

Windows Heap Overflow Exploitation

Exploiting a custom heap under Windows 7.

Author : Souhail Hammou

Blog : http://rce4fun.blogspot.com/

https://twitter.com/Dark_Puzzle
http://rce4fun.blogspot.com/

Hi , In this article I will be talking about exploiting a custom heap : which is a big chunk of memory
allocated by the usermode application using VirtualAlloc for example . The application will then work

on managing 'heap' block allocations and frees (in the allocated chunk) in a custom way with complete
ignorance of the Windows's heap manager. This method gives the software much more control over its

custom heap, but it can result in security flaws if the manager doesn't do it's job properly , we'll see that
in detail later.

The vulnerability that we'll exploit together today is a 'heap' overflow vulnerability that's occuring
in a custom heap built by the application. The vulnerable software is : ZipItFast 3.0 and we'll be

exploiting it today and gain code execution under Windows 7 . ASLR , DEP , SafeSEH aren't enabled by
default in the application which makes it even more reliable to us . Even though , there's still some
painful surprises waiting for us ...

Please refer to C/C++ courses about singly and doubly linked lists for better understanding of this
paper's material.

To see an implementation of a custom heap manager in C/C++ please refer to my

previous blog post : http://rce4fun.blogspot.com/2014/01/creating-and-using-your-own-heap-

manager.html

Heap Manager Source code : http://pastebin.com/2LgcByyC

Let's just start :
The Exploit :
I've actually got the POC under exploit-db , you can check it right here :

http://www.exploit-db.com/exploits/17512/

Oh , and there's also a full exploit here :
http://www.exploit-db.com/exploits/19776/

Unfortunately , you won't learn much from the full exploitation since it will work only on Windows
XP SP1. Why ? simply because it's using a technique that consists overwriting the vectored exception

handler node that exists in a static address under windows XP SP1. Briefly , all you have to do is find a
pointer to your shellcode (buffer) in the stack. Then take the stack address which points to your pointer
and after that substract 0x8 from that address and then perform the overwrite. When an exception is

raised , the vectored exception handlers will be dispatched before any handler from the SEH chain, and
your shellcode will be called using a CALL DWORD PTR DS: [ESI + 0x8] (ESI = stack pointer to the

pointer to your buffer - 0x8). You can google the _VECTORED_EXCEPTION_NODE and check its
elements.

And why wouldn't this work under later versions of Windows ? Simply because Microsoft got aware
of the use of this technique and now EncodePointer is used to encode the pointer to the handler

whenever a new handler is created by the application, and then DecodePointer is called to decode the
pointer before the handler is invoked.

Okay, let's start building our exploit now from scratch. The POC creates a ZIP file with the largest
possible file name , let's try it :

N.B : If you want to do some tests , execute the software from command line as follows :
 Cmd :> C:\blabla\ZipItFast\ZipItFast.exe C:\blabla\exploit.zip

http://rce4fun.blogspot.com/2014/01/creating-and-using-your-own-heap-manager.html
http://rce4fun.blogspot.com/2014/01/creating-and-using-your-own-heap-manager.html
http://pastebin.com/2LgcByyC
http://www.exploit-db.com/exploits/17512/
http://www.exploit-db.com/exploits/19776/

Let's try executing it now :

An access violation happens at 0x00401C76 trying to access an invalid pointer (0x41414141) in

our case. Let's see the registers :

Basically the FreeList used in this software is a circular doubly linked lists similar to Windows's .

The circular doubly linked list head is in the .bss section at address 0x00560478 and its flink and blink
pointers are poiting to head when the custom heap manager is initialized by the software.

I also didn't check the full implementation of the FreeList and the free/allocate operations in this
software to see if they're similar to Windows's (bitmap , block coalescing ...etc).
It's crucial also to know that in our case , the block is being unlinked from the FreeList because the

manager had a 'request' to allocate a new block , and it was chosen as best for the allocation.

Let's get back to analysing the crash :
- First I would like to mention that we'll be calling the pointer to the Freelist Entry struct : "entry".

Registers at 0x00401C76 :

EAX = entry->Flink
EDX = entry->Blink

[EAX] = entry->Flink->Flink
[EAX+4] = entry->Flink->Blink (Next Block's Previous block)
[EDX] = entry->Blink->Flink (Previous Block's Next block)

[EDX+4] = entry->Blink->Blink

Logically speaking : Next Block's Previous Block and Previous Block's Next Block are nothing
but the current block.
So the 2 instructions that do the block unlinking from the FreeList just :

- Set the previous freelist entry's flink to the block entry's flink.
- Set the next freelist entry's blink to the block entry's blink.

 By doing so , the block doesn't belong to the freelist anymore and the function simply returns after
that. So it'll be easy to guess what's happening here , the software allocates a static 'heap' block to

store the name of the file and it would have best to allocate the block based on the filename length from
the ZIP header (this could be a fix for the bug , but heap overflows might be found elsewhere , I'll

propose a better method to fix ,but not fully, this bug later in this article).

 Now , we know that we're writing past our heap block and thus overwriting the custom metadata of

the next heap block (flink and blink pointers). So, We'll need to find a reliable way to exploit this bug ,

as the 2 unlinking instructions are the only available to us and we control both EAX and EDX. (if it's not
possible in another case you can see if there are other close instructions that might help), you can think

of overwriting the return address or the pointer to the structured exception handler as we have a stack
that won't be rebased after reboot.

This might be a working solution in another case where your buffer is stored in a static memory
location.

 Under Windows 7 , it's not the case , VirtualAlloc allocates a chunk of memory with a different
base in each program run. In addition , even if the address was static , the location of the freed block

that we overwrite varies so in both cases we'll need to find a pointer to our buffer.
The best place to look is in the stack , remember that the software is trying to unlink (allocate) the block
that follows the block where we've written the name , so likely all near pointers in the stack (current and

previous stack frame) are poiting to the newly allocated block (pointer to metadata) . That's what we
don't want because flink and blink pointers that we might set might not be valid opcodes and might

cause exceptions , so all we need to do is try to find a pointer to the first character of the name and
then figure out how to use this pointer to gain code execution , this pointer might be in previous stack
frames.

 And here is a pointer poiting to the beginning of our buffer : 3 stack frames away

 Remember that 0x01FB2464 will certainly be something else when restarting the program , but the
pointer 0x0018F554 is always static , even when restarting the machine.

A use for this pointer would be overwriting the vectored handler node with 0x0018f554 - 0x8 under XP
SP1 , but it's not the case here AT ALL .

 So when I was at this stage , I started thinking and thinking about a way that will help me redirect
execution to my shellcode which is for sure at the address pointed by 0x0018F554 , and by using only

what's available to me :
- Controlled registers : EAX and EDX.

- Stack pointer to a dynamic buffer pointer.
- 2 unlinking instructions.
- No stack rebase.

 Exploiting the vulnerability and gaining code execution:

 And Then I thought , why wouldn't I corrupt the SEH chain and create a Fake frame ? Because
when trying to create a fake an SEH chain there are 3 things that you must know :

- SafeSEH and SEHOP are absent.

- Have a pointer to an exisiting SEH frame.
- Have a pointer to a pointer to the shellcode.

The pointer to the shellcode will be treated as the handler,and the value at ((ptr to ptr to shellcode)-

0x4) will be treated as the pointer to the next SEH frame.
Let's illustrate the act of corrupting the chain : (with a silly illustration , sorry)

Let me explain :

we need to achieve our goal by using the 2 instructions :

MOV [EDX],EAX

MOV [EAX+4], EDX

We'll need 2 pointers and we control 2 registers , but which pointer give to which register ? This must
not be a random choice because you might overwrite the pointer to the shellcode if you chose EAX as a
pointer to your fake SEH frame.

So we'll need to do the reverse , but with precaution of overwriting anything critical.
In addition we actually don't care about the value of "next SEH frame" of our fake frame.

So our main goal is to overwrite the "next SEH frame" pointer of an exisiting frame , to do so we need

to have a pointer to our fake frame in one of the 2 registers. As [EAX+4] will overwrite the pointer to
the buffer if used as a pointer to the fake SEH frame , we will use EDX instead. We must not also
overwrite the original handler pointer because it will be first executed to try to handle the exception , if

it fails , our fake handler (shellcode) will be invoked then.
So : EDX = &(pointer to shellcode) - 0x4 = Pointer to Fake "Next SEH frame" element.

EDX must reside in the next frame field of the original frame which is : [EAX+4].
And EAX = SEH Frame - 0x4.

Original Frame after overwite :

Pointer to next SEH : Fake Frame
Exception Handler : Valid Handler

Fake Frame :

Pointer to next SEH : (Original Frame) - 0x4 (we just don't care about this one)
Exception Handler : Pointer to shellcode

The SEH frame I chose is at : 0x0018F4B4

So : EAX = 0x0018F4B4 - 0x4 = 0x0018F4B0 and EDX =0x0018F554 - 0x4 = 0x0018F550

Now all we need to do is calculate the length between the 1st character of the name and the flink and
blink pointers , and then insert our pointers in the POC.

Inserting the shellcode :
The space between the starting address of the buffer and the heap overwritten metadata is not so large

, so it's best to put an unconditional jump at the starting of our buffer past the overwritten flink
and blink pointers and then put the shellcode just after the pointers. As we can calculate the , this
won't cause any problem.

Final exploit here : http://pastebin.com/pKyQJicy

I chose a bind shellcode , which opens a connection to (0.0.0.0:4444). Let's try opening the ZIP file
using ZipItFast and then check "netstat -an | find "4444" :

A Fix for this vulnerability ??

http://pastebin.com/pKyQJicy

The method I stated before which consists on allocating the block based on the filename length

from the ZIP headers can be valid only to fix the vulnerability in this case , but what if the attackers
were also able to cause an overflow elsewhere in the software ?

The best way to fix the bug is that : when a block is about to be allocated and it's about to be
unlinked from the Freelist the first thing that must be done is checking the validity of the doubly linked
list , to do so : safe unlinking must be performed and which was introduced in later versions of

Windows.
Safe unlinking is done the following way :

if (entry->flink->blink != entry->blink->flink || entry->blink->flink != entry){
 //Fail , Freelist corrupted , exit process

}
else {

 //Unlink then return the block to the caller
}

Let's see how safe unlinking is done under Windows 7 :
The function is that we'll look at is : RtlAllocateHeap exported by ntdll

Even if this method looks secure , there is some research published online that provides
weaknesses of this technique and how can it be bypassed. I also made sure to implement this technique
in my custom heap manager (Line 86) , link above.

I hope you enjoyed this paper ... and make sure you check my blog for more cool stuff.

Best regards,

Souhail Hammou.

