
rcrypt packer
by Feiad Mohammed

rcrypt features

 timelock puzzle for delayed execution

 anti virtualization (vbox)

 fake imports

 supports EXE and DLL files

rcrypt purpose

rcrypt is a crypter (a type of packer) and its purpose is similar to others of its kind. To protect
intellectual property. If you're familiar with commercial software, music, movies, games, etc you
are familiar with this type of protection. If you create some fancy new optimization algorithm and
want to profit from it you do not want someone to simply reverse engineer your binary and make
use of your hard work. When commercial entities use this kind of binary protection it is called
DRM (Digital Rights Management). Rcrypt offers users the ability to encrypt their binaries to make
reverse engineering harder. No solution is absolute and rcrypt is no exception. It is a proof of
concept and nothing more. I make no guarantee that your binary will even function after packing
so your mileage may vary. Just be aware that I do not condone malicious use of rcrypt as it is
designed for educational purposes only.

rcrypt features

The timelock puzzle functionality causes delay in execution to avoid virtualized scanning
techniques employed by Antivirus products. In rcrypt a timelock puzzle is implemented by the
brute forcing of the crypto key used to encrypt the binary with varying difficulty specified by
optional parameter -complex hexvalue.

The encryption algorithm used in rcrypt is XXTEA [1] also known as Corrected Block TEA. I am a fan
of the Tiny Encryption Algorithm as it can be implemented entirely with CPU registers with no
need for stack variables. It is a very efficient algorithm. Seeing as XTEA supersedes it, followed
immediately by XXTEA which supersedes both I decided to use XXTEA. It is indeed the ultimate of
TEAs.

Binaries with no or very few imports are highly suspicious. rcrypt will add fake imports to packed
binaries. The imports I've chosen are based on the default imports created by a hello world Visual
Studio program built in release mode.

Anti virtualization is currently limited to Virtualbox. I plan to add support for others as time
permits. VMWare is far too ubiquitous to have an anti for as many systems actually run on it.

Additional features not explicitly mentioned include the following:

anti debugger functionality

obviously designed to detect debuggers to make reversing more difficult.

polymorphic self destructing stub

the unpacking stub kills itself after unpacking completes. To support DLLs there is a small portion
that remains after the self destruct feature.

Anti-virus Scanning Methodologies and Malware

Antivirus products have been made a fool of for a very long time. Signature based scanning, no
matter how well done, cannot deal with packed executables as they completely mask the byte
patterns used to detect malware. This is why sandbox scanning methods are now the main
method used by the best products out there (ie: Kaspersky comes to mind). Using these emulated
environments to allow binaries to execute defeats the binary obfuscation offered by packers as all
packers must unpack in memory. Virtualization has become ubiquitous enough to allow isolated
environments to be created for every single EXE or DLL file that an antivirus scanner might want to
scan.

However these full blown virtualized environments have overhead and cannot be run throughout
the entire lifetime of the target binary executable. If a user had to wait for an executable to fully
execute they might be waiting a long time. Especially since most binaries are graphical user
interfaces or otherwise programs awaiting user input. Imagine this happening for countless
binaries at any given time and having to wait for a double clicked program to start but only after it
has been virtualized in its entirety to determine whether or not it was malicious. This is why these
scanning techniques can only be employed for a short amount of time. Due to the nature of
malicious binaries a few seconds is generally all they require to unpack and
modify/exfiltrate/beacon which will trigger detection. This makes even a few seconds of
virtualized based scanning worthwhile.

Pausing for a short amount of time is a very well known method of bypassing this type of scanning
technique and has been in use for a long time. Just imagine a function like the following:

evilFunction
{
 Sleep(60000);
 AllTheBadThings();
}

Although using Sleep() is so common it is now ignored by almost every scanner out there the point
is still there. If you can cause execution to delay for a while then you can bypass such scanning
methods.

Ok so are there other ways to delay execution?

Timelock Puzzle

One of the more interesting ways to produce a delay in execution is to use cryptographic
functionality to somewhat predictably cause execution delay. Various cryptographic computations
have been proposed and do a great job in doing pointless work to cause delay.

Pointless Computations and Avoidability

A human analyst can detect useless computations if they can determine pointless functionality
and remove it from the executable code as it is not a necessary part of the binary.

Timelock Puzzle in rcrypt

I liked the general idea behind timelock puzzles and thought that making use of cryptographic
functionality while brute forcing a crypto key would be sufficient to cause delay. In rcrypt when a
binary is encrypted a randomly generated key is used. Part of the packer's in memory routine is
now to brute force this key which will facilitate delay and require the brute forcing as a necessary
part of the process.

Example rcrypt packed malware detection

After scanning a known malware sample packed with rcrypt against a fully updated KAV I
determined that this was sufficient to bypass a typical sandbox used by Antivirus scanning engines.
Rcrypt has an optional parameter -complex 0x1234 users can use to tweak the difficulty of the
brute forcing routine to increase/decrease delay.

For demonstration I will take a very well known malware released ten years ago that is detected
by every Antivirus product and pack it.

The malware sample is called Insurrection and has a client and server component. The server file is
named serverside.exe and is copied to the rcrypt directory and packed.

Below you can see the packed and unpacked binaries in a folder.

KAV is installed in a VM and updated and detects the unpacked binary immediately but does not
detect the packed version.

Unpacked detection.

This shows that rcrypt delays execution long enough to timeout KAV's sandbox scanning
technology.

rcrypt Reversing in IDA Pro
Because the sample is packed IDA cannot determine original functionality or even identify
functions or other known code. Below is an image of IDA Pro after loading the unpacked sample.

You can see IDA Pro has been able to produce a nice control flow graph. Now here is an image of
IDA Pro after loading the packed version.

As you can see you get quite a bit of garbage. Also note that the pretty control flow graphs newbie
reversers tend to be over dependent upon are no longer produced by IDA. Static analysis is useless
on packed binaries. Luckily we can use the built in debugger and step through code and IDA will
update the view based on new information gleaned.

I did just that and produced the following results.

Here I am continuing to step through code and there is still no graph or easily identifiable code
constructs.

And then finally....

IDA Pro crashes as it is unable to continue execution. As you can see this is what IDA Pro looks like
when stepping through rcrypt packed executable code. There are many things here designed to
trip up analysis and frustrate reverse engineering.

Detecting Packed Malware

To detect packed malware Antivirus products employ unpacking functionality for each supported
packer to allow scanning of the original binary. One would simply need to be created for rcrypt. Of
course this kind of approach does not scale as there are many packers out there.

Full Blown Virtualization

Automated analysis tools are a dime a dozen these days and will allow a user to upload binaries
and get reports back from their virtualized analysis engines. These virtual environments run
executables for arbitrary amounts of time so the delay in execution does not deter such analysis.
Starting with rcrypt 1.3 there is an optional parameter "-trick1" that will attempt to detect the
most typical sandbox environments and cause early termination. This is an option that shows that
overreliance on simple automated solutions can be very misleading. Never rely solely on your
tools as any tool can be fooled if someone wants to do so.

Conclusion

It is clear that the arms race between detecting malware and evading detection systems has
produced some interesting new products and techniques. However no single solution solves
everything and a layered security model is needed. There are always ways around detection
techniques and evading techniques and all one can do is raise the bar as high as possible to lower
the chance of falling prey to a successful attack.

My website: http://www.0xrage.com

References
[1] http://en.wikipedia.org/wiki/XXTEA

