
NDI5aster
Privilege Escalation through NDIS 5.x

Filter Intermediate Drivers

KYRIAKOS (kyREcon) ECONOMOU

Contents 1

C O N T E N T S

Abstract 2
1 Introduction 3
2 NDIS 5.x 3

2.1 Protocol Drivers . 3
2.2 Miniport Drivers . 4
2.3 Intermediate Drivers . 5

3 Registering an NDIS 5.x Protocol Driver 6
4 Registering an NDIS 5.x Intermediate Driver 7
5 wanarp.sys - Protocol Registration 8
6 ESET - Epfwndis.sys 9

6.1 Driver Initialization . 10
6.2 ProtocolBindAdapter . 11
6.3 Triggering the vulnerability . 14
6.4 Leaking NdisWanIp Device Context Kernel Pointer 16
6.5 Privilege Escalation . 17

7 Vendors Affected 19
8 Conclusion 19
9 Acknowledgements 19
References 20

Contents 2

A B S T R AC T

The Network Driver Interface Specification (NDIS) [11] provides a programming in-
terface specification that facilitates from the network driver architecture perspective
the communication between a protocol driver and the underlying network adapter.
In Windows OS the so called "NDIS wrapper" (implemented in the Ndis.sys) pro-
vides a programming layer of communication between network protocols (TCP/IP)
and all the underlying NDIS device drivers so that the implementation of high-level
protocol components are independent of the network adapter itself. During vulner-
ability research from a local security perspective that was performed over several
software firewall products designed for Windows XP and Windows Server 2003 (R2
included), an issue during the loading and initialization of one of the OS NDIS pro-
tocol drivers was identified; specifically the ’Remote Access and Routing Driver’
called wanarp.sys. This issue can be exploited through various NDIS 5.x filter inter-
mediate drivers [4] that provide the firewall functionality of several security related
products. The resulting impact is vertical privilege escalation which allows a local at-
tacker to execute code with kernel privileges from any account type, thus completely
compromising the affected host.

I N T R O D U C T I O N 3

1 I N T R O D U C T I O N

Security software should provide security. This is what makes research over those
bits and bytes slightly more interesting than researching on other software types. The
impact is not necessarily greater, since other more mainstream applications might be
more widely used and commonly installed, but the word ’security’ is what makes
them really attractive to us. On the other hand, we have Windows XP, which was
recently abandoned by Microsoft in terms of security patching which means all the
’goodies’ that we can find there, will also probably stay there forever. Unless Mi-
crosoft decides to jump back and apply new patches, we can safely say that "what
happens in XP stays in XP".

However, Windows Server 2003, which is also affected by the examined issue, was
still officially supported by Microsoft at the time of writing this paper. Although, XP
operating system is not supported anymore by the vendor it is still quite widely used
internally in many companies, and especially Windows Server 2003 R2. These hosts
might run important infrastructure software that might not be supported anymore by
its vendor. At the same time the migration to a newer platform and finding the right
software to rebuilt those systems with the same capabilities might be extremely time
and money consuming. In a fair attempt to harden their security, system administra-
tors will install some security software on them. This quite often implies installing
some AV security suite that provides malware detection and elimination, as well as
some extra firewall capabilities.

Based on the aforementioned facts, this research aims to bring some awareness
about a well hidden for years issue that even though is not really a bug by definition,
it can be exploited through NDIS 5.x network intermediate drivers used by software
firewalls to filter network packets [4]. Upon exploitation, it allows a local attacker
to elevate his privileges and obtain complete access on the compromised host. This
can later lead to a total compromise of the network infrastructure through common
post-exploitation techniques, such as obtaining important cached credentials through
hash dumping or live credentials residing in memory.

2 N D I S 5 . X

The NDIS acronym refers to the Network Driver Interface Specification [11] which
defines the way network protocols communicate with the underlying network adapters.
It provides a set of routines that allow the network drivers that implement protocols
to communicate with the NDIS wrapper instead of directly accessing the Network
Interface Card (NIC) NDIS driver as seen in Figure 1 on the following page.

This allows the protocol implementation to be independent from the NDIS mini-
port device drivers. The research focused on NDIS 5.x which is the major version of
the NDIS wrapper that was primarily introduced in Windows 2000 (NDIS 5.0) and
later improved in Windows XP (NDIS 5.1) kernel based operating systems.

Before going into the details of the discovered vulnerability, the way it can be
exploited, and under which circumstances, it is important to provide an insight of the
types of NDIS 5.x drivers that are available.

2.1 Protocol Drivers

These drivers are used to implement network protocols [6]. They are located at the
highest position in the NDIS hierarchy of drivers and they are used as the lowest-
level drivers when implementing a transport driver and the associated protocol stack
such as the TCP/IP stack. These drivers also need to implement an interface in order

N D I S 5 . X 4

Figure 1: NDIS Wrapper Architecture

to receive incoming packets from the next driver in the stack bellow them and in
case of a transport protocol driver, the driver needs to transfer the incoming data to
the appropriate application as well. At its lower edge, a protocol driver provides an
interface of communication with an underlying intermediate driver, if there is one,
or with a miniport driver that is the one that communicates with the physical device.
At its upper edge, a protocol driver interfaces with a higher-level driver which makes
part of the protocol stack.

Protocol drivers import NdisXxx functions (’Xxx’ is being used throughout this
paper as a function name placeholder) that are used to perform various operations,
such as sending packets, setting information that needs to be maintained by lower-
level drivers, as well as making use of specific services provided by the operating
system. Furthermore, protocol drivers also export ProtocolXxx functions that the
NDIS wrapper uses to perform operations on behalf of lower-level drivers. These
might be indicating the receiving of packets, retrieving information about the sta-
tus of a lower-level drivers and in general allowing NDIS to communicate with the
protocol driver.

2.2 Miniport Drivers

These are the NDIS device drivers that communicate with the network adapters (NIC
devices) at their lower edge, while at their upper edge they provide an interface of
the lower edge of protocol drivers [10]. Miniport and protocol drivers are essen-
tial components of an NDIS driver stack. Figure 2 demonstrates from a high-level
perspective how these relate to each other and with the NDIS wrapper [3].

Figure 2: NDIS Driver Stack

N D I S 5 . X 5

2.3 Intermediate Drivers

As their name suggests, these NDIS drivers are located between the protocol drivers
and the miniport drivers [3]. These drivers are not essential components of an NDIS
driver stack unless there is a need for parsing, filtering, logging for security or any
other purpose that requires some sort of processing of the data that travels between
the higher level protocol drivers and the lower miniport drivers that control physical
devices. In order to achieve this purpose, intermediate drivers expose a protocol
driver interface on their upper edge and miniport driver interface at their lower edge
which in this case is called virtual miniport. It is called ’virtual’ because it does not
actually control a physical device. Instead, it has to interface with the underlying
miniport driver which is the one that actually controls the NIC device. Figure 3
shows an example of an NDIS driver stack where an intermediate driver is loaded in
between the protocol driver and the miniport driver[3]. However, it is possible that
more than one intermediate drivers are loaded at the same time in an NDIS driver
stack.

Figure 3: NDIS Driver Stack with an Intermediate Driver

It is important to mention that in NDIS 5.x more than one miniport drivers can
be bound to lower protocol edge of an intermediate driver[11]. In that case, the
intermediate driver needs to expose an equal amount of virtual miniports on its upper
edge so that higher-level drivers or intermediate drivers can interface with them via
their lower protocol edge.

Figure 4: One-to-one relationship between miniport drivers and virtual miniports

There are two types of this category of NDIS drivers. The NDIS filter intermediate
drivers, and the MUX intermediate drivers. The former ones are those that are used

R E G I S T E R I N G A N N D I S 5 . X P R OTO C O L D R I V E R 6

in many firewall, VPN, and other networking related software products built over the
NDIS 5.x for the Windows XP and Windows Server 2003 operating systems.

2.3.1 External & Internal Bindings

As we have already discussed, intermediate drivers can bind with other drivers or
other intermediate drivers. These bindings [3] are controlled by the NDIS wrapper
and for this reason they are called external bindings. However, intermediate drivers
bind their own protocol edge and virtual miniport edge internally. These are called
internal bindings because they are not controlled by NDIS and their implementation
can be completely custom and vendor specific. Figure 5 demonstrates the internal
binding between the virtual miniport and the intermediate driver’s protocol interface.
We can also observe this characteristic in Figure 4 on the preceding page .

Figure 5: Internal Binding

Now that we have finished with a short overview of the NDIS 5.x drivers, we will
proceed with some additional information about protocol and intermediate drivers
which is necessary to mention in the context of this research in order to understand
later the root of the issue that motivated the writing of this paper.

3 R E G I S T E R I N G A N N D I S 5 . X P R OTO C O L D R I V E R

On loading, an NDIS protocol driver needs to register its ProtocolXxx functions by
calling the NdisRegisterProtocol function (see figure 6) from inside its DriverEntry
which is basically the standard entry point function name for a kernel mode driver
that is recognized by the loader [6]. The handle that will be stored as NdisProtocol-
Handle after a successful call to the aforementioned function must be preserved by
the driver since it will be later needed in other calls to NDIS functions.

Figure 6: NdisRegisterProtocol

However, before calling the NdisRegisterProtocol function, the driver needs to
zero-initialize the NDIS_PROTOCOL_CHARACTERISTICS structure in order to
ensure that any unused members are set to NULL. Even though following this good
practice can later help a caller to check if a function pointer in this structure is initial-
ized or not, this is not enough as demonstrated later in this paper. Once the structure
has been zero-initialized, the driver also needs to set the NDIS version with which
the protocol is compatible. Finally, the driver needs to set accordingly the function

R E G I S T E R I N G A N N D I S 5 . X I N T E R M E D I AT E D R I V E R 7

pointers of the necessary and optional ProtocolXxx functions that the driver exports.
Once this final step is done, the driver is ready to call the NdisRegisterProtocol func-
tion.

Figure 7 shows the NDIS_PROTOCOL_CHARACTERISTICS structure defini-
tion.

Figure 7: NDIS_PROTOCOL_CHARACTERISTICS structure

4 R E G I S T E R I N G A N N D I S 5 . X I N T E R M E D I AT E

D R I V E R

During initialization, an NDIS intermediate driver needs also to perform a few calls
to some NDIS functions in the context of its DriverEntry function in order to register
its MiniportXxx functions and its ProtocolXxx functions in case it has to bind to a
lower-level NDIS driver. As a first step, the intermediate driver needs to call Ndis-
MInitializeWrapper in order to notify NDIS that a new miniport driver is currently
initializing [8].

Figure 8: NdisMInitializeWrapper

WA N A R P. S Y S - P R OTO C O L R E G I S T R AT I O N 8

The handle stored in NdisWrapperHandle will be later used as parameter to other
calls of NDIS functions (Figure 8 on the previous page). Assuming that this first
action was successful, the intermediate driver will subsequently call NdisIMRegis-
terLayeredMiniport through which will register with NDIS the entry points of the
MiniportXxx functions that it exports.

Figure 9: NdisIMRegisterLayeredMiniport

If the driver has to bind to a lower level NDIS driver, then it will also call NdisReg-
isterProtocol in order to register the entry points of the ProtocolXxx functions that it
exports [9].

Figure 10: NdisRegisterProtocol

There is a particular interest in the third parameter of this function which is a
pointer to a NDIS_PROTOCOL_CHARACTERISTICS structure (see figure 7 on the
preceding page), which as you can see stores the pointers to functions that need
to handle certain events. The RECEIVE_COMPLETE_HANDLER member of this
structure is of a particular interest since it is root cause of the issue we are about
to examine. Finally, the intermediate driver needs to call NdisIMAssociateMiniport.
This is done in order to inform NDIS that the specified protocol and miniport inter-
faces, referenced by the handles passed as parameters to this function (see figure 11)
belong to the same intermediate driver.

Figure 11: NdisIMAssociateMiniport

To be more specific, the DriverHandle is the handle to the miniport interface re-
turned by NdisIMRegisterLayeredMiniport, and the ProtocolHandle is the one re-
turned by NdisRegisterProtocol function. In cases where the intermediate driver is
bound to more than one miniport drivers (see section 2.3 on page 5), then it has to
call NdisIMInitializeDeviceInstanceEx for every virtual NIC that makes available so
that higher level protocol drivers can bind to it and send network requests.

5 WA N A R P. S Y S - P R OTO C O L R E G I S T R AT I O N

This NDIS protocol driver of Windows OS is described as the ’Remote Access and
Routing ARP Driver’. To be more specific, the wanarp.sys (v5.1.2600.5512) file un-
der examination is part of an a XP SP3 32-bit installation. The root cause of the issue
that we are about to exploit is located in the registration stage of the protocol itself

E S E T - E P F W N D I S . S Y S 9

which in this case occurs inside the wanarp!WanpInitializeNdis function. During this
stage, a protocol driver needs to initialize a NDIS_PROTOCOL_CHARACTERISTICS
structure (see figure 7 on page 7) with pointers to the ProtocolXxx functions that it ex-
ports. This structure is correctly zero-initialized and then valid pointers are stored to
the necessary members for this protocol. However, something is about to go wrong.
Really wrong! Let’s take a look at the following figure.

Figure 12: wanarp.sys - Protocol Functions Registration

All these are valid pointers, however let’s examine closer the highlighted pointer
that is passed to the RECEIVE_COMPLETE_HANDLER member.

Figure 13: wanarp!WanNdisReceiveComplete

The pointer passed to the aforementioned member points to a legitimate function
WanNdisReceiveComplete, (see figure 12) inside the wanarp.sys module. Notice that
the only thing this function does, is basically to call a function through a pointer
stored in wanarp!g_pfnIpRcvComplete dword (see figure 13) located in the .data
section of the module at RVA1: wanarp + 0x5FB4.

Figure 14: wanarp!g_pfnIpRcvComplete

As we can see in figure 14, the g_pfnIpRcvComplete pointer is NULL which
means that WanNdisReceiveComplete is basically performing a Call 0x00000000.
In Windows XP and Server 2003 based systems allocating the NULL page is not a
problem at all, but first we need to find a way to control a call to that function.

6 E S E T - E P F W N D I S . S Y S

This issue initially caught our attention while looking for vulnerabilities in the latest
(at the time) ESET ’Smart Security’ product for Windows XP (SP3). Later on it was
proved that their latest ’Endpoint Security’ product for Windows Server 2003 was
also vulnerable to privilege escalation through the same attack type, along with other
similar products from other vendors. Although, this is not a vulnerability caused by
a programming error, we can categorize the fact that a driver allows us to trigger it as
a design error that produces a ’trusted value vulnerability’ situation, as we are going

1 Note: The reason why in some cases it is preferable to refer to relative virtual addresses (RVA) has to
do with the fact that during the writing of this paper different instances of the OS during the drivers’
loading stage have been examined. This means that a virtual address (VA) referring to the same location
in a loaded module might change on each reboot, but the RVA will not. All of the RVAs mentioned are
calculated using the image base of the corresponding module as a reference.

E S E T - E P F W N D I S . S Y S 10

to see in detail. The analysis that follows is based on the Epfwndis.sys v7.0.206.0
also known as ’ESET Personal Firewall NDIS filter’.

6.1 Driver Initialization

As it has been discussed in section 4 on page 7, an NDIS intermediate driver needs
to perform some necessary steps during initialization. We notice the call to NdisIni-
tializeWrapper2 at address Epfwndis + 0x90C7 (see figure 15).

Figure 15: Epfwndis - Call NdisInitializeWrapper

The declaration of this function has been provided already (see figure 7 on page 7),
so we know that the NdisWrapperHandle is going to be stored at Epfwndis + 0x706C.
This handle is important since it is going to be needed later for other calls to NDIS
functions. The next important step, and as expected from what we have already dis-
cussed (see section 4 on page 7), the ESET driver is going to make a call from address
Epfwndis + 0x91F6 to NdisIMRegisterLayeredMiniport (see figure 9 on page 8)
which is necessary in order to register the entry points of the exported MiniportXxx
functions, as shown in the figure that follows.

Figure 16: Epfwndis - Call NdisIMRegisterLayeredMiniport

Once the previous step has be accomplished, the driver will now register its Proto-
colXxx functions with a call to NdisRegisterProtocol from adress Epfwndis + 0x92E8.

Figure 17: Epfwndis - Call NdisRegisterProtocol

In the figure above, the pointer stored in the BindAdapterHandler member of the
NDIS_PROTOCOL_CHARACTERISTICS structure has been intentionally highlighted.
This function will be later used as a callback by NDIS in order to bind the current

2 Note: In this case the driver is calling NdisInitializeWrapper instead of NdisMInitializeWrapper (see
figure 8 on page 7). According to MSDN, this is an obsolete function that only exists to support legacy
NDIS v3.0 drivers and normally shouldn’t be used for NDIS 4.0, NDIS 5.0 drivers and NDIS 3.0 miniport
drivers [7].

E S E T - E P F W N D I S . S Y S 11

driver to the underlying NIC drivers. This is called ProtocolBindAdapter function
(see section 6.2) and it is used in order to support plug and play, hence it is called
whenever a NIC where the protocol can bind itself becomes available. In this case
the function that will handle this purpose on behalf of this ESET driver, is located at
Epfwndis + 0x2A00. The next important function that is called is the NdisIMAssoci-
ateMiniport (see figure 18), which serves to inform NDIS that a specific protocol and
miniport interfaces, they both belong to the same intermediate driver (see section 4
on page 7).

Figure 18: Epfwndis - Call NdisIMAssociateMiniport

6.2 ProtocolBindAdapter

We are about to examine the steps that are taken during the binding between Epfwndis
and other underlying NDIS drivers. As mentioned earlier, the amount of times that
the ProtocolBindAdapter function is going to be called it depends also on the amount
of existing active network adapters. The first important call is to NdisOpenProto-
colConfiguration from address Epfwndis + 0x2A9C (see figure 19). This function
returns a handle to the registry key where the per-adapter information of a protocol
driver is stored.

Figure 19: Epfwndis - Call NdisOpenProtocolConfiguration

The first underlying registered adapter that is going to bind to, is the NDISWANIP
as shown in the following figure.

Figure 20: Binding to NDISWANIP

The retrieved handle from the previous call is going to be used immediately after,
to call NdisReadConfiguration from address Epfwndis + 0x2AC2.

This is done in order to obtain the value of a named entry belonging to the pre-
viously opened registry key. The entry it is about to examine is called "UpperBind-
ings". The data is returned to an NDIS_CONFIGURATION_PARAMETER struc-
ture which is defined in the following figure.

Figure 21: BNDIS_CONFIGURATION_PARAMETER structure

E S E T - E P F W N D I S . S Y S 12

Figure 22 shows an example of the data returned in this case.

Figure 22: Data returned through a call to NdisReadConfiguration

The device name identifier shown in the figure above refers to the virtual miniport
instance created for the NDISWANIP (miniport driver) adapter. We can also verify
this setting by looking at the registry.

Figure 23: Virtual miniport identifier for NdisWanIp

As a next step, Epfwndis will call NdisAllocateMemoryWithTag in order to allocate
some memory and save that information in a nonpaged tagged pool buffer. This is
also helpful for us to know since we can use it at any point to find other memory
blocks allocated with that specified third-party pool tag which is the "aPmI" (see
figure 24).

Figure 24: aPmI tagged nonpaged pool buffer

Once the previously retrieved data (see figure 22) has been stored in the allocated
buffer, a call to NdisAllocatePacketPool will take place. This used in order to allocate
some memory to store packet descriptors. However, it also returns a handle to the
allocated pool; in this case the pointer supplied to store that handle points inside the
previously allocated "aPmI" tagged buffer. Then, NdisAllocateBufferPool is called
to allocate some memory to store other buffer descriptors. Again, this will also return
a handle to the previously allocated "aPmI" tagged buffer.

However, in some Windows versions a NULL returned handle value is valid. The
call to NdisAllocateMemory that follows immediately after at Epfwndis + 0x2BEA is
quite important. The base address of the allocation will also be stored in the familiar
to us "aPmI" tagged buffer and it will point to the device name (see figure 25 on
the following page, side note 2). The "aPmI" tagged buffer is going to be used as a
context area to store per NIC device run-time state information for each of those that
the intermediate driver under examination exposes a virtual miniport. At this stage
we can examine the contents of the aforementioned tagged buffer.

E S E T - E P F W N D I S . S Y S 13

Figure 25: aPmI tagged buffer Stage1

We can also see the device name copied at this point to the allocated context area
that will keep some per NIC device run-time state information (see figure 26).

Figure 26: Device name

Some more data is going to be copied back into the "aPmI" tagged buffer, and
finally NdisOpenAdapter will be called in order to set up the binding between the
protocol edge of Epfwndis and NdisWanIp. Our tagged buffer will now serve as a
context area to maintain information about the state of the binding once it is estab-
lished. Let’s see what other information is now stored there.

Figure 27: aPmI tagged buffer Stage2

At this stage, Epfwndis will trigger the process of initializing the virtual miniport
by calling NdisIMInitializeDeviceInstanceEx (see figure 28 on the following page)
from address Epfwndis + 0x2DA0.

E S E T - E P F W N D I S . S Y S 14

Figure 28: NdisIMInitializeDeviceInstanceEx

We can see that this function accepts three parameters, which are:

1. DriverHandle: handle returned by NdisIMRegisterLayeredMiniport
2. DriverInstance: Points to the NdisWanIp virtual miniport identifier

("\Device\46EB13C3-CA50-41B2-A9ED-B04DB4301056")
3. DeviceContext: Points to our "aPmI" allocated buffer which is used as a con-

text area to keep information about a NIC device bound with the Epfwndis
driver.

The number of "aPmI" allocated buffers depends on the amount of compatible
adapters enabled in the host. If all adapters were disabled, we noticed that EpFwndis
would only go through this process for NdisWanIp. Note that in figures 26 on the
previous page and 27 on the preceding page, the pointer corresponding to side note
two was only pointing to the same device name placed in another buffer. As we
mentioned, the important information about the binding of any underlying miniport
drivers is kept in the "aPmI" allocated buffers.

6.3 Triggering the vulnerability

When we started analyzing the EpFwndis driver by looking at the exposed I/O Con-
trol Request Codes (IOCTLs) [1] that can be used from userland in order to com-
municate with a kernel device driver using the DeviceIoControl function [2]. We
managed to initially control the EIP by using IOCTL 0x830020CC and matching the
necessary requirements regarding the contents of the input buffer.

A subroutine located at address Epfwndis + 0x43f6 (see figure 29 on the next page)
is called when processing this specific IOCTL. Its purpose is to parse a list of "aPmI"
tagged buffers allocated by EpFwndis. Each one of them serves as context area to
keep information about a specific adapter that is bound to this ESET driver. The
interesting part during this stage is that the driver will read a pointer from our input
buffer which we control from userland and then will try to see if it matches any of
the entries in the aforementioned list.

E S E T - E P F W N D I S . S Y S 15

Figure 29: Parsing aPmI tagged buffers list

Figure 29 includes a dummy pointer (0x90909090) which of course wouldn’t
match any of the allocated "aPmI" tagged buffers, but it clearly shows that we can
control this parameter from userland. If a match is found, then on completion of
this request the protocol function registered as RECEIVE_COMPLETE _HANDLER
in the corresponding NDIS_PROTOCOL_CHARACTERISTICS structure for that
driver will be called. In our case, if the pointer matches the "aPmI" tagged buffer that
keeps information about the NdisWanIp, then wanarp!WanNdisReceiveComplete is
going to be called with the following results.

Figure 30: EIP == NULL

E S E T - E P F W N D I S . S Y S 16

The execution flow was transferred at address 0x00000000 which was not allo-
cated and this caused our system to crash.

Let’s see what other information Windbg [5] can provide to us.

Figure 31: Call stack trace

In figure 29 on the previous page we notice that the execution flow was transferred
on the NULL page after calling wanarp!WanNdisReceiveComplete. The return ad-
dress was expected to be wanarp!WanNdisReceiveComplete+6, but of course we
never arrived there since things went wrong once the call was performed. Since the
root cause of this issue is already explained in section 5 on page 8, it is probably the
best time for the reader to go back and have a quick look at the information provided
in that section and more specifically in figures 13 on page 9 and 14 on page 9.

6.4 Leaking NdisWanIp Device Context Kernel Pointer

As we have seen so far, in order to trigger this vulnerability it is necessary to match
the pointer to the device context area regarding NdisWanIp device. Since this is a
value that we can control from userland, an attacker could attempt to bruteforce it.
However, this would probably take some time to achieve and it could also have some
impact in the stability of the host. During our tests, both of the aforementioned
situations occurred during bruteforcing attempts.

Fortunately, there is a much better way to exploit this vulnerability without having
to actually bruteforce this magic pointer value. In fact, we can either directly retrieve
this value or do a very small amount of attempts over a some data leaked from the
kernel address space. By using IOCTL 0x830020C4 we were able to leak this pointer
from kernel back to userland and fit it nicely in the input buffer for the next IOCTL
that we discussed about in the previous section. In reality, this IOCTL can be used
to retrieve data from those "aPmI" tagged buffers. The good thing, for us, is that
the data returned can be up to a size of 0x2204 bytes which means that if we declare
a big enough output buffer in the call to the DeviceIoControl [2] function then we
might be able to leak extra data from kernel address space.

E S E T - E P F W N D I S . S Y S 17

In fact, the data returned in that buffer from kernel space will include the valid
pointer to the "aPmI" buffer that holds information about the NdisWanIp device. In a
few words, the handler for this IOCTL will basically go through the list of the context
areas allocated for each device bound to the intermediate driver under examination
and will return this data back to userland. Generally, a host wouldn’t have more
than 1 or 2 extra adapters bound to the intermediate driver, apart from the NdisWanIp
which is always initialized, so the extra memory leaked contains that useful informa-
tion. With no adapters enabled the magic pointer was located at offset 0x2004 (see
figure 32) in the kernel leaked memory buffer, while with 1 adapter enabled the same
pointer was located at offset 0x2008 in the output buffer.

However, in this particular case leaking the pointer from kernel was not neces-
sary. These pointers to the "aPmI" buffers are stored in a buffer inside the loaded
EpFwndis kernel module and the proprietary handler for the IOCTL 0x830020CC
allows also to specify from where it will read the input pointer. So in practice we
could enumerate for the loaded drivers, get the image base of the EpFwndis driver,
add the RVA of that buffer and send this in the input buffer as pointer from where the
magic value will be read. This of course, makes the attack module-version and build
specific. Instead, by leaking the pointer using the method we previously described is
much more universal since we don’t need to know a specific RVA. This means that
we can use it to attack also other vulnerable NDIS 5.x intermediate drivers that might
directly accept the magic pointer from the input buffer instead of also accepting an
address from where to read this pointer.

So, in this case since we control both, we leak the magic pointer from kernel and
we instruct the driver to read it from the input buffer that we send through the call to
the DeviceIoControl API. Figure 32 demonstrates the leaked pointer from kernel.

Figure 32: Leaked pointer from kernel

6.5 Privilege Escalation

At this point, we have all the necessary pieces of the puzzle in place and it’s time for
us to enjoy the view. So, just to put everything together these are the steps used for
exploiting a vulnerable NDIS 5.x intermediate driver in Windows XP and Windows
Server 2003:

1. Allocate NULL page.
2. Place a trampoline to our payload.
3. Leak kernel pointer to NdisWanIp device context area using IOCTL 0x830020C4.
4. Trigger a call to wanarp!WanNdisReceiveComplete using IOCTL 0x830020CC.
5. Execute payload.

As you can notice in the figure above, Windows explorer is running as ’Guest’
while the processes related to our exploit are now running as ’SYSTEM’. This is

E S E T - E P F W N D I S . S Y S 18

Figure 33: Privilege Escalation in Windows XP SP3

because we used an XP specific payload to parse the EPROCESS structures of all
active processes in search for the SYSTEM process. We know that this process
has PID 4, so once found we steal the pointer to its security access token and then
we substitute the token pointer of the parent exploit process which initially runs as
’Guest’ with that one. The rest is history since the child processes of our exploit will
also inherit the same token which now is the one belonging to the SYSTEM process.

The following screenshot is taken from a Windows Server 2003 R2 virtual ma-
chine, where we exploited the vulnerability through the ESET Endpoint Security
product.

Figure 34: Privilege Escalation in Windows Server 2003 R2

Notice that in the parent exploit process we also output the leaked pointer to the
context area allocated by EpFwndis for the NdisWanIp device.

V E N D O R S A F F E C T E D 19

7 V E N D O R S A F F E C T E D

Multiple products of the following vendors that are built for Windows XP and Win-
dows Server 2003 (R2 included) were affected by this issue and almost certainly
many other products from other vendors are currently vulnerable. Vendors still sup-
porting products originally built for these Windows operating systems should revise
immediately their code and make sure that their NDIS 5.x intermediate drivers are
not affected. In general NDIS 5.x intermediate drivers that expose the aforemen-
tioned IOCTL codes are likely to be vulnerable to privilege escalation. The following
vendors (except from the last one in the list) have successfully patched their drivers,
thus they are not affected anymore of this issue.

1. ESET: CVE-2014-4973
2. G Data: CVE-2014-9332
3. K7 Computing: CVE-2015-3444
4. QuickHeal/Seqrite: CVE-2015-3899

8 C O N C L U S I O N

Vulnerabilities caused by design errors are definitely the most interesting to discover
and exploit. In this white paper we went through a series of things that when put
together they can be used by a malicious attacker to leverage his privileges and com-
pletely compromise the affected host.

Since Windows Server 2003 is also affected, this can be of great importance since
compromising one host can potentially lead to compromise an entire or part of a
corporate network infrastructure. This was proved to be a great lesson regarding the
levels of difficulty in applying computer systems security. In other words, this is
how two completely independent design errors from different vendors can generate
an unpredictable, but exploitable situation with a highly severe impact in the context
of computer security.

9 AC K N OW L E D G E M E N T S

I would like to thank Portcullis Computer Security Ltd (https://www.portcullis-
security.com) for giving me the time to write part of this white paper during my
employment with them. This white paper was completed and published when I was
not employed by Portcullis Computer Security Ltd anymore, hence the company as-
sumes no responsibility for its contents.

Furthermore, I would like to thank from the bottom of my heart my friends Fran-
cisco Ribeiro and Matthieu Bonetti for their useful suggestions and technical reviews
during the final stage of preparation for publishing this white paper. Last but not least,
this paper is dedicated to all my friends. They know who they are.

https://www.portcullis-security.com
https://www.portcullis-security.com

R E F E R E N C E S 20

R E F E R E N C E S

[1] Microsoft Dev Center. Device Input and Output Control (IOCTL).
https://msdn.microsoft.com/en-us/library/windows/desktop/aa363219 Ac-
cessed: 2015-08-04.

[2] Microsoft Dev Center. DeviceIoControl function.
https://msdn.microsoft.com/en-us/library/windows/desktop/aa363216 Ac-
cessed: 2015-08-04.

[3] Microsoft Dev Center. Introduction to Intermediate Drivers (NDIS
5.1). https://msdn.microsoft.com/en-us/library/windows/hardware/ff548970
Accessed: 2015-08-04.

[4] Microsoft Dev Center. NDIS Filter Intermediate Drivers (NDIS
5.1). https://msdn.microsoft.com/en-us/library/windows/hardware/ff556949
Accessed: 2015-08-04.

[5] Microsoft Hardware Dev Center. Debugging Tools for Win-
dows (WinDbg, KD, CDB, NTSD). https://msdn.microsoft.com/en-
us/library/windows/hardware/ff551063Accessed: 2016-08-01.

[6] Microsoft Hardware Dev Center. NDIS Protocol Drivers.
https://msdn.microsoft.com/en-us/library/windows/hardware/ff566823 Ac-
cessed: 2015-08-04.

[7] Microsoft Hardware Dev Center. Obsolete NDISXxx Functions and
Macros for Windows 2000 and Later, and for Windows Me and
Later. https://msdn.microsoft.com/en-us/library/windows/hardware/ff559181
Accessed: 2015-08-04.

[8] Microsoft Hardware Dev Center. Registering an Intermediate
Driver as a Miniport (NDIS 5.1). https://msdn.microsoft.com/en-
us/library/windows/hardware/ff563305Accessed: 2015-08-04.

[9] Microsoft Hardware Dev Center. Registering as an NDIS
Protocol Driver (NDIS 5.1). https://msdn.microsoft.com/en-
us/library/windows/hardware/ff563310Accessed: 2015-08-04.

[10] Microsoft Developer Network. NDIS Miniport Drivers.
https://msdn.microsoft.com/en-us/enAccessed: 2015-08-04.

[11] Microsoft TechNet. Network Driver Interface Specification.
https://technet.microsoft.com/en-gb/library/cc958797.aspx. Accessed:
2015-08-04.

	Abstract
	1 Introduction
	2 NDIS 5.x
	2.1 Protocol Drivers
	2.2 Miniport Drivers
	2.3 Intermediate Drivers

	3 Registering an NDIS 5.x Protocol Driver
	4 Registering an NDIS 5.x Intermediate Driver
	5 wanarp.sys - Protocol Registration
	6 ESET - Epfwndis.sys
	6.1 Driver Initialization
	6.2 ProtocolBindAdapter
	6.3 Triggering the vulnerability
	6.4 Leaking NdisWanIp Device Context Kernel Pointer
	6.5 Privilege Escalation

	7 Vendors Affected
	8 Conclusion
	9 Acknowledgements
	References

