1| [TTTTS——] [T
HIGH-T&ECH BI?II:II.'-ER

INFORMATION SECURITY SOLUTIONS

In-Memory Fuzzing in JAVA

2012.12.17
Xavier ROUSSEL

©2012 High-Tech Bridge SA — www.htbridge.com

1] [[T—— (1 .
Summary HIGH-TECH BRIDGE

INFORMATION SECURITY SOLUTIONS

I. What is Fuzzing?
Introduction
Fuzzing process
Targets
Inputs vectors
Data generation
Target monitoring
Advantages and drawbacks

[I. In Memory Fuzzing
Why use in-memory Fuzzing?
Principle
Data injection example
Building in-memory Fuzzer
Creating loop in memory
Advantages and drawbacks

[ll. DbgHelp4J

Presentation

Key features

Example

Implementing in-memory Fuzzer

CERTIF)p
b 2
2 2

IV. Real case study & %
EasyFTP 1.7.0.11 =

)
2
(4

_SGS.

©2012 High-Tech Bridge SA — www.htbridge.com

l. What is fuzzing? 11| [[T——- | 1 R
’ . HIGH-TECH BRIDGE

Introduction INFORMATION SECURITY SOLUTIONS

= OWASP definition ;

“Fuzz testing or Fuzzing is a Black Box software testing technique, which basically
consists in finding implementation bugs using malformed/semi-malformed data
injection in an automated fashion.”

= Alternative to code review mainly used in white box testing.

Due to automated tests, fuzzing allows us to assess a software against a
huge set of test cases in a few time.

Especially useful to test common applications implementations like FTP
server or HTTP server.

©2012 High-Tech Bridge SA — www.htbridge.com

I. What is fuzzing?

HIGH-TECH BRIODGE

Fuzzing process INFORMATION SECURITY SOLUTIONS

H Identify target H Identify inputs vectors H Generate Fuzz Data H Send data to target

ﬁ[Monitor target]

g(\ [Mormal behavior]

<

[Abnormal |behavior]

[Clean target state }{

©2012 High-Tech Bridge SA — www.htbridge.com

{ Log input data & memory state]

l. What is fuzzing? 11| [[T——- | 1 R
’ . HIGH-TECH BRIDGE

Targets INFORMATION SECURITY SOLUTIONS

Fuzzing can be used against almost all types of software running on a
computer. Preferred targets are privileged applications, remotely accessible
applications and file readers.

Example of some commonly targeted applications :
Server applications (Apache, IIS, etc.)
Client applications (Internet Explorer, Thunderbird, etc.)
File readers (Adobe reader, Windows Media Player, etc.)

Web applications

©2012 High-Tech Bridge SA — www.htbridge.com

l. What is fuzzing? 11| [[T——- | 1 R
’ . HIGH-TECH BRIDGE

Inputs vectors INFORMATION SECURITY SOLUTIONS

Computer security experts commonly use fuzzing to find flaws in software
which can lead to system compromise. Attack vectors rely on all components
which could be abused to obtain more privileges, mostly:

Network

File

Environment variables

Execution variables

CERTIF
b 2
< R,

_SGS.

©2012 High-Tech Bridge SA — www.htbridge.com

l. What is fuzzing? 11| [[T——- | 1 R
’ . HIGH-TECH BRIDGE

Data generation INFORMATION SECURITY SOLUTIONS

= Random-based

Random-based Fuzzers generate input data for applications in a random way.
This type of data generation is very quick to implement but also useless in
most cases.

= Mutation-based

Mutation-based Fuzzers generate data by analyzing an existing set of data
provided by the user and mutating some fields inside these data.

= Proxy-based

A proxy-based Fuzzer takes place between a legitimate client and the target
server or vice-versa. This architecture allows to capture packets in transition
and mutate them before forwarding them to the destination.

» Specification-based

Specification-based Fuzzers generate input data based on specifications of the
application. This way, the Fuzzer can test the application very deeply. F

©2012 High-Tech Bridge SA — www.htbridge.com

I. What is fuzzing? 1] [[T—— (1 .
. . HIGH-TECH BRIDGE
Target monitoring

INFORMATION SECURITY SOLUTIONS

Target monitoring could be realized in several ways depending on the target
application.

For binary applications, target monitoring could be realized by a debugger
to listen for exceptions triggered in the application.

A web application Fuzzer will analyze page returned by the server to find
flaws in the application.

FUZZER [send data]

T[debug]

DEBUGGER

©2012 High-Tech Bridge SA — www.htbridge.com

l. What is fuzzing? 11| [[T——- | 1 R
’ . HIGH-TECH BRIDGE

Advantages & drawbacks INFORMATION SECURITY SOLUTIONS

Advantages

= One Fuzzer implementation can be used against all implemented versions
of the targeted (e.g. FTP or HTTP).

» A specification-based Fuzzer can quickly audit an application in depth.

= Fuzzing allows software applications testing in black-box.

Drawbacks

= Mutation-based and Random-based Fuzzers are quite quick to implement
but in most cases, they can’t fuzz the application in depth.

= In the opposite, specification-based Fuzzers can test an application in
depth but can be very long to implement.

©2012 High-Tech Bridge SA — www.htbridge.com

1] [[T—— (1 .
Summary HIGH-TECH BRIDGE

INFORMATION SECURITY SOLUTIONS

I. What is Fuzzing?
Introduction
Fuzzing process
Targets
Inputs vectors
Data generation
Target monitoring
Advantages and drawbacks

[I. In Memory Fuzzing
Why use in-memory Fuzzing?
Principle
Data injection example
Building in-memory Fuzzer
Creating loop in memory
Advantages and drawbacks

[ll. DbgHelp4J

Presentation

Key features

Example

Implementing in-memory Fuzzer

IV. Real case study
EasyFTP 1.7.0.11

©2012 High-Tech Bridge SA — www.htbridge.com

Il. In Memory Fuzzing_—,._ILIEI-I.IP;.;..;"";Il:I-\I-.naé

Why using in memory fuzzing? INFORMATION SECURITY SOLUTIONS

= As seen before, fuzzing an application require to write a third-party
application which allows to launch test cases. That could sometime be
difficult if no functions are provided by the target.

In some case, fuzz testing an application can require a full restart of the
latter for each test case. This can lead to very low speed test.

If an unknown encryption is used by the target application, building an
efficient Fuzzer can be quite difficult.

In-memory fuzzing can avoid all these problems by directly injecting fuzz data
into memory.

©2012 High-Tech Bridge SA — www.htbridge.com

Il. In Memory Fuzzing_—,._ILIEI-I.IP;.;..;"";Il:I-\I-.naé

Principle INFORMATION SECURITY SOLUTIONS

Inject fuzz data directly into memory instead of using the attack vector.
Injection can be done by hooking Windows API or a whole function in the
process.

Directly manipulates process memory to clean memory state after each test
cases.

Allow to shortcut data encryption and inject raw data in memory.

Requires a debugger to place breakpoints and hook key functions.

Referring to the diagram “Fuzzing process”, in-memory fuzzing operates at
the step "Send data to target"

©2012 High-Tech Bridge SA — www.htbridge.com

". In Memory FUZZing “IIIII"IIn mlll“lll" .
S HIGH-TECH BRIDGE
Data injection example INFORMATION SECURITY SOLUTIONS

= The code block below use the API “recv”’. This APl reads data received
from the network through a socket connection.

Hooking this function and replacing the value pointed by the EDX register
will allow us to change API's output by our data and thus, to inject our data
into the application’s memory.

5} ; flags
edx, [esp+i18h+buf]

1 ; len
edx ; buf
ebp .
ds:recu

eax, eax

short loc_4139B9

CERTIF
b 2
< R,

_SGS.

©2012 High-Tech Bridge SA — www.htbridge.com

Il. In Memory Fuzzing H.g._lllll-l.'lgc..:"'gl:l-\:.naé

BuiIding in-memory Fuzzer INFORMATION SECURITY SOLUTIONS

[|[dentify inputs vectors]

i

Hook input functions

v

Hook check functions

Create loop in code flow

ERT)
r;&‘z\ CERTIE)p 18
£ %

)
2
(4

_SGS.

©2012 High-Tech Bridge SA — www.htbridge.com

Il. In Memory Fuzzing H.g._lllll-l.ll';c..;'llﬂl:l-\I-.naé

Creating Ioop in memory INFORMATION SECURITY SOLUTIONS

Effective in-memory Fuzzer creates a loop in code flow to restore the memory
and allow to launch a new test case. Several ways can be used to create a
loop in memory depending on the targeted application.

= Create a loop in memory by manipulating application’s code. For example,
add a JMP at the end of the function to jump to the beginning of another
function previously used in the code flow.

function1() -—

v

function2()

\

function3()

W

functiond()

= Obviously, instructions should be adjusted to application’s code flow. St
& heap cleaning might sometime be necessary.

©2012 High-Tech Bridge SA — www.htbridge.com

Il. In Memory Fuzzing 11| [[T—| 1 .
HIGH-TECH BRIDGE
Creating loop in memory

INFORMATION SECURITY SOLUTIONS

Another way to create a loop in the code flow is to use memory Snapshots.
Memory Snapshot save memory state including threads contexts at the
beginning of the loop and restore it at the end of the loop. This way, a loop

is virtually created into the code flow and the memory context is restored for
each test cases.

Save €— .
Snapshot —> functioni()

& l
&
.
0
W
-

function2()

1

Res;tore .
Snapshot <—| function3()

b3

functiond()

CERTIF
b 2
< R,

_SGS.

©2012 High-Tech Bridge SA — www.htbridge.com

Il. In Memory Fuzzing H.g._lllll-l.ll';c..;'llﬂl:l-\I-.naé

Advantages and drawbacks INFORMATION SECURITY SOLUTIONS

Advantages

= Speed : In-memory fuzzing inject data straight into memory and therefore
avoid data transfer slowdowns.

Shortcut : Allows to inject data at desired position and therefore avoid
encryption functions or checksum for example.

Implementation time : avoiding all the different attack vectors, experienced

user can build a Fuzzer in a few time.

Drawbacks

= Complexity : build a memory Fuzzer require in-depth analysis of the
software and a good knowledge in debugging and assembly language.
Forgetting to hook key input functions could make the test ineffective.

©2012 High-Tech Bridge SA — www.htbridge.com

1] [[T—— (1 .
Summary HIGH-TECH BRIDGE

INFORMATION SECURITY SOLUTIONS

I. What is Fuzzing?
Introduction
Fuzzing process
Targets
Inputs vectors
Data generation
Target monitoring
Advantages and drawbacks

[I. In Memory Fuzzing
Why use in-memory Fuzzing?
Principle
Data injection example
Building in-memory Fuzzer
Creating loop in memory
Advantages and drawbacks

[ll. DbgHelp4J

Presentation

Key features

Example

Implementing in-memory Fuzzer

CERTIF)p
b 2
2 2

IV. Real case study & %
EasyFTP 1.7.0.11 =

)
2
(4

_SGS.

©2012 High-Tech Bridge SA — www.htbridge.com

ll. DbgHelp4) 11| [[T——- | 1 R
. s . HIGH-TECH BRIDGE

Presentation INFORMATION SECURITY SOLUTIONS

DbgHelp4J is a JAVA library developed by High-Tech Bridge to debug
process in Windows environment.

It provides all required functions to implements a debug environment and
in-memory Fuzzer.

It provides functionalities to perform static and dynamic binary analysis.

It permits to perform path analysis.
It uses the diStorm library to perform binary code analysis.

It also remains in development.

©2012 High-Tech Bridge SA — www.htbridge.com

ll. DbgHelp4) 11| [[T——- | 1 R
. s . HIGH-TECH BRIDGE

Key features INFORMATION SECURITY SOLUTIONS

Process debugging

Events listener

Memory access (Threads, Modules, Process, Windows structures, etc.)

Read instructions

Place breakpoints

Hook functions

Memory snapshots

Static / dynamic path analysis

CERTIF
b 2
< R,

_SGS.

©2012 High-Tech Bridge SA — www.htbridge.com

lll. DbgHelp4) ot .
HIGH-TECH BRIDGE

Example — process debug INFORMATION SECURITY SOLUTIONS

1 package org.htbridge.refuzz.core;

2+ import org.htbridge.dbghelp4j.plateform.0OshotFoundException;[]
12

13 public class Debughpp {

public static void main({5tring[] args) {

try {
WinProcess myProcess = (WinProcess) org.htbridge.dbghelp4j.plateform.System.getSystem().getProcessByName("[PROCESS NAME]");
myProcess.attach() ;
ProcessDebuglistener pdl = new ProcessDebuglistensr() {
@verride
public void threadExited{Process p, Thread t) {

1
poverride

public woid threadCreated(Process p, Thread t) {

1
@verride
public void rip{Process p) {

i
@override

public void processExited(Process p) {

1
@verride
public void precessCreated(Process p) {

i
@override

public wvoid cutputStringDebug(Process p, StringOutputDebugEvent s) {

1
@verride
public void exceptionThrown(Process p, Thread t, ExceptienDebugEvent e} {

i
@override

public void dllunloaded(Process p, MeduleUnloadedDebugEvent m) {

1
@verride
public void dllLeaded(Process p, ModulelLoadedDebugEvent m) {

i
IE
myProcess.addDebuglistener(pdl) ;
1 catch (ProcessNotFoundException | OsMotFoundException e) {
e.printStackTrace();

©2012 High-Tech Bridge SA — www.htbridge.com

ll. DbgHelp4) 11| [[T——- | 1 R
| s . HIGH-TECH BRIDGE

Example — process debug INFORMATION SECURITY SOLUTIONS

Line 18 - WinProcess class owns windows representation of a process
Line 19 - WinProcess class allows to attach debugger to a process

Line 20 - ProcessDebugListener sets up debug event listeners

Line 58 - We attach the debug listeners to the process

CERTIF
b 2
< R,

_SGS.

©2012 High-Tech Bridge SA — www.htbridge.com

ll. DbgHelp4) 11| [[T——- | 1 R
! s p HIGH-TECH BRIDGE

Implementing in-memory Fuzzer INFORMATION SECURITY SOLUTIONS

Based on this code, we can easily implement an in-memory Fuzzer using
functions from the library.

We will use memory Snapshots to create the loop.

Following the process supplied earlier, we first have to identify inputs
vectors and hook related functions.

Here we will use arbitrary address for a “recv” (0x1100) function as for save
(0x1000) and restore (0x2000) addresses.

©2012 High-Tech Bridge SA — www.htbridge.com

ll. DbgHelp4) 11| [[T——- | 1 R
! s p HIGH-TECH BRIDGE

Implementing in-memory Fuzzer INFORMATION SECURITY SOLUTIONS

= The first thing to do is to prepare the “recv’ hook. It can be achieved by
using CallHook class.

CallHook ch = new CallHook{myProcess,new Pointer(@x1188)) {
private Pointer. ret.;
@override
public wvoid preCallHook{WinThread t, Pointer address) {
Memory stack;
try {
stack = t.getOwnerProcess().readMemory(new Pointer(((ThreadContextWlWEd t. getContext()).getEsp()), 4%4);
ret = new Pointer(stack.getInt(4)) ;
} catch (ReadProcessMemoryException e) {
e.printstackTrace();

1
¥

@rverride

public wvoid postCallHook({WinThread t, Pointer address) {
ThreadContextWOWsd tow = ((ThreadContextWOWed)t.getlontext ()] ;
tow.setEax(l) ;
t.setContext(tcw) 3
Memory m = new Memory(l) ;
m.setByte(®, "a".getBytes()i[@]) ;
t.getOwnerProcess(). .writeMemory (ret,m) ;
ret = null ;

preCallHook function will save pointer address of the string buffer

into the string buffer saved previously.

©2012 High-Tech Bridge SA — www.htbridge.com

1. DbgHelp4) (1 [T—— T R
o HIGH-TECH BRIDGE
Implementlng INn-memory Fuzzer INFORMATION SECURITY SOLUTIONS

Next, we have to enable the CallHook for the windows process and put 2
breakpoints to define save and restore addresses.

FéiPrepare. recyicall hook
myProcess.addCallHook(new Pointer(@xllee), ch) ;

myProcess.enableBreakPoint(ch) ;

/f Place save and restore breakpoint
BreakPoint bp = myProcess.addSoftBreakPoint(new Pointer(@xleaa)) ;

myProcess.enableBreakPoint{bp) ;
bp = myProcess.addSoftBreakPoint(new Pointer(@x2@es)) ;

myProcess.enableBreakPoint(bp) ;

To handle exceptions throws by breakpoints, we have to use the
exceptionThrown function from ProcessDebugListener.

@verride
public wvoid exceptionThrown{Process p, Thread t, ExceptionDebugEvent e} {

exceptionHandler{p,t,e) 3

}

CERTIF
b 2
< R,

_SGS.

©2012 High-Tech Bridge SA — www.htbridge.com

ll. DbgHelp4) 11| [[T——- | 1 R
! s p HIGH-TECH BRIDGE

Implementing in-memory Fuzzer INFORMATION SECURITY SOLUTIONS

= The function exceptionHandler will be responsible for saving and restoring
memory snapshot.

private static woid exceptionHandler(Process p, Thread t, ExceptionDebugEwvent e) {

if(Pointer.nativeValue(e.getExceptionAddress()) == Pointer.nativeVaolue(new Pointer(@xlepa)) 88 sz == null) {
p.suspend() ;
55 = p.savesnapshot() ;
t.resume() ;

} else if(Pointer.nativeValue(e.getExceptionAddress()) == Pointer.mofiveVolues(new Pointer(@x2eea))) {
p.suspend() ;
p.restoreSnapshot(ss) ;
t.resume() ;

1
¥

= Snapshots will be saved in a global variable.

private static Snapshot ss5 ;

» That's it ! Our Fuzzer is now ready. To run the loop, just run a function
which reach the save snapshot address.

_SGS.

©2012 High-Tech Bridge SA — www.htbridge.com

I1l. DbgHelp4) 1] [[T—— (1

HIGH-TECH BRIODGE

Implementing in-memory Fuzzer INFORMATION SECURITY SOLUTIONS

This example was an ideal case of in-memory Fuzzer implementation. In
real cases, additional functions hooks could be required.

For example, in many case, there is a select function present before recv
function. If select function fail to find the socket (what will certainly happen
because the socket connection cannot be kept alive by the Fuzzer) the
program will probably take another path and don’t reach recv.

We’'ll see in the next chapter how to find functions to hook and how to find,
save and restore addresses for Snapshots.

©2012 High-Tech Bridge SA — www.htbridge.com

1] [[T—— (1 .
Summary HIGH-TECH BRIDGE

INFORMATION SECURITY SOLUTIONS

I. What is Fuzzing?
Introduction
Fuzzing process
Targets
Inputs vectors
Data generation
Target monitoring
Advantages and drawbacks

[I. In Memory Fuzzing
Why use in-memory Fuzzing?
Principle
Data injection example
Building in-memory Fuzzer
Creating loop in memory
Advantages and drawbacks

[ll. DbgHelp4J

Presentation

Key features

Example

Implementing in-memory Fuzzer

CERTIF)p
b 2
2 2

IV. Real case study & %
EasyFTP 1.7.0.11 =

)
2
(4

_SGS.

©2012 High-Tech Bridge SA — www.htbridge.com

IV. Real case study_—,._ILIEI-I.IEC..';"";IILDGE“

EasyFTP 1.7.0.11 INFORMATION SECURITY SOLUTIONS

Now that we know how to implement an in-memory Fuzzer, in this section
we will study how to find functions to hook.

For the Proof of Concept, we’ll use an old and well known flaw in EasyFTP
1.7.0.11.

ERTIE
r;“‘z\ Cl Uy ’/0
£ 3
‘6 0
>

Y SGS

©2012 High-Tech Bridge SA — www.htbridge.com

IV. Real case study H.g._lllll-l.ll';c..;'llﬂlgnaé

EasyFTP 1.7.0.11 INFORMATION SECURITY SOLUTIONS

Following the process supplied earlier, the first thing to do is to identify input
vectors.

Because we work on a FTP server, the main attack vector here is the
network.

The second step is to hook desired input functions. To do this, we must find
the address of the these input functions.

The best way to proceed is to do a static analysis on the application to find
common API used in network communication.

©2012 High-Tech Bridge SA — www.htbridge.com

1| [——| " .
HIGH-TECH BRIODGE

INFORMATION SECURITY SOLUTIONS

IV. Real case study
EasyFTP 1.7.0.11

Here, IDA will be used for static analysis.

Let’'s examine the import table of the application :

¥=) 0042526C
%Z] 00425254
00425250
¥E| 0042524C
%E| 00425268
%E| 00425230
%= 0042523C
%= 00425244
=) 00425228
¥E| 00425224
¥E| 00425248
¥E| 00425240
%E| 00425264
%= 00425260
BE) 0042521C
00425258
¥E| 0042522C
¥E| 00425238
%E| 00425220
%z 0042525C
%z 00425234

socket

send

select

recy

ntohs

listen
ioctlsocket
inet_ntoa
inet_addr
htons
getsockname
getpeername
gethostname
gethostbyname
connect
closesocket
bind

accept
_WSAFDsSet
WsAStartup
WsACleanup

©2012 High-Tech Bridge SA — www.htbridge.com

IV. Real case study 1| [T TT——1 | ([.
HIGH-TECH BRIDGE
EasyFTP 1.7.0.11

INFORMATION SECURITY SOLUTIONS

The most interesting API here is “recv’.

Other API like “bind”, “select”, “listen” or “accept” could also be useful to
help reverse engineering the application.

Let’'s analyze references to the “bind”, “recv” and “listen” API.

8100400800 call sub_#00850] |.te><t:DD4EIDA2EI: call

o
=

sub_400580 | [tewt:004IDECD: call sub_40DES0 [srart] R S

sub_40A100 sub_409700

| |
/\ Sub_ 409810 sub_404ECD

(|ott_425351: dd otsat sub_40CFED

sub_404300 sub_409500 sub_407050 =sub_403150

off_425315: dd offset sub,40D110| off_425318: dd offzet Quh_d[lell]l

e - N

CERTIF
& 2

£ %
160
>

Y SGS

©2012 High-Tech Bridge SA — www.htbridge.com

IV. Real case study H.g._lllll-l.llgc..';'"ﬂlgmaé

EasyFTP 1.7.0.11 INFORMATION SECURITY SOLUTIONS

We can easily see that a function 0x40D110 use both “bind” and “listen”
APL.

By reversing this function, after “bind” and “listen” calls, an interesting block
appears.

il s B

push 4 ; unsigned int
call 772@YAPAX1EZ ; operator new(uint)
mov edx, [ebp+aCh]

add esp, 4

mou esi, eax

push edi ; addrlen

push edi ; addr

push edx ; 5

call accept

push esi ; int

push edi ; dwStacksize
push offset loc_4BDB78 ; int

mou [esi], eax

call __beginthread

add esp, BCh

jmp short loc_u4BD6B6

» This block of instructions accepts connections coming from port 21 and
launches a thread using function loc_40D870 to handle the connection.

ERT)
r;&‘; CERTIE)p 18
£ %

d jﬁ&

©2012 High-Tech Bridge SA — www.htbridge.com

IV. Real case study_—,._ILIEI-I.IEC..';"";IILDGE“

EasyFTP 1.7.0.11 INFORMATION SECURITY SOLUTIONS

» |nspecting the instruction at loc_40D870, we can find a call to sub_40D850
displayed below.

sub_4BDBLSOH proc near
push esi
mouv esi, ecx

———h

el ==

loc 4BDB53:

mov ecx, [esi+h]
push 1

call sub_489784

test eax, eax

jnz short loc_48D853

I

il s B3

pop esi
retn
sub_4BDE5A endp

information and deal with them.

©2012 High-Tech Bridge SA — www.htbridge.com

IV. Real case study_—,..ILIEI-I:Z.;..;"";IILBG:%

EasyFTP 1.7.0.11 INFORMATION SECURITY SOLUTIONS

At this juncture, we have all that we need to create a full loop, but in the graph of
the function sub_40D850 presented earlier, we can see that the main thread
function is running on a loop. So is it really necessary ?

Manually implement a loop would be useless because the loop is already
present in the code flow.

Create a loop with memory Snapshots would have the advantage to restore
memory to the initial state for each test but this way would prevent the Fuzzer to
go deeper into the code as no trace would be kept in memory of previously
executed commands.

Fuzzing the application with the initial code will allow the Fuzzer to go deeper
but could also corrupt the memory after several iterations.

A good alternative here should be to implements memory Snapshots with a
counter triggered only after N iterations. Selecting this solution, we should place
our save address on the “MOV ESI,ECX” instruction, and restore on “JNZ
SHORT LOC_40D853".

To simplify this example, we will not use a counter here and will restore memory

for each test case after connecting.

Y SGS

©2012 High-Tech Bridge SA — www.htbridge.com

IV. Real case study H.g._lllll-l.ll';c..;'llﬂlgnaé

EasyFTP 1.7.0.11 INFORMATION SECURITY SOLUTIONS

» Having set out our Snapshots addresses, we should now search for the
“recv” function to inject our data.

By inspecting function sub 409700, we find function sub 4095D0 which
appears to be the receive function. Here we have 2 solutions. Hook the
“recv” call or hook the whole function.

The second solution appears to be the best one because it allows us to

inject data in one block while the “recv” function reads data byte by byte.

©2012 High-Tech Bridge SA — www.htbridge.com

IV. Real case study [

HIGH-TECH BRIODGE

EasyFTP 1.7.0.11 INFORMATION SECURITY SOLUTIONS

sub_489700 proc near

var_284= dword ptr -204h
arg_PB= dword ptr &

sub esp, 2084h
®or eax, eax

push esi

moy esi, eecx

push edi

noy ecx, 8on

lea edi, [esp+ZBCh+var_20M]
moy edx, [esi+h]

rep stosd

stosh

nov eax, [esp+28Ch+arg_0]
lea ecx, [esp+2OCh+var_204]
push eax int
push 20ah int
push ecx int
push edx s
mov ecx, esi

call Sub_heesDe

test eax, eax

ijnz short loc_h@975h4

¥

L < EL

lea eax, [esp+2ZBCh+uar 204]
moy ecx, esi loc_W@97sy:

push eax cmp eax, BFFFFFFFFh
call sub_hBuECE jnz short loc_hB9766
test eax, eax =

jnz short loc_NB9773

C
¥

ks w2 EX [ks = B
pop edi pop edi
pop esi loc_hB9766: xor eax, eax
add esp, 2040 lea ecx, [esp+2OCh+var_284][|pop esi
retn 4 push ecx add esp, 2040
push eax retn u
nov ecx, esi
call sub_h@9598

—

loc_h@9773:

pop edi

nov eax, 1
pop esi

add esp, 20kh
retn L]
sub_489780 endp

©2012 High-Tech Bridge SA — www.htbridge.com

IV. Real case study H.g._lllll-l.ll';c..;'llﬂlgnaé

EasyFTP 1.7.0.11 INFORMATION SECURITY SOLUTIONS

» Launching the Fuzzer now will reveal another problem. As said earlier, in-
memory Fuzzer cannot keep network connection up. Even if we have
hooked the “recv’ function and so avoid the problem here, the “send”
function returns an error and Kkills the thread.

So the last thing we have to do is to hook the send function and replace its
return value by 1 to entice the application to think the function has
terminated correctly.

©2012 High-Tech Bridge SA — www.htbridge.com

IV. Real case study "
HIGH-TECH BRIDGE
EasyFTP 1.7.0.11 - PoC INFORMATION SECURITY SOLUTIONS

<terminated> RunnerEasyFTPQuick [Java Application] C:\Program Files\Java\jre7\bin\javaw.exe (27 sept. 2012 09:39:13)

[67, 87, 68, 67, 87, 68, 67, 87, 68, 67, 87, 68, 67, 87, 68, 67, 87, 68, 67, 87, 68, 67, 87, 68, 67, 87, 68, 67, 87, 68, 67, 87, 68, 67, 87, 68, 67, 87, 68, 67, 87, 68, 67, 87, 68, 67, 87, 68, 67, 87, 68, 67, 87, 68, 67, 87, 68, 67, &
Restoring snapshot at native@@x4edssd 182
new test : CHDCWDCWDCWDCWDCWDCHDCWDCWDCWDCWDCWDCHDCHDCWDCHDCWDCWDCWDCHDC WDCHDCHDCWDCWDCHDCWDCWDCHDCWDCWDCWDCWDC WD CHD CWDCWDCWDCWDC WD CHDCHDCWDCWD CWDCWDCWD CHD CWDCWD CWDCWDC WD CHDCWDCWDCWDCWDC WD CHDCHDCWDCWD CWDCWDCWDCHD CWDCWDCWDCWDCWDCHDCWDC

[67, 87, 68, 67, 87, 68, 67, 87, 68, 67, 87, 68, 67, 87, 68, 67, 87, 68, 67, 87, 68, 67, 87, 68, 67, 87, 68, 67, 87, 68, 67, 87, 68, 67, 87, 68, 67, 87, 68, 67, 87, 68, 67, 87, 68, 67, 87, 68, 67, 87, 68, 67, 87, 68, 67, 87, 68, 67, 8
Restoring snapshot at native@@x42d3sd 1e3
new test : CWD

[67, 87, 68, 32, 32, 32, 32, 32, @, 8, @, @, @, 8, 13, 1a]
Restoring snapshot at native@@x42d3sd 1e4
new test : CWD 1313133339333333333333333333393333333333333333339933333333333333333393333933333333333333333333333333333333399333933333333333333933333333333333333339333333333333333333993333339333333333339333733333333333333333333333733

[67, 87, 68, 32, 32, 32, 32, 32, @, @, -28, -20, -2, -20, -20, -28, -2@, -20, -20, -20, -2@, -20, -20, -2, -28, -20, -20, -2, -28, -28, -20, -20, -20, -2@, -28, -20, -20, -2@, -2, -20, -20, -28, -20, -28, -20, -20, -20, -28, -28, -
Restoring snapshot at nativef@x4edssd 15
new test : CWD

[67, 87, 68, 32, 32, 32, 32, 32, @, @, @, @, @, -82, -f
Restoring snapshot at native@@x28d8sd 101
new test : CWD Trrn Trne

[67, 87, 68, 32, 32, 32, 32, 32, @, @, 58,
Restoring snapshot at nativefiex4edssd 187
new test : CWD 2222222222722222222222222222222222000002002222232222000002202222227222220002220022222222220002220000203322222000222200220322222330222200020002222233022220000022222233322220000000222222332222202222022222222222222225

[67, 87, 68, 32, 32, 32, 63, &
ACCESS VIOLATION at : native@@x48c67c
Entry : CWD EEFEFEEE R R R R ER R PR R R R R PR EEE R R PR PR R PR R R R PR R R R P R R ERE R R ERR R R

[67, 87, 68, 32, 32, 32, €83, 63, &1
Memory dump :

ContextFlags 65599

SegGs

SegFs

SegEs

SegDs

Edi @

Esi 41688836
Ebx @

Edx 38871824
Ecx 416808036
Eax 1861189567
Ebp @

Eip 4245116
Segls 35
EFlags 66@54
Esp 41679688
SegSs 43

Stack dump :
native@ex26bceee [@, @, @, @, 8, 8, @, @]
3 [l

By running the Fuzzer less than 1 minute an “ACCESS VIOLATION” is
thrown showing an error in the CWD command handling.

©2012 High-Tech Bridge SA — www.htbridge.com

. 1| [T TT——1 | ([
Conclusion HIGH-TECH BRIDGE

INFORMATION SECURITY SOLUTIONS

In this paper, we have discussed about advantages and disadvantages of
in-memory fuzzing.

We have also seen how to build a simple in-memory Fuzzer and analyze
the process to place breakpoints and hookpoints.

In a future paper, we will cover how to harness in-memory fuzzing to help in
data generation.

CERTIF
b 2
< R,

_SGS.

©2012 High-Tech Bridge SA — www.htbridge.com

1| [——| " .
HIGH-TECH BRIODGE

INFORMATION SECURITY SOLUTIONS

References

Fuzzing, Brute Force Vulnerability Discovery by Michael Sutton, Adam
Greene and Pedram Amini.

In-Memory Fuzzing on EmbeddedSystems by Andreas Reiter.

http://resources.infosecinstitute.com/intro-to-fuzzing/

http://www.ragestorm.net/blogs/
http://ragestorm.net/distorm/

https://www.owasp.org/index.php/Fuzzing

©2012 High-Tech Bridge SA — www.htbridge.com

11| [[T—| 1 .
Thank you for reading HIGH-TECH BRIOGE

INFORMATION SECURITY SOLUTIONS

Your questions are always welcome!

xavier.roussel@htbridge.com

©2012 High-Tech Bridge SA — www.htbridge.com

