but I used msg just for
visual pleasure :))

stores the results

As you can see that scripting is similar to assembly language. Most of the time people use
ollyscripting for unpacking malwares. | have never seen anyone using it for vulnerability
analysis. It is not very much flexible and also limited in its functionality. But it can be used
for some stuff that we want to automate through ollydbg.

Immunity Debugger

Immunity debugger [Reference 3] is a pure python debugger with similar GUI interface as
Ollydbg. It is developed by Immunity Inc. and according to immunity it is the only debugger
designed specifically for vulnerability research.

It has some very powerful pycommands like heap, lookasidelist etc. one of the major
advantage of this debugger is that it provides plethora of APIs for various reversing tasks and
supports python which makes it one of the best debugger for reversing.

In the reference section [Reference 6] you can find some good tutorials and projects based on

Immunity debuggers and also it comes with a nice help file so don't forget to check that as
well.

Problem statement:

We want to search all "jmp esp” instruction addresses.

Solution Script:

You can use the below script directly on Immunity debugger python shell

Reversing and Malware Analysis Training [2012] Page 15

asm = imm.assemble (data) # imm is object of immlib class

results = imm.search (asm)

for addr in results:

print "%s %0.8x" % (data,addr)

The above 5 lines of code will give you all the "jmp esp" addresses. This is the beauty of
scripting :)

Pydbg

Pydbg [Reference 3] is also a pure python based debugger. Pydbg is my favourite debugger,
| use it in various automation tasks and it is extremely flexible and powerful.

Problem Statement:

We want to track VirtualAlloc API whenever VirtualAlloc is called, our script should
display its arguments and the returned pointer.

VirtualAlloc:

LPVOID WINAPI VirtualAlloc(
| in opt LPVOID lpAddress,

| in SIZE T dwSize,
| in DWORD flAllocationType,
| in DWORD flProtect

Solution:
1. Putbreakpoint on VirtualAlloc
2. Extract parameters from stack
3. Extract retum address from stack and put breakpoint on that
4. Get the value from EAX register.

Author:

://www.securityxploded.com

import
from pydbg import *

from pydbg.defines import *

def ret addr handler (dbg) :

lpAddress = dbg.context.Eax # Get value returned by VirtualAlloc

print " Returned Pointer: ",hex(int (lpAddress))

Reversing and Malware Analysis Training [2012] Page 16

return DBG CONTINUE
def virtual handler (dbg) :

p}fint MixkkrkhkkhhkrkhkhkrhkhkxxkxN

pdwSize = dbg.context.Esp + 8 # 2nd argument to VirtualAlloc

rdwSize = dbg.read process memory (pdwSize, 4)

dwSize = struct.unpack("L",rdwSize) [0]

dwSize = int (dwSize)

print "Allocation Size: ",hex(dwSize)

pflAllocationType = dbg.context.Esp + 12 # 3rd argument to
VirtualAlloc

rflAllocationType dbg.read process memory (pflAllocationType, 4)

flAllocationType = struct.unpack("L",rflAllocationType) [0]

flAllocationType = int(flAllocationType)

print "Allocation Type: ",hex(flAllocationType)

pflProtect dbg.context.Esp + 16 # 4th Argument to
VirtualAlloc

rflProtect = dbg.read process memory (pflProtect, 4)

flProtect = struct.unpack("L",rflProtect) [0]

flProtect = int(flProtect)

print "Protection Type: ",hex(flProtect)

pret addr dbg.context.Esp # Get return
Address
rret addr dbg.read process memory (pret addr,4)
ret addr struct.unpack ("L",rret addr) [0]
ret addr int (ret addr)
dbg.bp_ set (ret addr,description="ret addr breakpoint",restore =
True,handler = ret addr handler)

return DBGiCONTINUE
def entry handler (dbg) :
virtual addr = dbg.func resolve("kernel32.dll","VirtualAlloc")

Get VirtualAlloc address

if virtual addr:

dbg.bp set(virtual addr,description="Virtualalloc

breakpoint", restore = True,handler = virtual handler)

return DBG CONTINUE

sys.argv[1l]

Reversing and Malware Analysis Training [2012] Page 17

entry addr = pe.OPTIONAL HEADER.AddressOfEntryPoint +

pe.OPTIONAL HEADER.ImageBase

dbg = pydbg () # get pydbg object
dbg.load (file)

dbg.bp_ set (entry addr,description="Entry point breakpoint", restore
True, handler = entry handler)

dbg.run ()

Notice that in this script first i am setting breakpoint on entry point and then on VirtualAlloc
not directly to VirtualAlloc because pydbg does not support deferred breakpoints. 1 amalso
ignoring 1st argument to VirtualAlloc i.e IpAddress, see VirtualAlloc specification in
problem statement.

This script uses two modules PEFile and Pydbg, PEFile is used to get the entry point.

Windbg

Windbg [Reference 3] is the official Microsoft debugger. It is the most powerful debugger
available for reversing on windows platform (mainly Kernel side of it) and it also supports

symbols.

Windbg provides its own scripting language which is similar to C language, it also comes
with a great help file. 1 highly recommend reading help file before we start with Windbg.

Problem Statement:

We want to track malloc, whenever malloc is called, our script should display requested size
for allocation and returned pointer.

Solution:

On the same lines as previous example.

1. Breakpoint on malloc

2. Extract parameter from stack

3. Extract return address from stack and put breakpoint on it
4. Get value from EAX register

bp msvcrt!malloc ".printf \"Size: %$x\n\",poi (esp+4);gu;.printf \"Returned

: %x\n\",eax;g"

Reversing and Malware Analysis Training [2012] Page 18

When we use multiple commands in a single line then we have to separate them using
semicolon (;)

bp - sets breakpoint
msvcrt!malloc - this is DLL!Method

(here DLL name & function name are

These are known as conditional breakpoints and in conditional breakpoints we want to
perform something when breakpoint hit. In our case we want extract the size of allocation
from stack.

So simple syntax is:

For more interesting commands please check out the Windbg help file.

Conclusion

This article is an additional learning material to our next session on 'Part 5 - Rewverse
Engineering Tools' - part of our FREE Reversing/Malware Analysis course [Reference 1]

References

Reverse Engineering & Malware Analysis Course

Presentations of Reverse Engineering Course

Debuggers - OllyDbg, Immunity Debugger, PyDbg, Windbg
OllyScript - Scripting Plugin for OllyDbg

WinDbg Introduction

Starting to write Immunity Debugger PyCommands : My Cheatsheet
mona.py — the manual

Nouk~wdE

Reversing and Malware Analysis Training [2012] Page 19

http://securityxploded.com/security-training.php
http://securityxploded.com/security-presentations.php
http://securityxploded.com/malware-analysis-training-reference.php
http://securityxploded.com/download/OllyScript.zip
http://dvlabs.tippingpoint.com/blog/2008/09/25/mindshare-windbg-introduction%20target=
http://www.corelan.be/index.php/2010/01/26/starting-to-write-immunity-debugger-pycommands-my-cheatsheet/
https://www.corelan.be/index.php/2011/07/14/mona-py-the-manual/

API Call Tracing - PEfile, PyDbg and IDAPython
Author: Amit Malik

Introduction

In this article, we will learn how to perfrom API Call Tracing of Binary file through PyDbg
and IDAPython.

This is the part of our free ""Reverse Engineering & Malware Analysis Course"".

You can visit our training page here and all the presentations of previous sessions here

APl Call Tracing

In my previous article, "*Automation of Reversing™ | have discussed on using PyDbg
scripting environment. Here also we are going to use PyDbg extensively to trace or log the
API calls froma binary file.

API Call Tracing

API Call Tracing is the powerful technique. It can provide a high level functional overview
about an executable file. In some cases we only need API call logs to understand the
application behaviour. | often use it to automate my Malware analysis tasks.

In this article | will discuss some of my techniques.

Some of the tasks that we canaccelerate using this technique are,

Reversing and Malware Analysis Training [2012] Page 20

http://securityxploded.com/security-training.php
http://securityxploded.com/security-training.php
http://securityxploded.com/security-presentations.php
http://securityxploded.com/automation-reversing-scripting.php

1. Unpacking of Packed Binary File

2. Binary Behaviour profiling
3. Finding out the interesting functions in the binary

Here, | will use PyDbg script to log the API calls and finally IDAPython script to automate
some of manual analysis.

AP Calls Logging with PEfile & PyDbg

Based on the above tasks we need following information from our script.

1. Return Address - From where the AP is called?
2. API Name - Which API is called?

It means we have to breakpoint on every API call and for that we need APl name or API
address. If we have APl name then we can resolve its address and can breakpoint on that, In
case ofaddress we can directly breakpoint on that. But the question is how do we get the API
names?

This can be solved by using PEfile. So we will first enumerate the executable import table
and then we will resolve the addresses and put breakpoints using PyDbg.

But this approach has following limitations,

1. It will fail in the case of a DLL that will be loaded by binary at run time using
LoadLibrary()

2. Ifbinary is packed then unpacking stub will create the import table at run time which
we can't control.

Before solving this problem let's talk about the ways used by unpacker stub or custom loaders
to build an import table at run time.

Generally they use LoadLibrary API to load the dIl and GetProcAddress to get the address
of the API. LoadLibrary and GetProcAddress APIs are exported by kernel32.dll which is
loaded into every Windows process by default.

So if we set breakpoint on GetProc Address then we can get APl Name from stack. Then we
can set breakpoint on the address of respective API call. Here | am ignoring the call for
GetProc Address with API Ordinal because it is not a common approach.

But there is also another method for building import table at run time which is typically used
by malicious softwares.

Inassembly it will look like this,

push dword ptr fs:[30h]

Reversing and Malware Analysis Training [2012] Page 21

Here is the screenshot of PEB structure of typical Windows Process (dumped in Windbg)

0:000> dt nt!_PEB -r2

ntdll!_PEB
+02000 InheritedAiddressSpace UChar
+0=x001 ReadImageFileExecOptions : UChar

+0=002 BeingDebugged . UChar
+0x003 SpareBool . UChar
+0=2004 Mutant : Ptr32 Voad
0x 008 InageBaseiddress . Ptr32 Voad
[_103006 Ldr . Ptr32 _PEB_LDR_DATA |
+UEUULD Length o dintip
+0x004 Initialized . UChar

- Ptx32 “n1d!
+0x00c InloadOrderModulelist : LIST ENTRY]

+0=x000 Flink ; Ptr32 _LIST_ENTRY
+02004 Blink ¢ Ptr32 _LIST_ENTRY
+0x014 InMemoryOrderHodulelList _LIST_ENTRY
+0=000 Flink . Ptr32 _LIST_ENTRY
+0=2004 Blink . Ptx32 _LIST_ENTRY

In this method, custom loader first locate the ke rnel32.dll base address (2nd - after ntdil.dll
in InLoadOrderModuleList link list] and then walk through the kernel32.d1l export table to
find out the LoadLibrary() address. After that custom loader will load all other dependent dlls
and resolve the API Addresses using the following methods,

1. GetProcAddress - similar to previous method
2. Walking through the export table of each loaded dll.

Here to capture the activity of #2 we have to use global hooks or SSDT hooks which is
beyond the scope of this article. We can also hook every exported API ofall loaded DLLs but
that can be very expensive.

Here are the step by step instructions for API Call Tracing,

1. Walk through the binary import table and put breakpoint on every API

2. Also put Breakpoint on GetProcAddress function.

3. If Breakpoint hits and it is not GetProcAddress then extract 'Return Address' from
stack and log it with API name

4. If GetProcAddress hits then fetch APl name and return address from stack and put
breakpoint on 'Return Address'

5. If 'Return Address' breakpoint hits then get value from EAX register and set
breakpoint on it.

Based on this approach, we will write PyDbg scriptand log every APl with 'Return
Address’

r: Amit Malik

Reversing and Malware Analysis Training [2012] Page 22

urityxploded.com

import sys,struct
import pefile
from pydbg import *

from pydbg.defines import *

global fpp
print str

fpp.write (str)

fpp.write ("\n")

def addr handler (dbg) :
global func name
ret addr = dbg.context.Eax
if ret addr:

dict[ret addr] = func name

dbg.bp_ set (ret addr,handler=generic)

return DBG CONTINUE

def generic (dbg) :
global func name
eip = dbg.context.Eip
esp = dbg.context.Esp
paddr = dbg.read process memory (esp, 4)
addr = struct.unpack("L",paddr) [0]
addr int (addr)
if addr < 70000000:
1log ("RETURN ADDRESS: 0x%.8x\tCALL: %s" % (addr,dictleip]))
if dict[eip] == "KERNEL32!GetProcAddress" or dictl[eip] ==

"GetProcAddress":

esp = dbg.context.Esp

addr

size

pstring dbg.read process memory (addr, 4)
pstring = struct.unpack("L",pstring) [0]
pstring int (pstring)

if pstring > 500:

data = dbg.read process memory(pstring,size)

func name = dbg.get ascii string(data)

func name = "Ordinal entry"
paddr = dbg.read process memory (esp, 4)

addr = struct.unpack ("L",paddr) [0]

Reversing and Malware Analysis Training [2012] Page 23

= 1int (addr)
dbg.bp set (addr,handler=addr handler)

return DBG CONTINUE

def entryhandler (dbg) :
getaddr = dbg.func resolve("kernel32.dl1l","GetProcAddress")
dict[getaddr] = "kernel32!GetProcAddress"
dbg.bp set (getaddr,handler=generic)
for entry in pe.DIRECTORY ENTRY IMPORT:
Dl11Name = entry.dll
for imp in entry.imports:
api = imp.name
address = dbg.func resolve (Dl1lName, api)
if address:
try:
Dllname = DllName.split(".") [0]
dll func = Dllname + "!" + api
dictladdress] = dll func

dbg.bp set (address, handler=generic)

DBG CONTINUE

global pe, DllName, func name, fpp

global

dict =

file = sys.argv[l]

fpp = open("calls log.txt",'a')

pe = pefile.PE(file)

dbg = pydbg ()

dbg.load (file)

entrypoint = pe.OPTIONAL HEADER.ImageBase +
pe.OPTIONAL HEADER.AddressOfEntryPoint

dbg.bp set (entrypoint,handler=entryhandler)

The output will look like,

RETURN ADDRESS: 0x004030e8 CALL: kernel32!GetModuleHandleA

Reversing and Malware Analysis Training [2012] Page 24

ADDRESS: 0x004030£f£3 ALL: kernel32!GetCommandLineA|
\ ADDRESS: 0x00404587 C : kernel32!GetModuleHandleA|

ADDRESS: 0x00404594)y : kernel32!GetProcAddress
ADDRESS: 0x004045aa CALL: kernel32!GetProcAddress
ADDRESS: 0x004045cO : kernel32!GetProcAddress

So let's apply the logic to some real world reverse engineering scenarios.

Unpacking UPX using API Call Tracing

Below is the log of a UPX packed binary. Look at it closely, can you say which function
contains the OEP?

N ADDRESS: 0x00784b%e CA : GetProcAddress
ADDRESS: 0x00784b9%e : GetProcAddress
ADDRESS: 0x00784b9%e : GetProcAddress

XN ADDRESS: 0x00784b9%e . : GetProcAddress

ADDRESS: 0x00784b9%e CALL: GetProcAddress
ADDRESS: 0x00784bc8 C : KERNEL32!VirtualProtect
ADDRESS: 0x00784bdd . : KERNEL32!VirtualProtect
ADDRESS: 0x0045ac09 CA : GetSystemTimeAsFileTime
ADDRESS: 0x0045aclb . : GetCurrentProcessId
ADDRESS: 0x0045acld : GetCurrentThreadId

N ADDRESS: 0x0045ac25 C : GetTickCount

ADDRESS: 0x0045ac31 CALL: QueryPerformanceCounter
ADDRESS: 0x0044e99f CALL: GetStartupInfol
ADDRESS: 0x0044fd9c 7 : HeapCreate

Here API at location 1 has ‘Return Address’ 0x00784bdd and API at location 2 has 'Return
Address' 0x0045ac09. The difference between the addresses of both calls is huge which is an
indication that the address 0x0045ac09 is in the function that contains OEP (original entry
point).

This can be proved in the Ollydbg as shown in the below snapshot.

el v TR T CALLY KERNEL I20VietisaiProti !

S P 0] —
i Do ——
! ' 4
mm " UL i DR DNORD PIR S04 (EW-00)

) A ¢
Q‘.a (" w »} 097N
ﬁ s

)
m ” m«u Bamg Ly OFF (Oriegrad Eivtry Pesnt)

Most of the malwares these days have their own custom packers and | found this technique
extremely useful in unpacking them.

Reversing and Malware Analysis Training [2012] Page 25

http://securityxploded.com/images/articles/api-call-tracing-unpacking-big.jpg

Binary Behaviour Profiling

Look at the sample API Trace logs closely, Can you tell about the behaviour of this binary?

ADDRESS: 0x004012ce
ADDRESS: 0x00401311
ADDRESS: 0x0040131c
ADDRESS: 0x0040133a
ADDRESS: 0x00401346
ADDRESS: 0x00401387
ADDRESS: 0x00401392
ADDRESS: 0x004013b4
ADDRESS: 0x004013ee
RETURN ADDRESS: 0x00401425
RETURN ADDRESS: 0x0040146b

msvcrt! fopen

msvcrt! fseek

msvcrt!ftell

msvcrt! fseek

msvcrt!malloc

msvcrt!fread

msvcrt!fclose

KERNEL32 !OpenProcess
KERNEL32!VirtualAllocEx
KERNEL32!WriteProcessMemory
KERNEL32!CreateRemoteThread

This is a clear indication of this binary reading a file and injecting code into another process.

Finding Interesting Functions

Here's the AP Trace log of another binary,

RETURN ADDRESS:
RETURN ADDRESS:
ADDRESS :
ADDRESS:
ADDRESS:
ADDRESS:
ADDRESS:
ADDRESS:
ADDRESS:
ADDRESS:
ADDRESS:
ADDRESS :
ADDRESS:
RETURN ADDRESS:
RETURN ADDRESS:
RETURN ADDRESS:
ADDRESS :
ADDRESS:
ADDRESS:
ADDRESS:
ADDRESS:
ADDRESS:
ADDRESS:

Reversing and Malware Analysis Training [2012]

0x00443c29
0x0044a6ee
0x00446866
0x0044a6ee
0x00443£79
0x00443£fb5
0x00443£d0
0x00444045
0x0044404f
0x00444063
0x0044412c
0x0044413c
0x0043adf6
0x0044416b
0x00444176
0x00441979
0x00444ce0
0x00444cfa
0x00444499
0x0044a8c6
0x0043adfo6
0x004441£7
0x0044a8c6

inet ntoa

KERNEL32 'HeapAlloc
KERNEL32!GetLocalTime
KERNEL32!HeapAlloc

--> point

setsockopt

WSAAsyncSelect

connect

WSAGetLastError
USER32!DispatchMessageA
KERNEL32!GetTickCount

KERNEL32!QueryPerformanceCounter

recv --> point 5
KERNEL32!HeapFre
WSAAsyncSelect

closesocket
KERNEL32!HeapFree

Page 26

Marked points here reflects interesting functions used by this binary revealing network
activity.

Extending AP I Tracing with IDAPython

We can further use these Addresses from 'API Trace Log file' in IDA to identify functions
and cross references.

Below is the simple IDAPython script that will read the above script log file and colour the
calls in IDA database.

Author: Amit Malik

http://www.securityxploded.com

from idaapi import *
from idc import *
import sys
class logparse():
def init (self,file path):
self.file path = file path
self.fp = open(self.file path,'r")

self.data = self.fp.readlines/()

def parser(self):

for line in self.data:
line slice = line.split()
address = line slice[2]
name = line slicel[4]

dict[a

for ea in dict.keys () :
print dictleal
ea_c = PrevHead(ea)

SetColor(ea c¢,CIC ITEM, 0x8CEGFO)

def main () :

file path = AskFile(0,"*.*","Enter file name: ")

logobj = logparse (file path)
logobj.parser ()

return

T .

if name == ' main

main ()

Reversing and Malware Analysis Training [2012] Page 27

Conclusion

In this article, you have learnt how to do APl Call Tracing' using PyDbg/IDAPython scripts
and perform useful tasks such as Unpacking, Binary Profiling, Discovering Interesting
functions etc.

There are lot more useful applications of API Tracing and this article just serve as startup
guide.

References

Pydbg - http://code.google.com/p/paimei/

OllyDbg - http://www.ollydbg.de/

Windbg - http://msdn.microsoft.com/windbg

IDAPython - http://code.google.com/p/idapython/
Reference Guide - Reversing & Malware Analysis Training

S

Reversing and Malware Analysis Training [2012] Page 28

http://code.google.com/p/paimei/
http://www.ollydbg.de/
http://msdn.microsoft.com/en-us/windows/hardware/gg463009
http://code.google.com/p/idapython/
http://securityxploded.com/malware-analysis-training-reference.php

Manual Unpacking of UP X using OllyDbg

Author: Nagareshwar Talekar

Introduction

In this tutorial, you will learn how to unpack any UPX packed Executable file using OllyDbg

UPX is a free, portable, executable packer for several different executable formats. It
achieves an excellent compression ratio and offers very fast decompression.

20100402

: | owpasiaza

4 1 4

1)‘& ."'{A\/ Qi}la I -
| SaFis conoaanl_an. DHDORD £12 {cas

1. =

Here we will do live debugging using OllyDbg to fully unpack and produce the original
executable FILE from the packed file.

Packing EXE using UPX

To start with, we need to pack sample EXE file with UPX. First you need to download latest
UPX packer from UP X website and then use the following command to pack your sample
EXE file.

If you already have UPX packed binary file then proceed further. In such case make sure to
use PEID or 'RDG Packer Detector’ to confirm if it is packed with UPX as shown in the
screenshot below.

RD&Packer Detector vO.6.5 -)%)
CATemn\FireMaster nacked.exe m

Compilador

UPX v0.89.6 - v1.02 / v1.05 - v1.25 Detectado
UPX Deteccion Heuristica Posible g
Contacto : Al Frente [
e [7{gf Detectar T>J
. -

Reversing and Malware Analysis Training [2012] Page 29

http://upx.sourceforge.net/
http://upx.sourceforge.net/
http://www.rdgsoft.8k.com/

UP X Unpacking P rocess

Before we begin with unpacking exercise, lets try to understand the working of UPX.

When you pack any Executable with UPX, all existing sections (text, data, rsrc etc) are
compressed. Each of these sections are named as UPX0, UPXL1 etc. Then it adds new code
section at the end of file which will actually decompress all the packed sections at execution
time.

Here is what happens during the execution of UPX packed EXE file.

= Execution starts from new OEP (from newly added code section at the end of file)
= First it saves the current Register Status using PUSHAD instruction

= All the Packed Sections are Unpacked in memory

= Resolve the import table of original executable file.

= Restore the original Register Status using POPAD instruction

= Finally Jumps to Original Entry point to begin the actual execution

Manual Unpacking of UPX

Here are the standard steps involved in any Unpacking operation

= Debugthe EXE to find the real OEP (Original Entry Point)
= At OEP, Dump the fully Unpacked Program to Disk
= Fix the Import Table

Based on type and complexity of Packer, unpacking operation may vary in terms of time and
difficulty.

UPX is the basic Packer and serves as great example for anyone who wants to learn
Unpacking.

Here we will use OllyDbg to debug & unpack the UPX packed EXE file. Although you can

use any debugger, OllyDbg is one of the best ring 3 debugger for Reverse Engineering with
its useful plugins.

Here is the screenshot of OllyDbg in action

Reversing and Malware Analysis Training [2012] Page 30

oo e
x| mjae] wive]amicjorjaxiamgmiod =]

Lets start the unpacking operation

= Load the UPX packed EXE file into the OllyDbg

= Start tracing the EXE, until you encounter a PUSHAD instruction. Usually this is the
first instruction or it will be present after first few instructions based on the UPX
version.

= When you reach PUSHAD instruction, put the Hardware Breakpoint (type "hr esp-
4" at command bar) so as to stop at POPAD instruction. This will help us to stop the
execution when the POPAD instruction is executed later on.

= Other way is to manually search for POPAD (Opcode 61) instruction and then set
Breakpoint on it.

= Once you set up the breakpoint, continue the execution (press F9).

= Shortly, it will break on the instruction which is immediately after POPAD or on
POPAD instruction based on the method you have chosen.

= Now start step by step tracing with F7 and soon you will encounter a JMP
instruction which will take us to actual OEP in the original program.

= When you reach OEP, dump the whole program using OllyD mp plugin (use default
settings). It will automatically fix all the Import table as well.

= Thatis it, you have just unpacked UPX 1!

Fixing Import Table

In the current example, OllyDmp plugin will take care of fixing the Import table.

However for most of the packers, we need to use advanced tool called ImpRec (Import
Reconstructor). ImpREC is highly advanced tool used for fixing the import table. It provides
multiple methods to trace the AP1 functions as well as allow writing custom plugins.

Reversing and Malware Analysis Training [2012] Page 31

Import REConstructor v1.6 FINAL (C) 2001-2003 MackT /uCF i =101 x|
E Attach to an Active Process
l — == e — 2w ew ;-;;] P'ickDLL[
Imposted Functions Found T
S kernel32. di F T hunk:0020D 834 NbFunc-BO [decimal176) vald YES Show Invalkd I |
& - oleaut32 Al FThunk:0020DCOC NbFunc: 24 [decimal 36) vaidYES |
& olepro32.dl FThunk:0020DCE4 NbFunc:1 (decimat 1) valid YES Showve Suspectl |
+ - shell32.di FThunk:0020DD14 NbFunc:5 {decimal 5) valid YES ‘
usee32.dIl FThunk: 00200 D58 NbFunc EE (decimal 238) vaidYES
&5 winivet dil FThunk:0020E 1F8 NEFunc:27 (decimat 39) valid YES ‘
& winspool.dev FThunk:0020E 2D C NbFunc: 3 {decimal 3] vaid' YES ‘
2 weock32 dil FThurnkc-0020€E 314 NbFunc:1B (decimat 27) vahd YES |
& - comdig32.di FT hunk:0020E 3C0 NbFunc 7 (decimal: 7) vakd YES ~| Cleas Imports | |
Log
rva D020E 378 forwearded from modiws2_32 dil ord 0070 name WSAStartup ;l - =
rva:0020E 37C forwarded from modiws2_32.dl ced: 0073 namewWSACleanup |
Clear Log |
Cumnrent imports: L |
B [decimal 11] valid dule{s) [added: +A (decmal:+10
263 wocted funchonds). [added: «1B3 [decimal +435)] v o
- IAT Infos needed — —— [NewImpor Infos (IID+ASCII-LOADER] &l ‘
oEP [00024E60 IAT AutoSearch || Rva [00000000 Size [O0D0D2CEA ‘ ;
Ava |00200830 Size |00000020 | IV PASH tievs sechon _m ‘
: Exit | |
Load Tree l Save Tleel Get Imports || Fix Dumg || |

For interested users, here are simple instructions on how to fix Import Table using ImpRec.

= When you are at the OEP of the program, just dump the memory image of binary file
using Ollydmp WITHOUTasking it to fix the Import table.

= Now launch the ImpREC tool and select the process that you are currently
debugging.

= Then in the IMpREC, enter the actual OEP (enter only RVA, not a complete address).

= Nextclick on 'IAT Autosearch’ button to automatically search for Import table.

= Now click on 'Get Imports’ to retrieve all the imported functions. You will see all the
import functions listed under their respective DLL names.

= If you find any import function which is invalid (marked as VALID: NO) then
remove it by by right clicking on it and then from the popup menu, click on 'Delete
Thunks".

= Once all the import functions are identified, click on ""Fix Dump'* button in ImpREC
and then select the previously dumped file from OllyDbg.

= Now run the final fixed executable to see if everything is alright.

For advanced packers, you may have to use different methods in ImpRec and some times
need to write your own custom plugin to resolve the import table functions.

For more interesting details refer to our PESpin ImpRec plugin.

Reversing and Malware Analysis Training [2012] Page 32

http://securityxploded.com/pespinplugin.php

Video Demonstration

http://vimeo.com/42197903

This video demonstration uses slightly different way to put a hardware breakpoint than
described in the article. Also it uses IMpREC to fix import table which is useful while
unpacking advanced packers.

Load your EXE in Ollydbg

Step Over (Shortcut-F8) PUSHAD instruction

Next Go to ESP (right click and follow in DUMP Window)

Put Hardware Read Breakpoint (Access) on first dword at ESP. (This is similar ‘hr
esp-4 at PUSHAD instruction as described earlier)

Now Run EXE until we hit breakpoint (shortcut-F9)

It will break right after POPAD instruction.

You will see a JMP instruction few lines below the current instructions. Put
breakpoint on JMP

Run exe again until it stops at JMP instruction (shortcut-F9)

Step Over JMP (Shortcut- F8)

Now we are at OEP, Here just Dump Process using O llyDump without fixing Import
table.

Here we will use ImpREC to fix the import table as mentioned in "Fixing Import
Table" section.

Finally after fixing import table, run the new unpacked EXE to make sure it is perfect
!

References

ok wdpE

UPX: Ultimate Packer for Executables.
OllyDbg: Popular Ring 3 Debugaer.
ImpREC: Import Table Reconstruction Tool
PESpin Plugin for ImpREC

RDG Packer Detector

PEid Packer Detector

Reversing and Malware Analysis Training [2012] Page 33

http://vimeo.com/42197903
http://upx.sourceforge.net/
http://www.ollydbg.de/download.htm
http://securityxploded.net/download/Imprec.zip
http://securityxploded.com/pespinplugin.php
http://www.rdgsoft.8k.com/
http://www.softpedia.com/get/Programming/Packers-Crypters-Protectors/PEiD-updated.shtml

Malware Memory Forensics
Author: Monnappa

Introduction

Memory Forensics is the analysis of the memory image taken from the running computer.

In this article, we will learn how to use Memory Forensic Toolkits such as Volatility to
analyze the memory artifacts with practical real life forensics scenario.

N

b
MALWARE
"MI‘IM(DI{Y FORENSICS

This article is the part of our free ""Reverse Engineering & Malware Analysis Course'’.
You can visit our training page here and all the presentations of previous sessions here

Why Memory Forensics?

Memory forensics can help in extracting forensics artifacts from a computer's memory like
running process, network connections, loaded modules etc etc. It can also help in
unpacking, rootkit detection and reverse engineering.

Below are the list of steps involved in memory forensics

. Memory Acquistion - This step involves dumping the memory of the
target machine. on the physical machine you can use tools like
Win32dd/Wino64dd, Memoryze, DumpIt, FastDump

on the virtual machine, acquiring the memory image 1s easy, you can

do it by suspending the VM and grabbing the ".vmem" file.

2. Memory Analysis - once a memory image 1is acquired, the next step is

analyze the grabbed memory dump for forensic artifacts. tools 1like

Volatility and Memoryze can be used to analyze the memory,

Reversing and Malware Analysis Training [2012] Page 34

http://securityxploded.com/security-training.php
http://securityxploded.com/security-training.php
http://securityxploded.com/security-presentations.php

Volatility - A Quick Overview

Volatility is an advanced memory forensic framework written in python. It can be installed
on multiple operating systems (Windows, Linux, Mac OS X), Installation details of volatility
can be found here.

Volatility Syntax & Usage

list

using -h or --help option will display help options and

available plugins

example: python vol.py -h

example: python vol.py -f mem.dmp --profile=WinXPSP3x86

“ To know the --profile 1info use below command:

example: python vol.py -f mem.dmp imageinfo

Demonstration - Memory Forensics

In order to understand memory forensics and the steps involved. | have created a scenario,
our analysis and flow will be based on the below scenario.

Demo Scenario

Your security device alerts, show malicious http connection to ip address 208.91.197.54 from
a source ip 192.168.1.100 on 8th june 2012 at around 13:30hrs...you are asked to investigate
and do memory forensics on that machine 192.168.1.100

Preparation Steps

To start with, acquire the memory image from 192.168.1.100, using memory acquistion tools.
for the sake of demo, the memory dump file is named as "'infected.dmp'".

Demonstration - Memory Analysis

Now that we have acquired “infected.dmp™, lets start our analysis

Step 1: Start with what you know

We know from the security device alert that the host was making an http connection
to 208.91.197.54. so lets look at the network connections.

Reversing and Malware Analysis Training [2012] Page 35

http://code.google.com/p/volatility

Volatility's connections module, shows connection to the malicious ip made by pid 1748

* root@bt: ~/Volatility

Step 2: Info about 208.91.197.54

Google search shows this ip 208.91.197.54 to be associated with malware, probably
"SpyEye", we need to confirm that yet.

v =
yougle 208 5119754
Google e
208.91.197.54 - SpyEye Tracker . Monor
-~ " - 4
200,91 197 54 | pasiers | Matwaregrong
aace A -
P addrom 20891197 54
Tracher denp o e T vt Cortng sarvers andt
o

Matware Sr ip: 200.91.197.54 - Clean MX - reaiteng
eI 7

Step 3: Who is Pid 17487

Since the network connection to the ip 208.91.197.54 was made by pid 1748, we need to
determine which process is associated with pid 1748. "psscan" shows pid 1748 belongs to
explorer.exe, also two process created during same time reported by security device (i.e june
8th 2012)

Reversing and Malware Analysis Training [2012] Page 36

http://securityxploded.com/images/articles/malware-memory-forensics-3-psscan_big.jpg

Step 4: Process handles of explorer.exe

Now that we know explorer.exe (which is an operating system process) was making
connections to the malicious ip, there is a possibility that explorer.exe is infected.

Lets looks at the process handles of explorer.exe. The below screenshot shows Explorer.exe
opens a handle to the B6232F3A9F9.exe, indicating explorer.exe might have created that
process, which might also be malicious...Lets focus on explorer.exe for now

* root@bt: ~/Volatility

f infected.dmp handles -p 1748 -t Process
y Framework 2
Type Details
Process explorer.exe(1748)
Process 6 3A9F9.exe(1672)
Process b 3A9F9.exe(1672)

Step 5: API Hooks inexplorer.exe

APIhooks module show, inline AP hooks inexplorer.exe and jump to an unknown location

Step 6: Exploring the Hooks

Disassembled hooked function (TranslateMessage), shows a short jump and then a long jump
to malware location

Reversing and Malware Analysis Training [2012] Page 37

http://securityxploded.com/images/articles/malware-memory-forensics-5-apihooks_big.jpg

2 DTB=Ex{9cO01ch

Step 7: Embedded EXE in explorer.exe

Printing the bytes at the hooked location, show the presence of e mbedded executable in
explorer.exe

Llength=256)
00 (oo ff ff oo
66 00
00 00
00 060
60

80

bbGeare (0 201 6b6 06 60

>> .

Step 8: Dumping the embedded EXE

VadD ump tool dumps the embedded exe from explorer.exe

* rootgbt ~/Velatility

F11¢

y# python vol.py «f infected.dmp vaddump 0 dump/
Systems Volatility Framework 2.0

R R R)

Volatilitys I

Reversing and Malware Analysis Training [2012] Page 38

http://securityxploded.com/images/articles/malware-memory-forensics-6-exploring-hooks_big.jpg

-« Flile Browser

| ol y dump

oxplorer exe exploter.oxe explorer cxe explomer oxe
P 354360, 00ANOO00 B354 360 00ABOOO0 PRS2 00, 00N JOO00 B354 300 0OBS0000
OOAMMT dmp COLIT e 0ObI . dmp OOOIATT Gersis
- :
eaplores oxe oxpic oxplotar oxe oxplorer oxe
9334360 OLLEOOOO D156 36000 BOOOO VA58 I00 0O POOOO
DOLAMTT (3er OO BOMT vy QOCANT edrrgs
explores exe exploner ese explores exe explorer exe
P250 360, 000 POO0O V238 M0 OOeHOOO0 B350 260, 00000000 ¥ 250 200, OOf 20000

OOt dmp OOwd 1 1T crraps OOf 11971 chrmigs COrSIMT Sdmip

Step 9: VirusTotal Submission

Submission to VirusTotal, confirms the dumped executable as component of **SpyEye**

e § oUW

Step 10: Can we get more info?

Strings extracted from the dumped executable, show reference to interesting artifacts
(executable and the registry key), it also shows the path to the suspicious executable
B6232F3A9F9.exe.

Reversing and Malware Analysis Training [2012] Page 39

http://securityxploded.com/images/articles/malware-memory-forensics-9-virustotal_big.jpg

J Connection: clese f98u

& Connection: e

§ Cteomat-Length: g - [t

% Conteat-Length: & B&OL

i S3etent-Encoding) C:\WINDOWS\system32\WININET.d11

= - 1 defl § C: y .

§ Content-Eacoding: 92ip % C:\Recycle.Bin\A70583960358085
Transfer-Encoding: £ C:\WINDOWS\system32\ntdll.dll
EoaTent. Lasigthy o 5 C:\WINDOWS\system32\ntdll.dll
WTTP/ C:\WINDOWS\system32\USER32.d11
Yar-Agants C:\WINDOWS\system32\ntdll.dll
b ag g C: \WINDOWS\system32\CRYPT32.d11
Connection: keep-alive E:\Recycle.Bin\BSZBZFJA‘)F?.e@
Pr - 2 = .

@h‘l‘m\ (3 RS AT A 1§33 L (| g 6;;;; ;:;: 68 : :‘\!

“.2x A705B3960358085
cockies-nontor. x=l SIPSQILF.QXQ
Sedslonituce. 3 C:\DOCUME~-1\ADMINI-1\LOCALS~1\Temp\

Step 11: Printing the Registry Key

Printing the reqistry key determined from the above step(step 10) shows that, malware creates
registry key to survive the reboot

Step 12: Finding the Malicious EXE on Infected Machine

Now that we know the path to the suspicious executable, lets find it on the infected machine.
Finding malicious sample from infected host and virustotal submission confirms SpyEye
infection.

[2 My Compnton s
| » (| L) AT0%0 It nooes
| o L Decummorts arsd Settrgs 060y A% S one

. e ansdyan
*] Program Fies

o PythordS

s) Manon?

8 Recyche e <::
o) RECYOLER
o T sitweares
v (o] Systemm Vihave lidsmaisn
.) WINDOWS

Reversing and Malware Analysis Training [2012] Page 40

http://securityxploded.com/images/articles/malware-memory-forensics-11-registry_big.jpg
http://securityxploded.com/images/articles/malware-memory-forensics-12a-malicious-file_big.jpg

Conclusion

Memory forensics is a powerful technique and with a tool like Volatility it is possible to find
and extract the forensic artifacts from the memory which helps in incident response, malware

analysis and reverse engineering.

References

Reversing Training Session 6 — Malware Memory Forensics
Volatility - Anadvanced memory forensics framework
Volatility - Volatile memory analysis research

MoonSols Windows Memory Toolkit

rpODDE

Reversing and Malware Analysis Training [2012] Page 41

http://nagareshwar.securityxploded.com/2012/06/16/training-session-part-8-%E2%80%93-practical-reversing-iii-memory-forensics/
http://code.google.com/p/volatility/
http://volatility.tumblr.com/
http://www.moonsols.com/windows-memory-toolkit/
http://securityxploded.com/images/articles/malware-memory-forensics-12b-virustotal_big.jpg

DLL Injection and Hooking
Author: Amit Malik

Introduction

In this article we will learn about DLL Injectionand then using it to perform Inline
Hooking in remote process with practical step by step illustrations.

This is the part of our free ""Reverse Engineering & Malware Analysis Course"".

You can visit our training page here and all the presentations of previous sessions here

DLL INJECTION

&
HOOKING

In windows each process has its own virtual address space in which it can load and unload
any DLL at any time. But that loading and unloading of DLL is initiated by the process itself.
Sometimes we may want to load a DLL into a process without the process knowledge.

There are many reasons (legitimate or otherwise) to do it. For example a malware author may
want to hide the malicious activity by loading a DLL into a trusted process or may want to
bypass security devices while on the other hand a person may want to extend the
functionality of the original program. But for both the activities steps are same.

Here we will discuss on various way to Inject our code/DLL into remote process with

practical examples. Then we will extend it to hook specific API function in the target process
to perform our own tasks.

DLL Injection

If I am not mistaken then approximately 45-50% malwares these days use code injection to
carry out the malicious activities. So it is very crucial to understand the concept of DLL
injection for a malware analyst.

Reversing and Malware Analysis Training [2012] Page 42

http://securityxploded.com/security-training.php
http://securityxploded.com/security-training.php
http://securityxploded.com/security-presentations.php

I will demonstrate the technique using assembly programming language. If your development
environment is not ready then i would highly recommend reading my previous article
on "Assembly programming basics — A beginner's guide"to get starting with assembly
programming language.

There are couple of method by which we can inject DLL into a process. The latest versions of
windows enforce session separation so some of the methods may not work on the latest
version of windows like windows 7/8.

Couple of DIl Injection Methods:

. Window hooks (SetWindowsHookEX)

2. CreateRemoteThread,

3. App Init registry key

on all

4. ZwCreateThread or NtCreateThreadkEx ? Global method (works well

versions of windows)

. Via APC (Asynchronous procedure calls

In this article I will use CreateRemoteThread [Reference 1] method because it is the
simplest approach and explains the overall logic. CreateRemoteThread will not work from
windows vista onwards due to Session Separation/Isolation [Reference 4]. In such case you
can use similar but undocumented function, NtCreate Thread [Reference 2]

In fact it is not the problem with the CreateRemoteThread, it is the CsrClientCallServer
method from Ntdll that returns false. If we can patch CsrClientCallServer to return success
then we can inject DLL into a process using CreateRemote Thread itself. You can read more
about it here.

Here | will focus on CreateRemoteThread on windows XP.

DLL Injection using CreateRemoteThread

There are primarily two situations

1. Inject DLL into a running process

2

2. Create a process and Inject DLL into it.

#2 is more suitable for this article because in later section | will cover hooking as well. While
#1 is just the part of #2.
Below is the line from MSDN about the CreateRemote Thread API.

Creates a thread that runs in the virtual address space of another process.

So it means CreateRemote Thread can create a thread into another process or we can say
that it can execute a function into another process.

Let's look into its syntax.

Reversing and Malware Analysis Training [2012] Page 43

http://securityxploded.com/assembly-programming-beginners-guide.php
http://www.ivanlef0u.tuxfamily.org/?p=395

WINAPI CreateRemoteThread/(
HANDLE hProcess,

LPSECURITY ATTRIBUTES lpThreadAttributes,
SIZE T dwStackSize,
LPTHREAD START ROUTINE lpStartAddress,
LPVOID lpParameter,

DWORD dwCreationFlags,

LPDWORD lpThreadId,

#1 - handle to the process in which the thread is to be created.

#2 - A pointer to function or entry point of the thread that is going to be

We all know that kernerl32.d1l export LoadLibrary API to load DLL at run time and also
kernel32.d1l is loaded by default into every process. So we can pass LoadLibrary address to
#2 and parameter to LoadLibrary in #3. When we pass arguments in this order then
CreateRemoteThread will execute LoadLibrary with its parameter in another process and
hence loads the DLL into external process.

The only problem here is that parameter to LoadLibrary must be in target process. For
example if we use LoadLibrary (#2) with "mydILdll"(#3) as parameter to Loadlibrary then
the name "mydIl.dIl" must be in our target process.

Fortunately windows provide API to do that as well. We can write into any process
using WriteProcessMemory and can allocate space into another process using
VirtualAllocEx API. But Before that we need handle to our process, we can get that using
OpenProcess or CreateProcess API.

So our order will be:
Use OpenProcess or CreateProcess API to get the handle of our target

process

Use VirtualAllocEx to allocate space into our target process

Use WriteProcessMemory to write our DLL name into our target proce

Use CreateRemoteThread to inject our DLL into our target process

Reversing and Malware Analysis Training [2012] Page 44

Above steps are enough to inject our DLL into a process. Although to inject into a system
process we first have to setse_debug privilege to our process (means the process that will
inject DLL into another process) but for simplicity I am ignoring that part.

If you remember "two situations” from the beginning of this part then we need a bit of more
work for #2 i.e Create a process and Inject DLL into it.

We first have to create a process and after that we will use above steps to inject our DLL into
newly created process.

Let's look into CreateProcess syntax:

BOOL WINAPI CreateProcess(
__in opt LPCTSTR lpApplicationName,

__inout opt LPTSTR lpCommandLine,

__in opt LPSECURITY ATTRIBUTES lpProcessAttributes,
__in opt LPSECURITY ATTRIBUTES lpThreadAttributes,
__in BOOL bInheritHandles,
DWORD dwCreationFlags
__in opt LPVOID lpEnvironment,
__in opt LPCTSTR lpCurrentDirectory,
in LPSTARTUPINFO lpStartupInfo,

~_out LPPROCESS INFORMATION lpProcessInformation

Here dwCreationFlags is the important parameter. If you look into its definition on MSDN
then you will see that it is used to control the creation of a process. We can set it to
"CREATE_SUSPENDED" to create a process into suspended mode.

With CREATE_SUSPENDED flag CreateProcess will create the process and stop the
execution of the main thread at the entry point of the thread. To start the process we can
use ResumeThread API.

So our steps will be

1. Create Process in suspended state
2. Inject DLL into the process using above steps
3.

Resume the process

Here is the complete program which mimics above steps

;Author: Amit Malik
;http://www.SecurityXploded. com

;No error checking

.model flat, stdcall

option casemap:none

Reversing and Malware Analysis Training [2012] Page 45

include windows.inc
include msvcrt.inc

include kernel32.inc

includelib kernel32.1lib

includelib msvcrt.lib

db "enter file name:

db "$s",0

db "enter DLL name: ",0
dgreet db "%s",0
apiname db "LoadLibraryA", 0
dllname db "kernel32.d11",0

processinfo PROCESS INFORMATION <>
startupinfo STARTUPINFO <>
fele} 20 dup (?)
db 20 dup (?)
dllLen dd
mAddr dd
vpointer
lpAddr dd

invoke crt printf,addr greet

invoke crt scanf,addr sgreet,addr fname

invoke crt printf,addr dreet

invoke crt scanf,addr dgreet,addr dname

LoadLibrary, addr dllname

invoke GetProcAddress,mAddr,addr apiname

mov lpAddr,eax

;create process in suspended state

invoke CreateProcess,addr fname,0,0,0,0,CREATE SUSPENDED, 0,0, addr
startupinfo,addr processinfo

invoke crt strlen,addr dname

mov dllLen,eax

; Allocate the space into the newly eated process

Reversing and Malware Analysis Training [2012] Page 46

invoke

VirtualAllocEx, processinfo.hProcess,NULL,dl1lLen, MEM COMMIT, PAGE EXECUTE REA
mov vpointer,eax

; Write DLL name into the allocated space
invoke WriteProcessMemory,processinfo.hProcess,vpointer, addr
dname, dl1Len, NULL

; Execute the LoadLibrary function using CreateRemoteThread into the

previously created process

invoke

CreateRemoteThread, processinfo.hProcess,NULL, 0, lpAddr, vpointer, 0, NULL
Sleep,1000d

; Finally resume the process main thread.

invoke ResumeThread,processinfo.hThread,

XOr eax,eax

invoke ExitProcess,eax

Select console application in WinAsmand assemble the above code. It should create a
process and inject our DLL into it.

For eg: you can create calc.exe process and can inject urlmon.dll into it, by default calc.exe
doesn't load urlmon.dll.

Hooking

Here is definition of Hooking from Wikipedia

In computer programming, the term hooking covers a range of technigues used to alter or
augment the behaviour of an operating system, of applications, or of other software
components by intercepting function calls or messages or events passed between software
components. Code that handles such intercepted function calls, events or messages is called a
"hook"

Hooking is the most powerful technigue available in computer software. A person can do
almost everything on a system by applying hooks on the right locations.

As stated in the definition that in hooking we intercept function calls or messages or events.
Because it is taking the advantage of flow of execution so we can apply hooks on multiple
locations from original file to system calls.

Reversing and Malware Analysis Training [2012] Page 47

Primarily Hooks can be divided into two parts

In this article 1 will discuss Inline hooking technique which is one of the more effective
hooking techniques.

Inline Hooking

In Inline hooking we overwrite the first 5 byte of the function or API to redirect the flow of
execution to our code. The 5 bytes can be JMP, PUSH RET or CALL instruction.

Visually it can be explained by the following figures

Screenshot 1: Normal Call (Without hooking)

Call MessageBox
(Exe - main

module)

Normal Call
Jmp My Handle

Redirect
rcution to

exe
MyHandler

Transfer control back to
Original function

Reversing and Malware Analysis Training [2012] Page 48

As you can see in the above picture that the MessageBox function starting bytes are
overwritten by JMP to MyHandler function. In MyHandler function we do our stuff and then
transfer the control back to original function i.e MessageBox.

Now let's create a DLL that will hook MessageBox API and display our custom message
instead of the real message.

To make a DLL we need following things:

1. MessageBoxA API address i.e pointer

2. Our function or code address i.e pointer
We can get MessageBoxA Apiaddress using GetProc Address.
Here are the steps:

Get MessageBoxA address

Get custom code or function address
Overwrite bytes at #1 with JMP to #2
Modify the parameter of original call

Transfer control back to #1

Here is the complete code deomonstrating Inline Hooking MessageBox function
;Author: Amit Malik

;http://www.SecurityXplo

;No error checking

.model flat,stdcall

option casemap:none

include windows.inc
kernel32.inc

msvcrt.inc

user32.inc

includelib kernel32.1ib

includelib msvcrt.lib

user32.1lib

includelib

"Hello from Hooking Function", O
userDl11l db "user32.d11",0

"MessageBoxA", 0

Reversing and Malware Analysis Training [2012] Page 49

dd
oByte2 dd

userAddr
msgAddr dd
nOldProt

LibMain proc hInstDLL:DWORD, reason:DWORD, unused:DWORD
.if reason == DLL PROCESS ATTACH
invoke LoadLibrary,addr userDll

mov userAddr,eax

; Get MessageBoxA address from user32.dll
invoke GetProcAddress,userAddr,addr msgapi

msgAddr, eax

Set permission to write at the MessageBoxA address
invoke VirtualProtect,msgAddr, 20d, PAGE EXECUTE READWRITE, OFFSET

; Store first 8 byte from the MessageBoxA address

mov eax,msgAddr
mov ebx, dword
mov oBytel, ebx
mov ebx, dword ptr DS:

mov oByte2, ebx

patchlmessagebox:

; Write JMP MyHandler (pointer) at MessageBoxA address

mov byte ptr DS:[eax],0E9%h

; move MyHandler address into ecx
mov ecx,MyHandler

add

sub

sub

mov dword ptr ds:[eax],ecx

.elseif reason
reason == DLL THREAD ATTACH
reason DLL THREAD DETACH

LibMain endp

Reversing and Malware Analysis Training [2012] Page 50

MyHandler

pusha

XO0r eaX,eax

mov eaXx,msgAadc

text

our

Restore the bytes at MessageBoxA address
mov ebx,oBytel
mov dword ptr ds:
mov ebx,oByte?2

mov dword ptr ds:[eaxt+4],ebx

Restore all registers

;jump to MessageBoxA address (Transfer control back to MessageBoxA)

Jjmp msgAddr
MyHandler endp

Select standard DLL under "New Project" tab in WinAsm and paste the above code into the
editor area and assemble it.

Now we have our DLL that will hook MessageBoxA and change the IpText parameter to our
message.
We will inject this DLL into a "Hello world™ program that I shown in my previous
article "Assembly Programming — A beginner's guide” with the help of our DLL inject
program.

The output is shown in the below picture:

Sboxexe |
Y
M boxexe
Hedo World! Hello from Hooking Function

Name Desciiptio] original Version
ADVAPI32.di Advanced \8 oK TR s h.1.2600.551;
box.exe afte~ ook
cometi32.di User Expenence Lontrols Library Microsolt Lotporation b.0.2300 551.
cometi32.di Common Controls Libeary Mictosoft Corporation 582290055
clype. ns
GDI32.dll GDI Clhent DLL Microsolt Cotporation 5.1.2600,.569:
hook. di our dll]
kemel32 di \Windows NT BASE APl Client DLL Microsoft Corporation 5.1.2600.551,

Reversing and Malware Analysis Training [2012] Page 51

http://securityxploded.com/assembly-programming-beginners-guide.php

Conclusion

Both DLL injection and Hooking are powerful techniques and popularly used by malicious
software as well as legitimate software from the years.

But as the saying goes if you have nuclear power then it is entirely depends on you whether
you make a nuclear missile or use that power for solving problems.

References

1. Three ways to inject code into another process

2. Remote Thread Execution in System Process using NtCreate ThreadEx for Vista &
Windows7

MSR Detour Project - Hook SDK

Impact of Session 0 Isolation on Injection

P w

Reversing and Malware Analysis Training [2012] Page 52

http://www.codeproject.com/Articles/4610/Three-Ways-to-Inject-Your-Code-into-Another-Proces
http://securityxploded.com/ntcreatethreadex.php
http://securityxploded.com/ntcreatethreadex.php
http://research.microsoft.com/en-us/projects/detours/
http://msdn.microsoft.com/en-us/windows/hardware/gg463353.aspx

In-Memory Execution of an Executable
Author: Amit Malik

Introduction

This article is the part of our free ""Reverse Engineering & Malware Analysis Course"".

You can visit our training page here and all the presentations of previous sessions here

v,

IN-MEMORY EXECLITION

In this article, we will learn how to perform in-memory or file-less execution of executable
with practical code example.

Here | will explain about some of the fancy techniques used by exploits and malwares from
shellcode perspective. This article requires a strong understanding of PE file format. If you
are not comfortable with PE file format then first visit our first training session on PE
Format Basics.

Technical Introduction

Technically an exploit is the combination of two things

1. Vulnerability — the software security bug
2. Shellcode — the actual malicious payload

Reversing and Malware Analysis Training [2012] Page 53

http://securityxploded.com/security-training.php
http://securityxploded.com/security-training.php
http://securityxploded.com/security-presentations.php

Vulnerability gives us control over execution flow while shellcode is the actual payload that
carries out the malicious activity. Without the shellcode vulnerability is just a simple software
bug.

Further we can divide shellcodes into two parts:

1. Normal shellcodes
2. Staged shellcodes (often times termed as drive by download)

In a normal shellcode, shellcode itself carry out the malicious activity for eg: bind shell,
reverse shell shellcodes etc. They do not require any other payload to be downloaded for their
working. On the other hand staged shellcodesrequire another payload for their working and
are often divided into two stages.

Stage 1 — that will download stage 2.
Stage 2 — It is the actual malicious payload

Stage 1 downloads the stage 2 payload and executes it. After that stage 2 will perform all
kind of malicious activity. Here the interesting part is how stage 1 executes stage 2 payloads.
In this article I will discuss about it in detalil.

The two possibilities for the stage 1 shellcode to execute stage 2 shellcode could be,

1. Download the payload, save it on the disk and create a new process
2. Download the payload and execute it directly from the memory

#1 will increase the footprints and moreover there is greater chances of detection by the host
based security softwares like antivirus.

However in #2, as the payload is executed directly from the memory so it can bypass host
based security softwares very easily. But unfortunately no windows API provides mechanism
to execute file directly from memory. All windows API like CreateProcess, WinExec,
ShellExcute etc. requires file to be locally present.

So the question is how we can do that if there is no such API?

In-Memory Execution

I think in this regard the first known work on In-memory execution was done by ZomBie of
29A labs and then the Nologin also published its own version of the same. Later on Stephen
Fewer from harmony security applied the logic on the DLL and coined a new term reflective
DLL injection which is the integral part of Metasploit framework.

Interestingly it is possible because the structure of a PE file is exactly the same on disk as
in mapped memory. So we can easily calculate the offsets or addresses in memory if we

Reversing and Malware Analysis Training [2012] Page 54

know the offset on disk and vice-versa. It makes it possible to mimic the actual operating
system loader that loads the executable in memory.

Operating system loader is responsible for process initialization, so if we can make a
prototype of it then we can also create a process probably directly from the memory. But
before that, we need to take a look into the OS loaderworking especially how it map
executable in memory.

Following are the simplified steps that carried out by OS loader when you launch
Executables.

1. Read first page of the file which includes DOS header, PE header, section headers etc.
Fetch Image Base address from PE header and determine if that address is available
else allocate another area. (Case of relocation)

Map the sections into the allocated area

Read information from import table and load the DLLs

Resolve the function addresses and create Import Address Table (IAT).

Create initial heap and stack using values from PE header.

Create main thread and start the process.

N

No oabkow

If we can create a programme that can mimic some of the above steps then we can execute
exe directly from memory.

For example, consider a situation: you download an exe/dll from internet so until you save it
on the disk it will remain in the volatile memory. This means we can read the header
information of that file directly from memory and based on the above steps we can execute
that file directly from memory, in short it is possible to execute an exe/dll without its file
or file-less execution is possible.

If you take a close look on the above steps then we can easily say that most of the
information is stored in the PE header itself, which we can read programmatically.

Technically the minimum information required to run any executable is as follows,

1. Address space
2. Proper sections (exe sections) placement into the address space
3. Imported API addresses

Address space

In PE, everything is relative to Image Base so if we can get Image Base address allocation
then we can proceed to next steps easily else we have to add relocation support to our loader
prototype but for this article, | am ignoring that part and will be assuming that we have an
allocation with Image Base.

Reversing and Malware Analysis Training [2012] Page 55

Sections mapped into Address Space

In PE File header, NumberOfSections field can give us the total number of sections, after
that we can read section’s headers and can write on to the proper address in the memory. (We
read the offset from PointerToRawData and copy that data at VirtualAddress by taking
length from SizeOfRawData field).

Imported API addresses

Again by reading Import Table structure we can get the names of DLLs and APIs used by
the executable. Remember FirstThunk in the import table structure is actually IAT after name
resolution.

Memory Execution — Prototype Code

Based on the above information we can write a basic loader prototype. Please note that | am
ignoring couple of important things in the code intentionally like relocation case, section
permissions, ordinal based entries fixes etc.

/* In memory execution example */

Author: Amit Malik

Compile in Dev C++

#include
#include

#include

#define DEREF 32 (name)* (DWORD *) (name)

9}

char file[207];

HANDLE handle;

PVOID vpointer;
HINSTANCE laddress;
LPSTR libname;

DWORD size;

DWORD EntryAddr;

int state;

DWORD byteread;
PIMAGE NT HEADERS nt;

Reversing and Malware Analysis Training [2012] Page 56

PIMAGE SECTION HEADER section;
DWORD dwValueA;

DWORD dwValueB;
DWORD dwValueC;
DWORD dwValueD;

printf ("Enter file name: ");

scanf (', &file) ;

// read the file
printf ("Reading file..\n");
handle =
CreateFile(file, GENERIC READ,0,0,OPEN EXISTING,FILE ATTRIBUTE NORMAL,O) ;

// get the file size
size = GetFileSize (handle,NULL) ;

// Allocate the space
vpointer = VirtualAllOC(NULL,Size,MEM_COMMIT,PAGE_READWRITE);

// read file on the allocated space

state = ReadFile (handle,vpointer,size, &byteread,NULL) ;
CloseHandle (handle) ;

printf ("You can delete the file now!\n");

system ("pause") ;

// read NT header of the file
nt = PIMAGE_NT_HEADERS(PCHAR(VpOinter) + PIMAGE_DOS_HEADER(vpointer)—

>e lfanew) ;

handle = GetCurrentProcess|()

// get VA of entry point
EntryAddr = nt->OptionalHeader.ImageBase + nt-

>OptionalHeader.AddressOfEntryPoint;

Allocate the space with Imageba desired address allocation

PVOID memalloc = VirtualAllocEx(
handle,
PVOID (nt->OptionalHeader.ImageBase),
nt->OptionalHeader.SizeOfImage,
MEM RESERVE \ MEM COMMIT,
PAGE READWRITE

// Write headers on the allocated space

Reversing and Malware Analysis Training [2012] Page 57

WriteProcessMemory (handle,
memalloc,
vpointer,

nt->OptionalHeader.SizeOfHeaders,

// write sections on the allocated space

section = IMAGEiFIRSTisECTION(nt);
for (ULONG i = 0; i < nt->FileHeader.NumberOfSections; i++)

WriteProcessMemory (
handle,
PCHAR (memalloc) + section[i].VirtualAddress,
PCHAR (vpointer) + section[i].PointerToRawData,

section([i] .SizeOfRawData,

// read import dirctory
dwValueB = (DWORD) & (nt-
>OptionalHeader.DataDirectory[IMAGEiDIRECTORYiENTRYilMPORT});

// get the
dwValueC = (DWORD) (nt->OptionalHeader.ImageBase) +
((PIMAGE_DATA_DIRECTORY)dealueB)—

>VirtualAddress;

while(((PIMAGEiIMPORTiDESCRIPTOR)dealueC)—>Name)
// get DLL name
libname = (LPSTR) (nt->OptionalHeader.ImageBase +
((PIMAGEilMPORTiDESCRIPTOR)dealueC)—>Name);

// Load dll

address = LoadLibrary(libname) ;

// get first thunk, it will become our IAT
dwValueA = nt->OptionalHeader.ImageBase +
((PIMAGE IMPORT DESCRIPTOR)dwValueC) -
>FirstThunk;

// resolve function addresses
while (DEREF 32 (dwValueA))

Reversing and Malware Analysis Training [2012] Page 58

dwValueD = nt->OptionalHeader.ImageBa
DERE F_3 2 (dwValueAd) ;
// get function name

LPSTR Fname = (LPSTR) ((PIMAGE IMPORT BY NAME)dwValueD) -

// get function addresses
DEREF 32 (dwValueA) = (DWORD)GetProcAdd
dwValueA += 4;

=

ess (laddress, Fname) ;

dwValueC += sizeof (IMAGE IMPORT DESCRIPTOR);

// call the entr

((void (*) (void))

point here we assume that everythin

v
EntryAddr) () ;

Compile the above code in Dev C++. For proof of concept, | will execute the MessageBox
code that | had shown in my 'Assembly Basics' article.

Now perform the following steps,

1. Compile the MessageBox code again but before that select project properties in
WinAsm (project->Project Properties->Release) and in Link block add the following
command: /BASE:0x500000

2. Click onok.

3. Now assemble and link the code you will get EXE with 500000 Image Base which is
good for our POC

= box exe { pFile Data Description
IMAGE_DOS_MEADER 000000C8 0108 Magic |
MS-D0S Stub Program 000000CA 05 Major Linker Version
= IMAGE_NT_HEADERS 000000CE 0C Minor Linker Version
Signature 000000CC 00000200 Size of Code

IMAGE_FILE_HEADER

IMAGE_OPTIONAL_HEADER 00000000 Size of Uninitialized Data
IMAGE_SECTION_HEADER .text 00000 00001000 Address of Entry Point
IMAGE_SECTION_HEADER .rdata 000000DC 00001000 Base of Code
IMAGE_SECTION_HEADER .data 000000E0 00002000 Base of Data

00000400 Size of Iniahized Data

SECTION toxt | GOOGOOE: __00S00000 _imago Base
+ SECTION .rdata 00001000 Section Alignment
SECTION .data 00000200 File Ahgnment

0004 Major O/S Version
0000 Minor Q/S Version
0004 Major Image Version
0000 Minor Image Version
0004 Major Subsyste {

0000 Minor Subsystem Version
: 00000000 Win32 Version Value
00000100 00004000 Size of Image

£

Below snapshot shows you the execution directly from memory;,

Reversing and Malware Analysis Training [2012] Page 59

http://securityxploded.com/assembly-programming-beginners-guide.php

CALL #a59 h2e

CALL DS 826

Helly ﬁl

Hello World)

Conclusion

Recently Kaspersky said that they saw a file less worm, actually these things are not new.
Metasploit has file less Trojan from vears in terms of reflective DLL injection.
Many malicious codes and packers use heavily these things. It is also strongly known for

security softwares bypassing.

Overall it is very powerful mechanism and must be known to a malware analyst.

References

1. Nologin - Remote Library Injection
2. Harmony Security - Reflective DLL Injection
3. In Memory Execution — Zombie

Reversing and Malware Analysis Training [2012] Page 60

http://www.nologin.org/Downloads/Papers/remote-library-injection.pdf
http://www.harmonysecurity.com/files/HS-P005_ReflectiveDllInjection.pdf
http://dsr.segfault.es/stuff/website-mirrors/29A/29A-6.html

