
©2013 High-Tech Bridge SA – www.htbridge.com

April 3th, 2013

Brian MARIANI & Frédéric BOURLA

Novell GroupWise 2012

Multiple Untrusted Pointer Dereferences Exploitation

©2013 High-Tech Bridge SA – www.htbridge.com

TIMELINE

 On the 24th of November 2012, High-Tech Bridge Security Research Lab

discovered multiple vulnerabilities in Novell GroupWise 2012.

 On the 26th November 2012, High-Tech Bridge Security Research Lab informed

Novell about these vulnerabilities which existed in two core ActiveX modules.

 On the 30th January 2013, Novell published a security bulletin and released a

security patch.

 Finally, on the 3rd April 2013 High-Tech Bridge Security Research Lab disclosed

the vulnerability details.

 This paper is a technical explanation of the latter vulnerability and its

exploitation.

https://www.htbridge.com/advisory/HTB23131
https://www.htbridge.com/advisory/HTB23131
https://www.htbridge.com/advisory/HTB23131

©2013 High-Tech Bridge SA – www.htbridge.com

ABOUT NOVELL GROUPWISE

 According to Wikipedia:

 GroupWise is a messaging and collaborative software platform from Novell

Inc. that supports email, calendaring, personal information management,

instant messaging, and document management.

 The platform consists of the client software, which is available for Windows,

Mac OS X, Linux, and the server software part which is supported on

Windows Server, NetWare and Linux systems.

 The latest generation of the platform is GroupWise 2012 which only

supports Windows and Linux servers.

©2013 High-Tech Bridge SA – www.htbridge.com

THE VULNERABILITIES

 The vulnerabilities exist in the gwmim1.ocx and gwabdlg.dll libraries.

 In order to trigger the flaw one should pass a non properly initialized value to

the vulnerable methods.

 By default any long integer value is assumed to be a proper initialized pointer.

This permit to provide a fake pointer to some of the methods and hijack the

control flow of the application by redirecting it to a malicious code.

 The vulnerability can be abused by preparing the heap area with predictable

memory addresses before the bug is triggered.

©2013 High-Tech Bridge SA – www.htbridge.com

COMMON WEAKNESS ENUMERATION

 In accordance to MITRE:

 The Common Weakness Enumeration is a formal list of software

weakness types created to:

• Serve as a common language for describing software security weaknesses in

architecture, design or code.

• Serve as a standard measuring stick for software security tools targeting these

weaknesses.

• Provide a common baseline standard for weakness identification, mitigation and

prevention efforts.

 On the of 20th August 2012 High-Tech Bridge Security Research Lab obtained

CWE-Compatible Status by MITRE.

 This vulnerability was categorized by the weakness ID Untrusted Pointer

Dereference [CWE-822].

©2013 High-Tech Bridge SA – www.htbridge.com

UNTRUSTED POINTER DEREFERENCE

 According to MITRE, an untrusted pointer dereference vulnerability is present

when:

 An attacker can inject a pointer for memory locations that the

program is not expecting.

 If the pointer is dereferenced for a write operation, the attack might

allow modification of critical program state variables, cause a crash or

execute code.

 If the dereferencing operation is for a read, then the attack might allow

reading of sensitive data, cause a crash or set a program variable to an

unexpected value since it will be read from an unexpected memory

location.

©2013 High-Tech Bridge SA – www.htbridge.com

MORE DETAILS ABOUT THE ISSUE

 Novell GroupWise crashes at three different methods within two modules.

 The involved modules are gwabdlg.dll and gwmim1.ocx.

 The faulty methods names are InvokeContact, GenerateSummaryPage and

SecManageRecipientCertificates.

 We will only analyse the issues in the SecManageRecipientCertificates and

InvokeContact methods.

 This is because the InvokeContact and GenerateSummary methods crash at

the same area. Moreover, the exploitation technique used to leverage the

vulnerability is the same.

 The configuration lab we used is an English Windows XP SP3 operating

system (DEP disabled) with Internet Explorer 8.

©2013 High-Tech Bridge SA – www.htbridge.com

PROOF OF CONCEPT CRASH (1)

 Here is a working proof of concept in order to crash Internet Explorer by passing

a custom pointer to the InvokeContact method.

©2013 High-Tech Bridge SA – www.htbridge.com

PROOF OF CONCEPT CRASH (2)

 The following proof of concept crashes Internet Explorer by passing a fake

pointer to the SecManageRecipientCertificates method.

©2013 High-Tech Bridge SA – www.htbridge.com

SecManageRecipientCertificates case (1)

 Let’s first analyze the SecManageRecipientCertificates case as this is the
simpler one.

 In the following screenshot we can observe the crash from WinDBG after
executing the proof of concept on one of the previous slides:

 We can clearly spot that the crash took place at the address 0x10014805 when
the code attempts to move the value of the uninitialized pointer into the EDX
register.

 This one was provided as a long data type (202116108), therefore (0xc0c0c0c)
in hexadecimal format.

©2013 High-Tech Bridge SA – www.htbridge.com

SecManageRecipientCertificates case (2)

 So far we have a function that crashes when reading a memory address of our

choice.

 All that we need in order to turn the odds in our favor and maximize the

chances of exploitation is that the code instructions that follow permit us in

someway to take control of code execution.

 In this particular instance, after dissasembling the faulty function, we can

observe at the memory address 0x10014807 that the value hold by our pointer

is moved into the EAX register.

 Eventually, a CALL EAX instruction at the address 0x10014809 will terminate

the game.

©2013 High-Tech Bridge SA – www.htbridge.com

HEAP SPRAYING

 In order to exploit this particular vulnerability we need to spray the heap area on

Internet Explorer in a reliable and precise way.

 Before the bug is triggered the heap must be already prepared in order to

contain the or al,0x0C sled which leads to arbitrary code execution.

 The or al,0x0C instruction does not affects any critical data which could stop

code execution.

 The goal is to "slide" the flow of code to its final destination.

 Since the shellcode is sitting in multiple chunks in the heap right after the or

al,0x0C sled the probability of arbitrary code execution is very high.

 Please check the Microsoft XML issue video for more information on this

exploitation technique.

http://www.youtube.com/watch?v=RxKUqJc3LN8

©2013 High-Tech Bridge SA – www.htbridge.com

WINDBG AFTER THE HEAP SPRAYING EXPLOIT (1)

 Here is a screenshot of the most important part of the exploit:

©2013 High-Tech Bridge SA – www.htbridge.com

WINDBG AFTER THE HEAP SPRAYING EXPLOIT (2)

 The following screenshot shows the state of registers under Windbg after the

exploit is executed:

 We can clearly observe that instruction pointer register was successfully

hijacked.

©2013 High-Tech Bridge SA – www.htbridge.com

THE INVOKECONTACT METHOD CASE (1)

 As we said on slide 10, finding the way to exploit the

SecManageRecipientCertificates method was les complex than the

InvokeContact one.

 When we run the InvokeContact proof of concept, one would be tempted to

conclude that this is just a local denial of service.

 However, since the attacker can control the EAX register he could influence

the code logic and to enter what seems to be a switch structure.

 This means that it would be possible to coerce the code to enter into one of the

six available cases, so as to potentially increase our chances of successful

exploitation.

©2013 High-Tech Bridge SA – www.htbridge.com

THE INVOKECONTACT METHOD CASE (2)

 Here is the switch structure containing the six different cases:

 In order to go beyond this crash, we need to provide a memory address as a pointer,
and from this address plus 4 bytes we supply a dword value who will be the case
number in which we would like to enter.

 In order to accomplish this task one would need to rely over a previously known
address in memory.

 If we use a precise heap spraying technique, we can count on the 0xc0c0c0c
address.

©2013 High-Tech Bridge SA – www.htbridge.com

THE INVOKECONTACT METHOD CASE (3)

 After studying the exploitation opportunities that are available to us, we found

that at least one of the six cases permits arbitrary code execution.

 The following screenshot shows the code instructions when the third case is

executed:

 Let’s summarize the entire process starting from the injected pointer until code

execution is reached.

©2013 High-Tech Bridge SA – www.htbridge.com

THE INVOKECONTACT METHOD CASE (4)

  We place a breakpoint at the Oleaut32!DispCallFunc function and a second

one at the first CALL ECX instruction situated some bytes farther. The second

breakpoint is the instruction who calls the method in which we are interested.

 After the second break, the code points to the memory address 0x572146b7.

©2013 High-Tech Bridge SA – www.htbridge.com

THE INVOKECONTACT METHOD CASE (5)

  The code pushes into the stack the improper pointer. At this moment we can

observe the reference to the XisDOMAttributeList function.

 After the CALL instruction at the address 0x5722D83E, the code continues and

pushes again the uninitialized value at the address 0x5722d861 who enters in

one more nested function.

©2013 High-Tech Bridge SA – www.htbridge.com

THE INVOKECONTACT METHOD CASE (6)

  When the code comes into this function the uninitialized pointer is compared to

0. As the pointer’s value is equal to c0c0c0c the conditional jump at address

0x5722D2E8 is not taken.

 Later, the untrusted pointer is moved into the EAX register at the address

0x5722D2FE.

 At 0x5722D301 address we reach the instruction where the code reads the

value of the EAX register plus four bytes. This corresponds to the case in

which it will enter.

©2013 High-Tech Bridge SA – www.htbridge.com

THE INVOKECONTACT METHOD CASE (7)

 In order to push the code to enter into the case three, we sprayed the heap

so as to allocate perfect sized and consecutive chunks.

 If we take care of the chunks size and the blocks size, we can be pretty sure

that the begin of each spray block will be positioned at a predictable address.

 Here is the sprayed data starting at the address 0xc0c0c0c:

 Consult the document Heap Spraying Demystified under the section Precision

Heap Spraying from Corelan for more information.

©2013 High-Tech Bridge SA – www.htbridge.com

THE INVOKECONTACT METHOD CASE (8)

 Because the heap spray was very precise, the code reads and stores our

desired value into the stack at the address 0x5722D304.

 This permits us to go beyond the previous crash and enter into the function at

the address 0x5722d4b4.

©2013 High-Tech Bridge SA – www.htbridge.com

THE INVOKECONTACT METHOD CASE (9)

 The untrusted pointer is stored in the stack and will be reused later in order

to call another private method from the vftable.

©2013 High-Tech Bridge SA – www.htbridge.com

THE INVOKECONTACT METHOD CASE (10)

 Later the code dereferences twice the EAX register at the addresses

0x5722D4CA and 0x5722D4D3.

 So as to successfully slide the code up to the shellcode, the exploit needs to

spray accurately the heap with three pointers:

 The shellcode sits right after the 0xc0c0c48 pointer.

©2013 High-Tech Bridge SA – www.htbridge.com

THE INVOKECONTACT METHOD CASE (11)

 This is therefore the final payload for the exploit:

©2013 High-Tech Bridge SA – www.htbridge.com

THE INVOKECONTACT METHOD CASE (12)

 Code execution is reached:

©2013 High-Tech Bridge SA – www.htbridge.com

References & Links

 http://www.youtube.com/watch?v=hNDjRLoN8ug (Exploitation Video)

 https://www.htbridge.com/publication/Novell-GroupWise-exploit.rar (password:

htbridge)

 https://www.corelan.be/index.php/2011/12/31/exploit-writing-tutorial-part-11-

heap-spraying demystified/#Heap_Spraying_on_Internet_Explorer_9

 http://cwe.mitre.org/data/definitions/822.html

 https://www.htbridge.com/vulnerability/

 http://en.wikipedia.org/wiki/Novell_GroupWise

©2013 High-Tech Bridge SA – www.htbridge.com

Thank you for reading

Your questions are always welcome:

brian.mariani [at] htbridge.com

frederic.bourla [at] htbridge.com

