
WhiteCollarGroup

2016

THE MOST FORGOTTEN

WEB VULNERABILITIES

Written by 0KaL @ WhiteCollarGroup

Reviewed by WCG147, 3du and NeoInvasor

WhiteCollarGroup

2016

2

“Now you know

who you’re fighting.”
(Quote from Troy movie)

The Most Forgotten Web Vulnerabilities
Written by 0KaL (@0KaL_H4) for WhiteCollarGroup (@WCollarGroup)
Reviewed by WCG147, 3du and NeoInvasor (thanks to Brazilian Cyber Army)
For SystemHacker, #0rch1d and #M0rph
Version: 1.0 published in February, 10th 2016

WhiteCollarGroup

2016

3

Introduction

PHP is adorable. It’s learning curve is short, yet its features allow you to create virtually
any kind of web application.

But PHP, as some use to say, allows the programmer to do a lot of weird things. While I
really think it’s a good aspect for a programming language, for beginners it might bring a
lot of headaches and angry clients.

The vulnerabilities that we are going to see here really do deserve some attention from us
(as any other vulnerability). They’re not vulnerabilities that will provide, to some attacker,
permissions to hack the entire server (maybe this is the reason why it’s so forgotten), but
this does not mean that they can’t create a path, sometimes with some basic social
engineering1, for the attacker to reach this target.

1 Act of using communication for fooling and getting privileged information about the victim.

WhiteCollarGroup

2016

4

Table of contents

Introduction..3
Table of contents.. 4
Attribute-based Cross-site Scripting... 5
Multi-level SQL Injection..8
Cross-site Request Forgery... 10
Local File Inclusion.. 16
Session fixation.. 18
Session Hijacking...20
Internal session stealing... 22
And now?...23

WhiteCollarGroup

2016

5

Attribute-based Cross-site Scripting

ou may be already aware about XSS (Cross-site scripting, the

“X” is to avoid confusion with Cascading Stylesheet2). Let’s say

that you must receive some HTML code from the client and

save it to display later. As you really must receive HTML5

tags, htmlspecialchars()3 won’t help us. It’s good to remember that

WYSIWYG editors can be easily disabled by some attacker,

and also need HTML filters on the server side.

You’re smart enough to avoid some attacker to include iframes or

scripts on your page by whitelisting some HTML tags:10

$content = strip_tags($_POST['content'], '<i><u><p><div>');

But what about the HTML events?

For example, can you imagine what happens if the user sends the

code below? (Let’s remember an attacker could easily, through

Developer Tools, for example, bypass a WYSIWYG editor with no15

HTML button and have a simple textarea, instead).

Let’s see: you’ve blocked <script> tag, but that’s not the only way to

execute Javascript code in HTML. The code above still runs and the

alert is being executed (and if an alert can be performed, a cookie or20

session stealing can also happen - we will see why it is dangerous in

this article).

The “onLoad” event is available for the following HTML tags, according

to W3schools:

<body>, <frame>, <iframe>, , <input type="image">, <link>, <script>,25
<style>

2 A language for setting and creating styles for web pages.
3 Htmlspecialchars() converts HTML brackets to entities, so it will show up as text in the browser, and not
evaluated.

Y

http://www.w3schools.com/jsref/event_onload.asp
http://www.w3schools.com/jsref/event_onload.asp

WhiteCollarGroup

2016

6

But keep in mind that there are more DOM events available, with

support for almost all HTML tags. See a complete list on W3schools.

Also, not just events may cause problems. If the user just wants to

mess everything up, he could do it easily by inserting CSS code30

into style attribute. He could, for example, create a fixed div written

“Hacked by Haxor” that occupies the whole window.

How can I protect?

As you’ve seen, strip_tags() isn’t enough. It’s needed to whitelist

tags and attributes. Andstrip_tags() only filters tags. Unfortunately PHP35

does not have a function that filters attributes. Luckly, there are many

options out there that will help us. One of them is HTML Purifier.

After downloading, it’s very easy to use and it will remove the

dangerous HTML tags and attributes. For example:

<?php40

require_once './htmlpurifier/library/HTMLPurifier.auto.php';

$dirty_html = '<img onLoad="javascript:alert(\'xss\');"

src="http://placehold.it/350x150" /><script> alert(1); </script>';45

$config = HTMLPurifier_Config::createDefault();

$purifier = new HTMLPurifier($config);

$clean_html = $purifier->purify($dirty_html);

50

echo $clean_html;

Will return:

http://www.w3schools.com/jsref/dom_obj_event.asp
http://localhost/vulns.html
http://htmlpurifier.org/

WhiteCollarGroup

2016

7

Another way of injecting attributes may be made possible when

you insert some user input on another attribute. Let’s take a look on55

this example:

<?php

$link = htmlspecialchars($_GET['link']);

?>

<a href='<?php echo $link; ?>'>Click here to continue.60

If the user accesses yoursite.com/script.php?link=http://google.com'

onClick='alert(1);, this will be the result:

Click here to continue.

Why did it happen? By default, htmlspecialchars() will only replace

double-quotes (") to ". As the example above uses single quotes65

('), it’s needed to tellhtmlspecialchars to convert it as well. It can be done

simply by adding ENT_QUOTES constant as second argument. It will

make both the quotes to be converted to entities.

$link = htmlspecialchars($_GET['link'], ENT_QUOTES);

Now, this is what we get:70

Click here to

continue.

Of course, some validation with filter_var() is also highly recommended.

WhiteCollarGroup

2016

8

Multi-level SQL Injection

e know that it’s needed to filter user inputs, do some75

casting or use prepared statements with placeholders to

protect against SQL Injection (which is the addition of

more SQL queries from a variable controlled by the attacker). But SQL

Injection can also be multi-level (or “multi-order”).

Let’s say that you have a forum with the following database tables:80

Table: “topics”

id author title text

1 2 Hi Hey!

2 2 Hey Hi!

Table: “users”

id username password

1 admin (pwd)

2 hacker (pwd)

And let’s say that, when showing a topic, you query:

$id = (int)$_GET['id']; // protecting!

$qry = your_query_function("85

SELECT u.username, t.title. t.text

FROM topics t

LEFT JOIN users u

ON t.author=u.id

WHERE t.id=$id");90

W

WhiteCollarGroup

2016

9

But you have to show links to other topics by this user below the

user’s post. In order to produce it, you do:

$qry = your_query_function("

SELECT u.username, t.title. t.text

FROM topics t95

LEFT JOIN users u

ON u.username='$row[author]'");

As $row[author] comes directly from the database, and not from some

user input, and you’ve protected it with some real_escape_string()-like

function, you’re safe, right?Wrong.100

Let’s say that the attacker, while registering, have set his username

as ' UNION ALL SELECT version(), version() --. As when registering you’ve

protected the string before inserting it to the database, it was just

stored on it, and not injected. But once the attacker opens one of his

topics and our “More topics by this user” query runs, let’s see what we105

will have:

SELECT u.username, t.title. t.text

FROM topics t

LEFT JOIN users u

ON u.username='' UNION ALL SELECT version(), version() -- '110

Here we see that his SQL Injection was successful: in a second level.

Of course this is a harder attack to do, but when a hacker wants, a

hacker does.

How can I protect?

 Always protect/cast values before inserting it to your SQL query,115

even when it comes from the own database.

 Avoid inserting variables inside your SQL queries. Never do it if

your database engine supports prepared statements.

http://localhost/vulns.html

WhiteCollarGroup

2016

10

Cross-site Request Forgery120

ross-site Request Forgery (CSRF) means making the user to

do something he wouldn’t want to.

Let’s say you have a page for posting a message:

<form action="post.php" method="post">

<input name="message" type="text" />125

<input type="submit" value="Post it now" />

</form>

Too simple: the user writes something, click the submit button and

post.php will save the content of the message input into your database.

But what if a naughty hacker creates a simple HTML page with the130

following content:

<iframe id="haxor" style="display: none;" name="haxor" width="300"

height="150"></iframe>

<form action="http://your_beautiful_site.com/post.php" method="post"135
target="haxor" id="haxorfrm">

<input name="message" type="hidden" value="HAXORED BY HAXOR" />

</form>

<script type="text/javascript">

document.getElementById('haxorfrm').submit();140

</script>

Let’s analyze it:

 A hidden iframe called “haxor”. The user won’t see it.

C

WhiteCollarGroup

2016

11

 A form whose only input is a hidden one (the user won’t see it),

which targets haxor iframe4 (the user won’t see it being145

submitted) and that submits itself once it’s loaded.

 The message input, hidden, with the value “HAXORED BY

HAXOR”.

Let’s imagine the sheet: the hacker saves it to PasteHTML or any free

hosting site, then send it to the victim while he’s logged on (there are150

many ways to make sure that the victim is logged on, like sending it

from a comment, guestbook or contact form) - note that, if the user

isn’t logged on, nothing happens (if you’ve checked for sessions

everywhere), but if someday he logs in and opens that link, you’ll be

dammed.155

Once this page is opened, the form is submitted through the hidden

iframe (so the user will not see anything) and its action will be

performed: the “HAXORED BY HAXOR” will be posted.

How can I protect?

Generate a token and verify if on every single action that modifies160

anything on the data.

Before showing the form, just generate a random token, put it on a

session and inside a hidden input and verify it when the form is

submitted. Like this:

<?php165

session_start();

$token = md5(uniqid(rand(), true));

$_SESSION['csrftoken'] = $token;

?>

<form action="post.php" method="post">170

<input type="hidden" name="csrftoken" value="<?php echo $token; ?>" />

4 Iframe is a HTML tag to include a page inside another, as it was another browser window “included” in
the page. Not the same as popup as it’s part of the page elements and has no close button.

http://localhost/vulns.html

WhiteCollarGroup

2016

12

<input name="message" type="text" />

<input type="submit" value="Post it now" />

</form>

On post.php:175

<?php

session_start();

if($_POST['csrftoken']!=$_SESSION['csrftoken']) {

echo "CSRF attack detected!";

exit;180

}

// save in db, etc

Of course if you have several forms on your page (which is pretty

usual) it will be a pain. For this case, I’ve made a small class that will

help you. Download it here, include it on your script and just do:185

<?php

require 'csrf.class.php';

$token = csrf::token('post_form'); // create an identifier for your form or action, so you

can have multiple tokens

?>190

<form action="post.php" method="post">

<input type="hidden" name="csrftoken" value="<?php echo $token; ?>" />

<input name="message" type="text" />

<input type="submit" value="Post it now" />

</form>195

And in post.php:
<?php

http://pastebin.com/9y3vXBzQ

WhiteCollarGroup

2016

13

require 'csrf.class.php';

if(!csrf::verify('post_form', $_POST['csrftoken'])) { // once you verify, the existing200
token will be removed after being validated

echo "CSRF attack detected";

exit;

}

// save to db, etc205

If you don’t want to download the class from the link, just copy it

here:

<?php

@session_start();

210

/*

* @author @0KaL_H4

*/

class csrf {215

public function token($action) {

if (!isset($_SESSION[md5(dirname(__FILE__))]['csrf_tokens'])) {

$_SESSION[md5(dirname(__FILE__))]['csrf_tokens'] = array();

}

$gen_token = md5(uniqid(rand(), true));220

$_SESSION[md5(dirname(__FILE__))]['csrf_tokens'][md5($action)] =

$gen_token;

return $gen_token;

}

WhiteCollarGroup

2016

14

225

public function verify($action, $check) {

if (!isset($_SESSION[md5(dirname(__FILE__))]['csrf_tokens'])) {

$_SESSION[md5(dirname(__FILE__))]['csrf_tokens'] = array();

return false;

}230

if (isset($_SESSION[md5(dirname(__FILE__))]['csrf_tokens']) AND

isset($_SESSION[md5(dirname(__FILE__))]['csrf_tokens'][md5($action)]) AND

$_SESSION[md5(dirname(__FILE__))]['csrf_tokens'][md5($action)]

== $check) {235

unset($_SESSION[md5(dirname(__FILE__))]['csrf_tokens'][md5($action)]);

return true;

} else {

return false;240

}

}

}

How about non-forms?

If you have any GET request that can perform some action on the site,245

and you don’t check for a token, you’re still vulnerable. For example:

Will logout the user, and:

You can see that possibilities are unlimited.250

http://localhost/vulns.html

WhiteCollarGroup

2016

15

So what must you do? Just check for a token too!

<?php

require 'csrf.class.php';

$token = csrf::token('logout');

?>255

<a href="logout.php?token=<?php echo $token; ?>">Logout

<?php

require 'csrf.class.php';

if (!csrf::verify('logout', $_GET['token'])) {

echo "CSRF attack detected!";260

exit;

}

// do logout, etc

265

WhiteCollarGroup

2016

16

Local File Inclusion

HP inclusion5 consists in two vulnerabilities: local and remote

file inclusion (LFI and RFI). Remote file inclusion receives a

good attention from developers, since it would allow any270

attacker to set a remote (from another server) PHP file to be included,

and it could easily be a webshell.

But Local File Inclusion may also be dangerous. And this is not about

stealing the server’s /etc/passwd or /etc/shadow6. It’s still possible to

create PHP codes inside the server, then execute it.275

Here’s how: Apache saves every request into your Apache Access

Logs. Let’s say the client (attacker) has sent the following request,

using NetCat (as a web browser would convert some tags to entities

and make it hard):

$ nc yoursite.com 80280

GET /<?print`id`;?> HTTP/1.0

(twice enter)

Your webserver would throw some 404 error page to the attacker’s

command line, but his request would have been saved to the access285

logs. Once he can discover where it’s located (and hosting companies

tend to standardize it), and include the Apache Access Logs through

some LFI vulnerability, that code would be executed. It was just

an id command in the terminal, but could be easily

a wget8 downloading some webshell.290

5 PHPi is any kind of vulnerability that allows the inclusion of dangerous PHP code.
6 /etc/passwd is where the users data (username, group...) is stored on Unix, while /etc/shadow stores
the encrypted passwords.
8 Wget is a command line tool for downloading files.

P

WhiteCollarGroup

2016

17

How can I protect?

If you really can’t predefine what files can be included, at least put

enough protection in the variable that will be used as include, like so:295

<?php

$include = basename($_GET['include']);

if(preg_match("^([a-z]+)$") AND file_exists('includes/'.$include.'.php')) {

include 'includes/'.$include.'.php';

} else {300

// 404 error

}

http://localhost/vulns.html

WhiteCollarGroup

2016

18

Session fixation

essions are used for storing temporary information about the

user. On every running script where sessions are used, you305

must call session_start() function, so a cookie named, by

default, PHPSESSID is sent to the user (this name can be changed). This

cookie stores an unique ID to identify the user every time he accesses

the server again, and get only the sessions that he owns.

However, it’s easy to change PHPSESSID through some reflected or310

stored/permanent XSS vulnerability on the site, using Javascript. Also,

it’s possible to do the same by setting it on the URL:

http://your_site.com/login.php?PHPSESSID=<a session id here>

Once the attacker sends this URL to the victim and the victim opens it,

will be using the SESSID created by the attacker. This means that,315

once the attacker changes his SESSID to the same value using any

cookie editor (most of the browsers already have it natively through

Developer Tools), or uses his SESSID, all the sessions will be shared

between the victim and the attacker. Could you imagine it? Once the

victim logs in, the attacker will also be logged in on the same account,320

as the sessions are the same.

There will also be problems if the user copies the URL and shares it

(those who access that link will have the same sessions).

How can I defend myself?

You must make sure that325

you session.use_trans_sid and session.use_only_cookies on your php.ini file

are set in a way that denies this attacks:

session.use_trans_sid=Off

session.use_only_cookies=On

As nowadays any browser will support cookies, it’s not needed to have330

a session ID on the URL anymore.

S

http://localhost/vulns.html

WhiteCollarGroup

2016

19

It does not protect, however, if your application has some XSS

vulnerability somewhere and the attacker could post Javascript code

to be executed for the victim.

Of course, your application shalln’t be vulnerable to XSS, as it could335

lead to several security problems. But to make things a little better,

it’s recommended to call session_regenerate_id() when the user logs in. It

will generate a new SESSID and send it to the browser, and as it’s

unpredictable by the attacker, you will finally be safe.

Also, fix up the XSS vulnerability, if you have some. Or you will still be340

vulnerable. Let’s see why? Read on the next topic:

WhiteCollarGroup

2016

20

Session Hijacking

ven if you regenerate the user session once the user logs in, if

the attacker can get the session ID again through some XSS

vulnerability on your site, he could just set his PHPSESSID345

cookie on his browser to the new victim’s PHPSESSID value, then just

refresh the page and, here we go, all the sessions are being shared

again!

Unfortunately, there is no way: you must fix your XSS vulnerability.

Of course the attacker still can access the user cookies if he obtains350

physical access to the victim’s machine (and physical access is root

access), or send him some trojan horse that will steal the cookies and

send him back. But if the attacker could do it, he could easily also send

a keylogger and get the password, instead of just cookies. So it’s not

a problem of mine, since it’s the user’s lack of knowledge about basic355

security, right? Wrong. There are ways to protect against it too. One

of them is allowing the user to use OTP (one-time password) and

two-steps verification. It’s not as hard as it seems to be, and there are

many ready-to-use PHP classes out there. A basic search about TOTP

could put you in the way. But it’s a matter for another article.360

We’ve heard that security is never enough, so let’s just make it more

difficult to the hacker. We can store a key based on user’s browser

(“User Agent”) to the sessions, and if this key is not valid, we log him

out.

We can do it just by putting this code on every page (a global include,365

of course):

<?php

@session_start();

if (!isset($_SESSION['HTTP_USER_AGENT']) OR

$_SESSION['HTTP_USER_AGENT']!=$_SERVER['HTTP_USER_AGENT']) {370

session_destroy();

E

WhiteCollarGroup

2016

21

header("Location: login.php");

exit;

}

And when the user logs in, we must save his user agent to a session,375

of course:

$_SESSION['HTTP_USER_AGENT'] = $_SERVER['HTTP_USER_AGENT'];

Of course the attacker can get, through some XSS vulnerability, the

victim’s user agent too, but we’re just making things hard. The

answer for session hijacking is: fix up your XSS vulnerability!380

WhiteCollarGroup

2016

22

Internal session stealing

hen using shared hosting plans, unfortunately we will face

many risks. A badly maintained server will have some old

kernel and some website hosted on the same machine will

be hacked, this hacker will use a local root exploit or some symlink385

bypass exploit and get access to your site as well. Unfortunately there

are things that we are limited just to asking for protection from the

hosting company, and keeping backups (or migrating to some

VPS/dedicated).

But there are things that we can do by ourselves, instead of giving it390

to the server software. Sessions, for example. The main problem with

sessions is that they’re all, by default, stored on the same folder

(usually the temporary folder, which is tmp for Unix servers),

regardless of the site, and a webshell, as it runs in the same user than

the webserver, can read these files.395

Fortunately, PHP gives us options to store these sessions in another

folder, as we want. We could just make a folder, put it outside

our public_html or deny access to it through .htaccess, make sure our

script isn’t vulnerable to Local File Inclusion and put it in our php.ini:

session.save_path = "/home/your_username/sessions_folder/"400

Note that the entire path (from system root) is required. You can also

define it using the session_save_path() function before session_start(). If,

for some reason, your server does not allow it, then you could

use session_set_save_handler(). It allows you to create your own sessions

handler and save them as you want. In the documentation for this405

function, there are examples of how to create custom handlers for

sessions, showing even how to use the database to store sessions.

W

http://php.net/session_set_save_handler
http://php.net/session_set_save_handler

WhiteCollarGroup

2016

23

And now?

Well, now you know who you’re fighting. Know your enemy, think like410
him, hack yourself. Stay safe.

WhiteCollarGroup

2016

24

Licensed under CC BY-NC-SA 4.0

http://creativecommons.org/licenses/by-nc-sa/4.0/

	Introduction
	Table of contents
	Attribute-based Cross-site Scripting
	Multi-level SQL Injection
	Cross-site Request Forgery
	Local File Inclusion
	Session fixation
	Session Hijacking
	Internal session stealing
	And now?

