Pozzo & Lucky, The phantom Shell. Stego in TCP/IP (part-2)

by John Torakis @ securosophy.com
(john.torakis [at] gmail [.] com)

Some Steganography Theory Basics

In the last post (Teaching an Old Dog (not that new) Tricks), there has been some fuzz about steganography. So
before we continue to part-2 let's have a little talk about what really goes on with stego.

Stego has 2 categories:

e We can write steganographically a Shakespeare play in an image with a number of zebras and be sure none
will notice, because searching the LSB of every byte of every pixel is no sane action for anyone viewing an
image. But this doesn’t mean that if you look there you won't find the play. This type of stego is the “Hidden
in plain site" stego. The whole part-1), where we pass plain data around by encapsulating it in TCP/IP
headers, falls under this category.

e The second category (the one that the above Tanenbaum example really falls under) is a lot better. It uses
encryption to make sure that even if you turn the image inside-out you won't see a trace of the Shakespeare
play without knowing a certain secret (key?).

The other meaningful clarification is why it is superb to use Stego over Encryption, given that none really can
read you in both techniques. The difference lies on that if you use encryption, while none can understand what
you are saying (beside the authorized listener), everyone can tell that you and the listener have a
communication channel, and also that you might be talking about something confidential (that has to be the
reason why you are using encryption). If you use stego none can see the communication channel. So you
aren't publicly announcing that you are communicating. A communication channel that none can imagine is a
covert channel.

The bad news is that stego most of the time leaves traces. And some times very self-explanatory ones. For
example, LSB stego in images creates a high number of color variations that easily can be almost a proof of
steganography usage. Or, in my TCP/IP stego in part-1), pushing ASCII bytes only in random fields significantly
lowers the entropy of the field data, showing a communication channel possibility, or even the communication
itself, to a forensics performer. And uncovering the covert channel of a Stego just downgrades it to plain
Encryption.

And now for something completely different!

Pozzo & Lucky

Pozzo & Lucky are 2 key characters in “Waiting for Godot". This is a Samuel Becket play, maybe the most known
Samuel Becket play, and my favorite one. You can read all of it here: Act-1, Act-2 (there are just 2 acts).

Lucky is a servant with no beliefs, opinions or even thoughts of his own. He blindly obeys Pozzo, who is dragging
him all over with a dog collar. He dances or even thinks whenever Pozzo commands.

In the play we have no idea why Lucky is so pathetic and lets Pozzo do all kind of nasty stuff to him. There must
be a covert channel between them...

But, beside character names of an irrelevant play, Pozzo & Lucky is one personal project. A project that started
with a bet. “Can there exist a Remote Command Execution shell that no network device can detect and
leaves no network trace?”. | bet it can...

Well, won my bet. This shell exists and is named Pozzo & Lucky...

http://securosophy.com/
https://securosophy.com/2016/09/14/teaching-an-old-dog-not-that-new-tricks-stego-in-tcpip-made-easy-part-1/
http://www.cs.vu.nl/~ast/books/mos2/zebras.html
https://securosophy.com/2016/09/14/teaching-an-old-dog-not-that-new-tricks-stego-in-tcpip-made-easy-part-1/
http://ijact.org/volume3issue4/IJ0340004.pdf
http://rahuldotgarg.appspot.com/data/steg.pdf
https://securosophy.com/2016/09/14/teaching-an-old-dog-not-that-new-tricks-stego-in-tcpip-made-easy-part-1/
https://en.wikipedia.org/wiki/Waiting_for_Godot
https://en.wikipedia.org/wiki/Samuel_Beckett
http://samuel-beckett.net/Waiting_for_Godot_Part1.html
http://samuel-beckett.net/Waiting_for_Godot_Part2.html

The Idea

The idea is almost close to the part-1) idea, except as hardcore as it gets. We are passing commands through IP
identification and TCP sequence (ISN) fields. But, this time, we do it right...

The Pozzo & Lucky shell consists of 2 components. Lucky, which has to be installed (actually just run) on the
target machine and Pozzo which is used to control the target machine after Lucky is installed in it.

The Features

Complete OS command execution (with and without output)

Remote on-the-fly Shellcode Execution (paste and BOOM)

File Upload/Download

Complete immunity to .pcap file analysis, Firewall log analysis and generally analysis without OS forensics

from the target machine

o Capability to simulate an nmap -sS port scan or any kind of SYN scan, or SYN flood to specific (or given)
Destination Port(s)

e Works (or has to work) on Windows and Linux.

o Creates no connections. Every single packet in the same “conversation” can be send from different Source IP

and to different Destination Port.

Some Drawbacks

Painfully slow! (Bandwidth is 5 bytes/packet, so be patient)

As a process it has no capabilities to hide itself or get persistent. It has to be paired with a rootkit for that.
Proxies kill it (while they don't detect it). It has to work through port-forwards though.

Has dependencies... Scapy on Linux and Scapy with Winpcap on Windows. Both may be mitigated with a
PylInstaller-py2exe-nuitka session (except maybe the damn .dll).

Requirements

e Needs root/admin privileges to get installed on the target machine (due to packet crafting and sniffing
needs).

e Needs Pozzo to be in the same subnet with Lucky (this could be the whole Internet - 2 hosts with public
IPs), or at least Pozzo to have a direct TCP port route to Lucky (Lucky behind a Firewall with
portforwarded just TCP port 21, would work if Pozzo sends packets to <Firewall_IP>:21.

e Pozzo shouldn't be behind a NAT. That is because the Source Port of the outgoing Pozzo packets is
meaningful to Lucky, and NAT changes this field (as it translates it to another Source Port before
forwarding with the Gateway'’s IP).

The Concept

The target machine runs Lucky, which is basically a packet sniffer. It gets all packets arriving to the machine,
and decides which of them are created by the computer running Pozzo using an algorithm described in the
section “Problem Solving".

The crucial part is that those packets do not establish connections in the target (neither TCP nor “UDP"). They
are TCP SYN packets that do not abuse the FeP-protecotinany-way (more on this on part-3), so they pass through
protocol sanity checks (performed by security devices and packet inspectors). They also are useful packets, that
cannot be generally blocked in a network (unlike ICMP), as this action will render the network useless (no
connections will be allowed in a network that blocks SYN packets, so no SQL, web applications, FTP, etc - you get
my point...).

The fishy things with those “Pozzo packets” is that they deliver 6 bytes of data through IP identification field

https://securosophy.com/2016/09/14/teaching-an-old-dog-not-that-new-tricks-stego-in-tcpip-made-easy-part-1/
http://www.secdev.org/projects/scapy/
https://www.winpcap.org/
http://www.pyinstaller.org/
http://www.py2exe.org/
http://nuitka.net/
https://securosophy.com/2016/09/28/pozzo-lucky-busted-the-tales-of-a-mathematician-soc-analyst/

and TCP Sequense Number field (2 bytes + 4 bytes), in a strongly encrypted form. When Lucky encounters such a
packet it extracts the 6-byte payload, splitsitin a 1+5 byte form, where the first byte is an Opcode for the
command to run with the next 5 bytes.

It then generates a RST-ACK packet, that doesn't violate the TCP protocol too, and injects (encrypted as well) the
response of the command executed on the target, sending it back to Pozzo.

That SYN-RST ping-pong resembles a Port Scan a lot more than a Remote Command Execution, so it doesn’t
get blocked by IDS/IPS, as there are no signatures due to encryption (and they rarely look at layer 3-4 headers).
A really well configured firewall device, with a configuration aware of each host usage (this is an SSH Server -
allow just 22) may mitigate Pozzo & Lucky, but | haven't seen a lot of them!

Problem Solving
Some problems have risen from part-1). Here | explain how | tackled them.

Surpassing the entropy problem

The problem with entropy is that when we could use any of the 256 bytes in every byte place in a random field,
we just use a byte from the printable ASCII list, while generally excluding the Upper Case letters and numbers.
This made the random fields contain very predictable data, thous lowering the data entropy.

The solution to this is Encryption. But we need a cipher with 6 byte blocks, or a stream cipher. And most of all, we
need to do it with style... So | managed a custom One Time Pad Scheme based on plain XOR and SHA512. A
simple one, that doesn’t lack style at all!

The OTP Scheme

You get a passphrase, SHA512 it and get a key. With this key we XOR data, 6 bytes of data. The XORed data is
securely encrypted as the key is a one-way function of the passphrase, which is our secret. To encrypt the
next 6-byte chunk, we SHA512 the current key and reXOR. This way we never XOR with the same key, which
eliminates the possibility of “cryptanalysis” using the known-plaintext technique. We also eliminate the possibility
of prediction of the next keys, as even if we encrypt all the time the same 6 bytes (say “Is -1a"), the key
portion that can be retrieved each time is 6 bytes. With 6 bytes we lack enough information to produce the
next key, as a whole key is of 512bits (64 bytes) long.

Plus, this way, by having the possibility to XOR with any possible byte (SHA512 returns a byte sequence
containing all kinds of bytes) we get encrypted bytes in the whole 256 byte-range. And with even possibility each
one... This means Entropy close to 1. This means data seemingly random.

Surpassing the Identity Problem

“Who is your master?'. An RCE shell has to know how to answer this question. You can run commands remotely,
that's a good thing, but you MUST be the only one that can do that. The shell must identify your packets from
packets of others. And to enclose an IP check in the shell agent program you have to hardcode your IP or a
domain in it. You got caught just by thinking of it, unless you use techniques used in Exploit-Kits, like rapidly
changing sub-domain names, and other things that lack style, and get caught and analyzed eventually!

Last time (part-1), if you haven't read it by now, do me a favor...) we forgot about a field we can control in TCP
and none cares in a port scan. The Source Port. “OK, you will think, let the packet come from port xxxx and then this
is a packet to decrypt and execute”. Well, yes, but it lacks style too. So here goes:

Solving the “Who is your master?” problem
The thought of Source Port checking is correct up to a certain point. There is just a big catch. It is implemented
as easily as it is observed by an analyst. If you get a .pcap file, with all kinds of Destination Ports and one

Source Port (even with multiple Source IPs) you might suspect something.

e Why a port scanner need to allocate port 23456 in multiple systems?

https://securosophy.com/2016/09/14/teaching-an-old-dog-not-that-new-tricks-stego-in-tcpip-made-easy-part-1/
https://securosophy.com/2016/09/14/teaching-an-old-dog-not-that-new-tricks-stego-in-tcpip-made-easy-part-1/

Is it hardcoded to do so?
Do you know any such port scanner?
Is it a common behavior?
Googling port 23456 returns nothing.

So there is something fishy going on.

In Pozzo & Lucky, we check the Source Port of the packets, but we don’t expect it to be the same all the
time. There is a cycling algorithm for that too, just like the OTP Scheme above (it actually uses it).

A Source Port field contains 2 bytes. So 4 hex digits. We initialize the first (Most Significant) digit depending on
a given passphrase (it has to be more than 8 - to always get high ports). Then we SHA512 the passphrase and
get the first 3 hex digits of the hash. Concatenating them with the initial hex digit gives as 4 hex digits, or
2 bytes. Then we cycle the hash, by rehashing it and generate the next port.

This technique gives us different port numbers, in a totally unpredictable sequence for someone that
doesn't have the passphrase. Only the agent-program (Lucky) and the client (Pozzo) know the next correct port
to communicate and the possibility of a stray packet with the correct Source Portis 1/65536, so quite slim.

Surpassing Inconsistent States (or the Dog Collar)

While slim, the possibility of the agent-program to receive a Correct Source Port stray packet (not created by the
client-shell) is existent. If this happens, the agent is going to cycle to the next source port, cycle the encryption
key, try to decrypt a packet that contains no stego and get gibberish that is gonna try to execute. A total out-of-
control mess.

And it is out-of-control as the client knows nothing about the key cycles happened and will continue to
encrypt with keys no longer recognized by the agent and send from a Source Port that the agent no
longer hears from.

That means that we lost it. We lost RCE to the pwned machine. We have to re-exploit it and use another post-
exploitation tool... But, remember, Pozzo was holding Lucky by a Dog Collar. He was able to reclaim him
anytime.

The Dog Collar Implementation

There is of course a safety mechanism to prevent such tragedies. In the OTP Scheme a special Control Key is

stored that does not get cycled. There is also a Control Source Port that the agent always accepts packets from
and decrypts them with the Control Key. If such a packet contains a special RST payload then the OTP key
and the Source Port cycling mechanism both reset.

That means that the whole communication can start from the beginning if jammed, without leaving any
unencrypted trace.

Along Payload is Longer than 5 bytes

There are commands like “find / -name ‘flag’ 2 > /dev/null” that exceed the 5 byte limit (+1 byte the opcode) of a
single packet. Those commands should be chunked and delivered in multiple packets. And Lucky has to
understand that the “find” (notice the space - 1 bytel) isn't the whole command and it has to wait for next packets
to arrive.

There is also the case of “head -1 /etc/shadow” (to get just the hash of the root password). This command produces
an output that reaches and exceeds 100 bytes. And they have to get delivered back to Pozzo. All of them. And
Pozzo has to know when to wait for more output, and when the whole payload is delivered. Also Lucky never
sends packets that aren’t responses to packets (remember only RST-ACKSs).

The Protocol within a Protocol

If you can use Opcodes, then you can be stateful, and that means that you can know when to wait for more.
There are Opcodes that declare that “more is coming, don’t execute just yet". Opcodes that declare “this data is part

of a command", and Opcodes that declare “this data is the last of command. Execute it now". It resembles the TCP
chunking algorithm just without using data offsets. Ain't no time and bandwidth for data offsets anyway! The
OTP scheme ensures that if a packet is lost no later packet can be decrypted, so no partially executions are
possible, and inconsistent states do get resolved.

What about Lucky’s long responses?
Lucky never sends a packet that is not a Response... That means that it has to inform Pozzo that he needs to
talk. Then Pozzo starts sending random data (with a “talk” Opcode), only to accept meaningful responses. Lucky

also declares when there is nothing left to say. And “the rest is silence” (till the next command).

Shellcode execution kills Lucky

When shellcode is delivered, in Linux is executed with the above ctypes snippet:

libc = CDLL(libc.s0.6') # Loads libc

sc = ¢_char_p(shellcode) # creates a C string with shellcode

size = len(shellcode) # gets shellcode’s length (used later)

addr = c_void_p(libc.valloc(size)) # allocates bytes of heap memory equal to the shellcode length.

memmove(addr, s¢, size) # copies shellcode from stack variable(pointer) sc to heap memory that was just allocated

libc.mprotectiaddr, size, 0x7) # disables NX protection of data memory
run = cast(@ddr, CFUNCTYPE(c_void_p)) # casts the pointer to shellcode in heap to a function pointer
run() # jumps shellcode function pointer - runs the shellcode

Which copies it into heap memory, unlocks the NX protection for this memory chunk and jumps to it. So Lucky
stops executing as EIP now points to the shellcode. No return is possible. Lucky will terminate whenever the
shellcode terminates...

Just Fork It!

p = Processitarget=run) # run the shellcode as independent process
p.start)

instead of plain:
run()

Took me a good to half hour of screen-staring...

In Windows the CreateThread() works as intended. That was a blessing as EIP can't be tracked in Windows. None is
really sure were EIP is in any given time. Not even its developers.

It's Show Time!

The Test
Start Lucky

Aucky.py mypassphrose
And Lucky starts happily. Uses the passphrase to create the OTPs and waits patiently...

Connect Pozzo

./pozzo.py target ip mypassphrase

A real Infection

cp lucky.py /usr/sbin/X
printf "@reboot /usr/shin/X —rootless -noreset\n" > /etc/crontab

Remember, the original X executable is located at /usr/bin directory... | personally don't believe that a Sys
Admin would realize that this process is a phony in a plain “ps aux”. Maybe an optimistic 4/10 of Sys Admins
would catch this. You need tools to catch this guy, if you aren’t an observant geek!

And the passphrase for this Lucky instance is (yes, you guessed it!) “-rootless” (argv[1]). You can come up with
any switch-like passphrase and use it. | know no man alive that knows all the X switches... And there will
never be a man that will read X's man (page)!

(Here we hacked a mind, nota PC. In my humble opinion that's what “Hacking”is all about)
Passphrases can also be hardcoded in lucky.py, but this /acks style even more! And apart from the style part,

strings command will return nothing (in a PyInstaller'd Lucky) if the passphrase is passed as an argument. Hidden
in plain site.

Video Mode ON

The OS Shell

Here | run some linux commands in the Pozzo & Lucky while sniffing with tcpdump.

Video Link

The Shellcode (ASM) Shell

Here | remotely run some shellcode | found online. The connection broke the first time | tried to deliver the
shellcode so | restarted Pozzo to force a Reset Packet and get everything working again.

Video Link

| also demonstrate that Lucky does not die after the shellcode termination by using the OS shell again.

Video Mode OFF

Concluding...

This project is closed-source at the moment as it is a part of a personal research which isn’t finished yet.
Generally the whole idea has started to have an academical perspective as there are papers like “Embedding
Covert Channels into TCP/IP" (Murdoch & Lewis, 2005) - | told you the idea isn’t new, that have to be cross checked
(those guys propose algorithms that bust IP/TCP stego).

Additionally anyone can treat this article as a proposal for a tool and start writing his/her own implementation.
My techniques aren't the best (while full of style), and | am sure that some things can be done better. | learned a lot
of things while writing Pozzo & Lucky, don't lose the opportunity to do the same. And there are things (maybe a
lot of things!) to be done! Here are some:

e Write such a tool in an ASM compilable language (C++ maybe...)! It will be an overkill tool. As there will

https://securosophy.com/2016/08/10/the-satori-suite/
https://vimeo.com/184231669
https://vimeo.com/184233866
http://gray-world.net/es/papers/ih05coverttcp.pdf

be no dependencies (and if there are you can always use - -static).

e Use another (innocent looking) protocol. What about ARP. ARPs aren't blocked unless the Network admin is
amadman and has locked ALL switch ports to MACs. And even if this happens, a Gratuitous ARP could be
received by everyone in a LAN. | see some potential here...

e Go for implementations for the pseudo-code given in the above paper. There can be Covert Channel
filters. There can be a classification model to provide possibilities about whether a packet contains
Stego. | mean, why aren't there such things around?

o | would really like to see a PF-Sense plugin for Stego filtering.

e The list goes on (without me)...

Part 37

Sure, thanks for asking!

It will contain my research on detection and mitigation of such techniques. Going for an article targeted to
Blue Teams!

There are some handles right now that might get us caught!

The entropy of the TCP Sequence Field is as high as /dev/urandom’s entropy for the same number of bytes,
sure, but what about distributions? The ISNs are created (by Operating Systems) using time as a “seed”, they
aren’t entirely random. That means that they inevitably have a distribution. Does Pozzo & Lucky create

ISN's that resemble the same distribution? Most likely NO.

e Can we determine if a packet stream contains Stego using this info?
o If Yes, we need many packets (many values to identify the distribution).
e How many?

o How much data has to leak before we catch the culprit?

Research Everyone! Next time we aren’'t gonna fire up “Scapy” but “Scipy”!
Next time there will be Fuction Curves and Integrals, along with Firewall and IDS logs! | can't thing of anything
better (girlfriends are pretty neat too)!

Keep tuned...

(Holly Cows, everything we can think of exists ! Fitter, for example! That's why Python is my Business - and
Business is good)

To Be Continued...

https://pypi.python.org/pypi/fitter
https://www.youtube.com/watch?v=copLTgjtcsg

