Hidden Network: Detecting Hidden Networks
created with USB Devices

Pablo Gonzdlez Pérez: pablo@11paths.com
Francisco José Ramirez Vicente: franciscojose.ramirezvicente@telefonica.com

Executive Summary

Many companies and government agencies today have communications isolated
networks or with data flow restricted through different networks. These computers
networks are created for particular situations, as these can be very special or have
critical information such as, factory control system, highly-secured environments for
processing of certain data, or networks complying with a safety standard. In recent
Cyber-security history, it has been proven how this malicious software called Stuxnet
infiltrated into an isolated network at a Nuclear Power Plant. In light of this fact, it
could be seen that having a computers network not connected through Ethernet cable
or WiFi to other networks is not enough. Any type of external connection for
computers may constitute a threat. This paper reflects the possibilities provided by the
so-called Hidden Network and how these can be identified and focused on protection
of these issues inside a corporate network.

1. The risks of the connections

Regarding the safety of data networks, there is a trend to sketch networks through the
connections at links level, such as Ethernet, WiFi connections, etc. Corporate networks
are much more complex than this and they require analysis from different
perspectives.

The traffic analysis on a corporate data network is the major tool provided to
understand what is going on with it. In addition, it is the more consistent option for
searching network nodes seizing the most used protocols, which are nodes conformed
by the most essential services or those who act as bottlenecks. Given these
statements, it can be extrapolated that a risks-based network analysis provides a great
deal of data and information based on different guidelines.

Mapping a network in an aesthetically manner is right for understanding the nodes
and network settings, therefore, a telemetry analysis is critical to contain and be
prepared for such hazards. Due to these deal of data, we can achieve a greater level of
understanding regarding the network and the threats inside it.

Figure 1: A network map simulation with different nodes and connections between them

Nodes representation and connection structures are vital to comprehend all different
borders inside the network in order to mitigate intrusions, detecting attacks, or
preventively carry out the implementation of safety measures.

The problem is more a case of understanding that this is a network. In many cases, a
network is defined as a group of computers connected with the possibility to
communicate with each other across different technologies and protocols. On most
occasions, users or system and network administrators consider a good thing having a
network connected through Ethernet or WiFi connection on different organization
computers. This is not the case here, as one organization not implementing prevention
measures regarding the use of USB devices, may enforce what is known as Hidden

Networks. These networks are created through the use of USB devices and allow
communication between physically or logically isolated computers.

1.1. Network Isolation and USB Connection

To understand the hazards about Hidden Networks, which are created from USB
devices, here is a simple example. Assuming an organization have a network formed by
3 types of VLANSs. The first VLAN contains:
e A computer called A. This computer has connectivity with others computers of
the same VLAN.
e A computer called B. This computer has connectivity with others computers of
the same VLAN.

The second VLAN contains:
e A computer called C. This computer has connectivity with others computers of
the same VLAN.
e A computer called D. This computer has connectivity with others computers of
the same VLAN.
e A computer called E. This computer has connectivity with others computers of
the same VLAN.

The third VLAN contains:
e A computer called F. This computer has connectivity with others computers of
the same VLAN.

If we observe the networks outline on the image below, we can see how computers
are isolated through different VLANs. Assuming employees of this organization
exchange data by means of USB devices, there is a high probability for this information
to pass from one VLAN’s computer to another. Adding the USB device is itself a source
of threats, a hidden network is being created inside the organization.

ST O

Equipo A Equipo B

(VLAN 1)

S

Equipo C
(VLAN 2 0

Equipo D Equipo E %

Equipo F
(VLAN 3 ()

Figure 2: Network outline with computers connected to different VLANs

Assuming that users of computers F and E are exchanging information through a USB
device, a hidden network is being created between both computers. This information
can be represented with two nodes, E and F , and an arc projected between the
computer first introduced the USB device and the second computer.

ST SO

Equipo A Equipo B

(VLAN 1)

Equipo C

VLAN 2 () Q

~

Equipo D Equipo E

Equipo F

(VLAN 3)

Figure 3: Hidden network overlapping on the previous network outline

2. USB Device Connections in the Computer System

When a USB device is connected from one computer to another, the term “Pollination”
emerge. This concept is similar to the one used on other areas and is related with
carrying the threat or risk from one USB device among different computers, even
when these are connected to different networks.

When a user connects a USB device, a series of entries are created in the system of the
Windows registry. This type of information is valuable, for example, in a forensic
analysis, in order to know where the information leakage comes from or where did the
threat enter in a Post-Mortem.

The USBStor key created in the Windows system registry save information regarding all
different devices inserted in the computer. If USB N devices were inserted in a N
computer, such N devices will be found at the USBStor key, which contains all the
information needed to identify the device.

flruLiy e Wruue e aeey

a USBSTOR

e SV AVE&®rod CenerichiR 28 Capabilities REG_DWORD 0x00000010 (16)
1S €n ro Eneric eV,
= - - ab 4d36€967-325-
Disk&Ven_SYMWAVE&Prod_Hitachi_ HDP72501&Rev_ASNA e E'“SGU!EI o Eigfwzum o L:;::Zi ;,’stu
Disk&Ven_SYMWAVE&Prod_WDC_WD5000AAKS-0&Rev_1CO1 | CompatiblelDs - \Dis
4. || Disk&Ven WD&Prod_Elements_1023&Rev_2005 = ConigFlags REG_DWORD 0x00000000 (0)
P 575850314532314B595A30388&0 ab|ContainerlD REG_SZ {8b50ec10-ce7d-

4 Device Parameters 2P DeviceDesc REG_SZ @disk.inf, %disk_

Figure 4: Registry visualization of the USB devices inserted

The following information can be collected from USB devices connected to one

computer:
e Device name.
e (lass.

e C(lassGUID.

e HardwarelD.

e Service provided by the device, e.g. a hard disk.
e Driver.

e ftc

2.1. Hidden Links: Detection of These Kind of Networks

By knowing where and how the information of one USB device is stored within a
Microsoft operative system, you could know who is sharing the USB device, and with
whom. In this way, we can generate two nodes representing two computers and one
arc which identifies the connection between both computers. A hidden network is
being uncovered thanks to the Hidden Link. Besides, you can identify in which
computer was connected a priori, as a result of the many events that can be obtained
from an operative system. This is how the arc between nodes is directed.

To perform an automation of the Hidden Links detection, the following plan has been
proposed:

AD Server

<--—-—-=-- Envio y ejecucion del script
------ » Datos generados por la ejecucién del script

I
4 4 4
'| '| [
’| " [|
'| l| [|
| 1 I‘ [
PC2 Py PC1 P 1o
L ¥ L ¥ v !
($-----5 DomainNetwork SZZZZZZZIZIC0) 0)
‘* \ b\
iy W
L
<y <\
PC3 PC4

Figure 5: Script release diagram in an AD (Active Directory)

In the above image, it can be seen how the application is executed in a central node
and how this is able to use several Microsoft technologies to execute commands in
each of the computers within the domain. The examined technologies, which fit the
solution design are as follows:

o WinRM.
e SMB (Server Message Block).
o WMI.

Powershell is an object-oriented command line from Microsoft, which has a simple and
powerful interaction with any structure inside a Microsoft operative system.

PS C:\> Get-ItemProperty -Path MKIM:\SYSTEM\CurrentControlSet
| Select FriendlyName

FriendlyName

SanDisk U3 Cruzer Micro USB Device
WD Virtual CD 1110 USB Device
USB DISK 2.0 USB Device

B DISK 2.0 USEB Device

TA USB Flash Drive USB Device

1r Voyager USB Device

FL Drive AU_USB20 USB Device
hp USB Flash Drive USB Dev
Kingston DT 101 G2
Kingston DT 101 G2
SanDisk U3 Cruzer Micro USB
USB Flash Disk USB Device
WD 3200BEV External USB Device
WD My Book 1110 USB Device
WDC wWD25 00JB-00GVAOD USE Device

Figure 6: Collection of USB devices connected to Powershell

2.2. USB Hidden Networks for WinRM

The script WinRM version in PowerShell requires the activation of the Windows
Remote Management (WinRM) service in each of the network computers to be

audited:

< Senvicios E=]r=]
Archivo Accién Ver Ayuda
s EEc=Hm > nwp
G4, Servicios (locales) . Senvicios (locales)
A i6n remota de Nombre ‘ Propiedades de A 6n remota de Windows (WS-M: (=]

(WS-Management)

Descripcién:

El servicio Administracion remota de
Windows (WinRM) implementa el
protocolo WS-Management para la
administracién remota. WS-
Management es un protocolo
estandar de servicios web usado para
la administracion remota de software
y hardware. El servicio WinRM
escucha solicitudes de WS-
Management y las procesa en la red.
Para tal fin, debe configurarse con
una escucha que use la herramienta
de linea de comandos winrm.cmd o a
través de la directiva de grupo. El
servicio WinRM ofrece acceso a los
datos WMy, si esta en ejecucion,
permite la recopilacién y suscripcion
a eventos. Los mensajes WinRM usan
HTTP y HTTPS como transporte. El
servicio WinRM no depende de IS
pero esta preconfigurado para
compartir un puerto con IIS en el
mismo equipo. El servicio WinRM
reserva el prefijo de URL /wsman.
Para evitar conflictos con IIS, los
administradores deben asegurarse de
que ningun sitio web hospedado en
IS use el prefijo de URL /wsman.

«: Acceso a dispositivo de interfaz humana

£ Adaptador de rendimiento de WMI

4 Administracion de aplicaciones

% Administracion de certificados y claves de mantenimient
4 Administracién remota de Windows (WS-Management)
+ Administrador de conexién automatica de acceso remot

% Administrador de conexion de acceso remoto

%% Administrador de credenciales

4 Administrador de cuentas de seguridad

& Administrador de identidad de redes de mismo nivel

«: Administrador de sesion del Administrador de ventanas

(4 Adobe Acrobat Update Service

(% Adquisicién de imagenes de Windows (WIA)

4 Agente de directiva IPsec

G Agente de Proteccion de acceso a redes

«: Agrupacion de red del mismo nivel

4 Aislamiento de claves CNG

%4 Almacenamiento protegido

&% Aplicacién auxiliar de NetBIOS sobre TCP/IP

&4 Aplicacién auxiliar IP

i Aplicacién del sistema COM+

(4 Archivos sin conexion

&4 Asignador de deteccion de topologias de nivel de vincul

&4 Asignador de extremos de RPC

General | Iniciar sesién] Recuperacién l Dependenuas]

WinRM|

Nombre para mostrar: Administracion remota de Windows (WS-Managemer

Nombre de servicio:

El servicio Administracion remota de Windows &

Descripcién
° {WinRM) implementa el protocolo WS-

Ruta de acceso al ejecutable:
C:\Windows'\System32\svchost .exe « Network Service

Automético (inicio retrasado

Ayudarme a confiqurar las opciones de inicio de servicios.

Estado del servicio: Iniciado

Puede especificar los pardmetros de inicio que se aplican cuando se inicia
el servicio desde aqui.

Aceptar

i ASP.NET State Service

Figure 7: WinRM Service

Provides su... Deshabilitado Servicio de red

Furthermore, the script has been tested on a single-Domain network with an Active
Directory (AD) to automate the information collection as much as possible. Domain
administrator credentials are used to approve execution on remote computers in the
local network. Credentials will be required when executing the script.

X' Administrador: Windows PowerShell

PS C:\scripts\HiddenNetworks

JinRM\USBHiddenNetworks_for_WinRM> .\LaunchUSBHiddenNetworks.psl

Proporcione sus credenciales.

Usuario:

Contrasefia:

Iﬁ testdomain\administrador j __]
J1

Aceptar I

Cancelar

Figure 8: Credentials requirement regarding the script usage

The script primary implementation is performed through the
“LaunchUSBHiddenNetworks.ps1” program, which connects remote computers using
the script known as “RecollectUSB.ps1”, which is passed as parameter to collect
information from USB devices. Thus, the script shall be executed individually in each of
the computers assigned.

2.2.1. Script: LaunchUSBHiddenNetworks

The execution of this command is based on the PowerShell’s command “Invoke-
Command”. This command allows to connect with a computer in the network passing
the FQDN, computer name or IP address as parameters, and on the other hand, the
script of PoweShell to be executed:

$salida=invoke-command -ComputerName (Get-Content servers.txt) -FilePath
'PathToScript\RecollectUSBData.ps1'-Credential testdomain\administrador

With the —ComputerName parameter, the name of computer(s) to be audited is
assigned inside our AD. It is possible to directly introduce the name of computers
followed by commas, but in this case, a TXT (servers.txt) file with a list of the
computers has been used and passed as parameter.

The -FilePath parameter assign the path for the script on PowerShell that will be
performing the data collection. Finally, the —Credential parameter allows the use of
domain administrator credentials to approve the execution of remote computer, in
which case, domain is “testdomain” and user “administrator”.

The outcome of the run is stored in the object Ssalida. The information retrieved will
be stored likewise in a CSV file called “USBDATA.csv” as follows:

$salida | Out-File USBDATA.csv
The formatting of CSV file has the following structure after running the script:

Name of the computer, IP (on IPv4 format), USB name, ID (unique identifier)

|l USBDATA.csv: Bloc de notas |

Archivo Edicién Formato Ver Ayuda

PC001,192.168.1.16,Kingston DataTraveler G3 USB Device,{2057d6e6-7725-52d5-8d5e-3fdab3357470}
PC001,192.168.1.16,5anDisk Cruzer Blade USB Device,{1df90487-d45c-5a58-8509-dff4fae7bca6}
PC002,192.168.1.15,Kingston DataTraveler G3 USB Device,{2057d6e6-7725-52d5-8d5e-3fdab3357470%
PC002,192.168.1.15,5anDisk Cruzer Blade USB Device,{1df90487-d45c-5a58-8509-dff4fae7bca6}

Figure 9: Results obtained in CSV format

With this information, we could create a graph like the one shown below with the
Gephi application:

PC001

{1df90487-d45c-5a58-8509-dffdfac7bcab}——

{2057d6e6-7725-52d3-8d5e-3fdab3357470}

{1df90487-d45¢-5a58:8509-dff4fae7bcab}
{1df90487-d45c-5a

-8509-dff4fae7bcab}

PC003

{2057d6e6-7725-52d6-8d5e-3fdab3357470}

PCO05

Figure 9: Graph representing hidden connections of USB devices in a network

2.2.2. Script: RecollectUSBData

This script is responsible for gathering all information referring the USB devices
connected to the computer and it runs locally in the computers to be audited. The data
is retrieved from a particular branch of the Windows registry.

$USBDevices = @()
$USBContainerID = @()
$USBComputerName = @()
$USBComputerIP = @()
$SubKeys2 = @()
BUSBSTORSubKeys1 = @()

The matrixes, where information related to the audited computer is going to be
stored, and for the data referred to USB devices stored in the registry or that were
connected at some point in time to the computer, are launched.

$Hive = "LocalMachine"
$Key "SYSTEM\CurrentControlSet\Enum\USBSTOR"

SHive and SKey store the complete path for the registry branch where the data search
related to USB devices is taking place. The variable SHive with “LocalMachine” value
equals to HKLM or HKEY_LOCAL_MACHINE.

$ComputerName = $Env:COMPUTERNAME
$ComputerIP = $localIpAddress=((ipconfig | findstr [0-9].\.)[0]).Split()[-1]

The name of local computer is stored, as well as the IP address and variables
SComputerName and SComputerlP.

$Reg = [Microsoft.Win32.RegistryKey]::0penRemoteBaseKey($Hive, $Computer)
$USBSTORKey = $Reg.OpenSubKey ($Key)
$nop=$false

On SReg object, the registry query is run using the command OpenRemoteBaseKey,
using variables SHive y SComputer as parameters, which establish the branch to be
consulted. The variable Snop will be used later to control the execution flow.

Try {
$USBSTORSubKeys1l = $USBSTORKey.GetSubKeyNames ()
}

Catch
{

Write-Host "Computer: ",$ComputerName -foregroundcolor "white" -
backgroundcolor "red"

Write-Host "No USB data found"

$nop=$true

The Try — Cath block is responsible for managing errors in case no information
regarding USB devices can be found. If no information is found, the value Strue is
assigned to the Snop variable in order to avoid execution of the whole process of
identification and retrieving of USB device data.

i1f(-Not $nop)

In case there is any entry associated with the USB device connection, Snop a Strue
variable, the following blocks will be run:

Block 1:
ForEach($SubKeyl in $USBSTORSubKeys1)
{
$Key2 = "SYSTEM\CurrentControlSet\Enum\USBSTOR\$SubKeyl"
$RegSubKey2 = $Reg.OpenSubKey($Key2)
$SubkeyName2 = $RegSubKey2.GetSubKeyNames ()
$Subkeys2 += "$Key2\$SubKeyName2"
$RegSubKey2.Close()
}

Each of the existing items in the registry branch where the search is taking place is a
different USB device. Each item is stored in the matrix @Subkeys2.

Block 2:

ForEach($Subkey2 in $Subkeys2)

{
$USBKey = $Reg.OpenSubKey($Subkey2)
$USBDevice = $USBKey.GetValue('FriendlyName")

$USBContainerID = $USBKey.GetValue('ContainerID')

If($USBDevice)

{
$USBDevices += New-Object -TypeName PSObject -Property @{

USBDevice = $USBDevice
USBContainerID = $USBContainerID
USBComputerName= $ComputerName
ComputerIP = $ComputerIP

}
}

$USBKey.Close()
}

This block explore every USB device previously identified in the Block 1 and stored at
the @Subkeys2 matrix. For every item having a value at the SUSBDevice field, the USB
device ID is being retrieved; USBContainerID. The name and IP address of the
computer it is also assigned in order to add this later to the output CSV file.

¢ Editor del Registro
Archivo Edicién Ver Favoritos Ayuda

[=-yM Equipo Nombre ‘ Tipo | Datos

|»

J HKEY_CLASSES_ROOT

ab| (Predeterminado)

REG_SZ

(valor no establecido)

HKEY_CURRENT_USER $%) Capabilities REG_DWORD 0x00000010 (16)
E-s HKEY_LOCAL_MACHINE ab]Class REG_SZ DiskDrive
§ BCD00000000 ab] ClassGUID REG_SZ {4d36e967-2325-11ce-bfc1-08002be 10318}
i HARDWARE ,ﬁthCompaﬁbIeIDs REG_MULTI_SZ USBSTOR \Disk USBSTOR \RAW
i SAM %) ConfigFlags REG_DWORD 0x00000000 (0)
1 chFrUVIR}r;YRE r‘.’,biJContainerID REG_SZ {2057d6e6-7725-52d5-8d5e-3fdab3357470}
=] SYSTEM VQE]DEVICEDESC REG_SZ @disk.inf, %disk_devdesc%;Unidad de disco
| ControlSet001 %‘{JDrlver REG_SZ {4d36e967-e325-11ce-bfc1-08002be 1031830002
| ControlSet002 ab)FriendlyName REG_SZ Kingston DataTraveler G3 USB Device
- |, CurrentControlSet %‘,{J HardwareID REG_MULTI_SZ USBSTOR \DiskKingstonDataTraveler_G3_PMAP USBST.
, Control ,%!{]Mfg REG_SZ @disk.inf, %genmanufacturer %;(Unidades de disco es
Bl)y Enum ab|Service REG_SZ disk
, ACPI
| ACPI_HAL
, DISPLAY
, HDAUDIO
, HID
, HTREE

, IDE
J PCL
, PCIIDE
#- |, Root
J, STORAGE
) SW
, UMB
, UsB
, USBSTOR
-}y Disk&Ven_Kingston&Prod_DataTraveler_G3&Rev_PMAP

[N 00 1372A609DDBB60B5 1A002180 —

, Device Parameters

[- (- - -

=]

J LogConf
, Properties
, Disk&Ven_SanDisk&Prod_Cruzer_Blade&Rev_1.26
&~ |y Hardware Profiles
J Policies
Bl J services |

Equipo\HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Enum\USBSTOR \Disk&Ven_Kingston&Prod_DataTraveler_G3&Rev_PMAP\001372A609DDBB60B51A002180

Figure 10: Registry branch where the USB devices are

Block 3:

for ($1=0; $1 -Lt $USBDevices.length; $i++) {
$IDUnico=gUSBDevices[$i] | Select -ExpandProperty "USBContainerID"
$USBNombre=8USBDevices[$i] | Select -ExpandProperty "USBDevice"
Write-Host "Computer: ",$ComputerName -foregroundcolor "black" -
backgroundcolor "green"
Write-Host "IP: ",$ComputerIP

Write-Host "USB found: ",$USBNombre
Write-Host "USB ID: ",$IDUnico
Echo "$ComputerName, $ComputerIP,$USBNombre, $IDUnico"

}

Finally, this block displays pertinent information obtained from the remote computer.
The Write-Host print command is used on the server screen, where the script was run.
The Echo command is used as data output to subsequently write the data in the CSV
file.

2 Administrador: Windows PowerShell

PS C:\scripts\HiddenNetworks\WinRM\USBHiddenNetworks_for_WinRM> .\LaunchUSBHiddenNetworks.psl

0w =

192.168.1.15
USB found: Kingston DataTraveler G3 USB Device
USB ID: <2@57d6e6—7725-52d5-8d5e—3fdah3357478>
omputer: PCHA2
IP: 192.168.1.15
USB found: SanDisk Cruzer Blade USB Device
USB ID: <1df9?8487-d45c-5a58-8509-df f4fae?hcab>
omputer:
IP: 192.
USB found: Kingston DataTraveler G3 USB Device
USB ID: <(2857d6e6—-7725-52d5-8d5e—-3fdah3357478>
omputer: PCHAL
IP: 192.168.1.16
USB found: SanDisk Cruzer Blade USB Device
USB ID: <(1df908487-d45c-5a58-8509-dff4fae?hcab>

PS C:\scripts\HiddenNetworks\WinRM\USBHiddenNetworks_for_WinRM>

Figure 11: Output after the script running

2.3. USB Hidden Networks for SMB con PSExec

In order to run the script through SMB, it will be necessary to have PSTools previously
installed, specifically to execute the PSExec command in the computers to be checked.
The operating philosophy will be practically the same of the WinRM version. It will be
connected from the server to the remote computer and the script should be run from
the server with domain administrator account, then the USB data collection script will
be executed.

The main script LaunchUSBHiddenNetworks.ps1 will have a few modifications to fit
with this new type of connection. The primary modification is that this time, the
command Invoke-Command is not used to remotely run the script. A shell from
Powershell will now be opened, and the script should be run from it. The script will be
downloaded from the network location, preferably from a web server that would
execute download through some HTTP protocol. In this way, subsequent problems
with execution policy and permits, which you may find by accessing the local shared
resource, are avoided.

Similar to the previous version of WinRM, results should be stored in a CSV file. To
avoid synchronization problems and allow time for the program to run on the remote
computer, some delays have been included as described in the code analysis below:

2.3.1. Script: LaunchUSBHiddenNetworks

$computers = gc

"C:\scripts\HiddenNetworks \PSExec\USBHiddenNetworks_for_SMB\servers.txt"
$url = "http://192.168.1.14/test/RecollectUSBData.ps1"

$sincro = 40

Several variables are assigned. The matrix where the server names or IP addresses will
be stored, Scomputers, which are at the servers.txt file, the Surl variable showing
where the script RecollectUSBData.ps1 is and, ultimately, the waiting time to sync the
operation. It should also be taken into consideration that this number may vary
depending on the environment where the script is run. The following is an example of
execution:

PS C:\scripts\HiddenNetworks\PSExec\USBHiddenNetworks_for_SMB> .\LaunchUSBHiddenNetworks.psl

[z4.\1192.168.1.15: powershell.exe -C IEX (New-Object Net.Webclient).De

PsExec v2.2 — Execute processes remotely
Copyright (C)> 2081-2016 Mark Russinovich
Sysinternals — www.sysinternals.com

Starting powershell.exe on 192.168.1.15...1.15...

Figure 12: Powershell and script running through the PSEXEC tool.

The servers.txt file will have the computers names or directly the IP addresses stored
as we can see below:

Archivo Edicién Formato Ver Ayuda

192.168.1.15
192.168.1.16|

Figure 13: List of computers to be analyzed

foreach ($computer in $computers) {

$Process = [Diagnostics.Process]::Start("cmd.exe","/c psexec.exe
\\$computer powershell.exe -C IEX (New-Object
Net.Webclient).Downloadstring('$url') >>
C:\scripts\HiddenNetworks\PSExec\USBHiddenNetworRks_for_SMB\
usbdata.csv")

$id = $Process.Id

sleep $sincro

Write-Host "Process created. Process id is $id"
taskkill.exe /PID $id

In this loop, each of the computers to be analyzed is checked, which also have been
loaded with Scomputers variables from the servers.txt file. The execution main body is
focused in the object SProcess. In it, a remote computer console is opened, which in
turn will launch other Powershell console, passing the file RecollectUSBData.psl as
parameter, which is at the location designated by the Sur/ variable. Is critical to have
properly configured the location paths for each of the files before running the script.

Before moving on to the following computer in the list, it will be necessary to be sure
about termination of the information collection process. There are several manners to
optimize this operation, but in this illustration the choice is simply adding an X seconds
delay between each running by means of the sleep command. Once the data collection
of the computer to be audited is terminated, we erase the execution process before
moving on to the next with taskkill command. For information purposes, the ID and
result of this operation is screen-printed, as pictured in the following snapshot:

2 Seleccionar Administrador: Windows PowerShell

PS C:\scripts\HiddenNetworks\PSExec\USBHiddenNetworks_for_SMB> dir
Directorio: C:\scripts\HiddenNetworks\PSExec\USBHiddenNetworks_for_SMB

LastWriteTime Length Name

85,07/2017? 16:14 LaunchUSBHiddenNetworks .psl
85/87/2817? 16:11 2859 RecollectUSBData.psl
85,087/2017? 16:15 54 servers.txt

PS C:\scripts\HiddenNetworks\PSExec\USBHiddenNetworks_ for_SMB> .\LaunchUSBHiddenNetworks.psl
Process created. Process id is 2624

Correcto: se envio la sefial de término al proceso con PID 2624.

Process created. Process id is 2496

Correcto: se envio la seifial de término al proceso con PID 2496.

PS C:\scripts\HiddenNetworks\PSExec\USBHiddenNetworks_ for_SMB> _

Figure 14: Script running in Powershell

2.3.2. Script: RecollectUSBData

This script has only been modified at the last block (Block 3) in order to adapt the
output to the new execution type. As can be seen in the code shown below, command
Echo has been replaced for a Write-Host with variables, eliminating the screen output:

for ($i=0; $1 -Lt $USBDevices.length; $i++) {
$IDUnico=8USBDevices[$i] | Select -ExpandProperty "USBContainerID"
$USBNombre=8USBDevices[$i] | Select -ExpandProperty "USBDevice"
Write-Host "$ComputerName, $ComputerIP, $USBNombre,$IDUnico"

}

The generated USBData.CSV file will be exactly the same as the one previously shown.
2.4. Historical Information

It is also possible to get the registration of the dates of first connection in the
computer, in case we need more information regarding the route of the USB device

inside the HiddenNetwork. At the event log, the branch capable of offering more
information is disabled by default in all Windows versions. Such branch is as follows:

Windows Logs -> Applications and Services Logs -> Windows -> DriverFrameworks-
UserMode -> Operational

Thus, the way we obtain the first connection date of the USB device in the computer,
without accessing the computer assessment, is by analyzing the following file on the

system:

C:\Windows\inf\setuoapi.dev.log

Within this file, the time of first connection, among other data, has been recorded. To
properly locate the USB device inserted, it will be necessary to store a new value while
running the “RecollectUSBData.ps1” script, and this field value would be DiskID:

B Registry Edito —
File Edit View Favorites Help
Computer\HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Enum\USBSTOR\Disk&Ven_SanDisk&Prod_Cruzer_Blade&Rev_1.26\2004210320080920B193&0\Device P

v

v

CurrentControlSet
Control
Enum
ACPI
ACPI_HAL

A || Name

ab| (Default)
o Attributes
ab) Diskld

Type

REG_SZ
REG_DWORD
REG_SZ

Data

(value not set)

0x00000000 (0)
{bdfebcd7-61e8-11e7-9f3e-080027619f6a}

DISPLAY
FDC
HTREE
IDE
PCl
PCIIDE
ROOT
STORAGE
SWD
USB

v USBSTOR

v Disk&Ven_SanDisk&Prod_Cruzer_Blade&Rev_
v 2004210320080920B1938:0
v Device Parameters
Partmgr
Properties

Figure 15: DiskID key search

This value is unique within the current Windows system, but it changes when
connected to another computer, unlike Containerld field, which is the same on each of
the Windows computers. The USB can be identified inside the setupoapi.dev.log file
with this value. In the illustration below, its location can be shown by using the DiskID
and the date of first insertion within the audited system:

dvi: Device post-install completed. 18:16:50.685
Section end 2017/07/05 18:16:50.794
[Exit status: SUCCESS]

[Device Install (Hardware initiated) - SWD\WPDBUSENUM\{b4febcd7-61e8-11e7-9f3e-080027619f6a}#0000000000004000]
Section start 2017/07/05 18:41:28.029
dvi: {Build Driver List} 18:41:28.076
dvi: Searching for compatible ID(s):
dvi: wpdbusenum\fs
dvi: swd\generic
Created Driver Node:
HardwareID - wpdbusenum\fs
InfName C:\Windows\System32\DriverStore\FileRepository\wpdfs.inf_amd64_ e898714e5623f@fe)
DevDesc WPD FileSystem Volume Driver
Section Basic_Install
Rank oxeoff2000
Signer Score - INBOX
06/21/2006
Vers 10.0.15063.0
{Build Driver List - exit(©x00000000)} 18:41:28.122
{DIF_SELECTBESTCOMPATDRV} 18:41:28.122
Using exported function ‘WpdClassInstaller’' in module 'C:\Windows\system32\wpd ci.dll'.
Class installer == wpd_ci.dll,WpdClassInstaller
Class installer: Enter 18:41:28.170
Class installer: Exit
Default installer: Enter 18:41:28.170
{Select Best Driver}
Class GUID of device changed to: {eec5ad98-8080-425f-922a-dabf3de3f69a}.
{DIF_DESTROYPRIVATEDATA} 18:41:28.170
Class installer: Enter 18:41:28.170
Class installer: Exit
Default installer: Enter 18:41:28.170

Figure 16: Obtaining the connection date of the USB device

2.5. Hidden Links in OS X

On computer systems running Mac OS X or macOS, theses have a file with a PLIST
extension, which store this information over the USB devices connected to the
computer. The file is named com.apple.finder.plist. On image below, an example of
information capture in OS X or macOS environments can be seen.

com.appie.aasnpoara.client.plist B . .
<key=xRe lative</key=

M com.apple.dashboard.client.plist.lockfile X *
com.apple.dashboard.plist iz;iﬁ:;;i?x;z:giﬁ

M com.apple.dashboard.plist.lockfile <integers62</integers
com.apple.desktopservices.plist fdicts

M com.apple.desktopservices.plist.lockfile i‘?yt‘““‘“’" 1.4.3.8xL.413c891p+28</key> |

_— . 1CT>

com.apple.Dictionary.plist <key=dnchorRe lativeTo</key>

M com.apple.Dictionary.plist.lockfile <integer=8</integers
com.apple.diskimages.fsck <key>ScreenlD</key>
com.apple.DiskUtility.plist igszgggﬂﬁégsgzgz

M com.apple.DiskUtility.plist.lockfile <integers59</integers

com.apple.dock.db

com.apple.dock.plist
com.apple.dock.plist.lockfile
com.apple.driver.Appl...Ititouch.trackpad.plist
com.apple.driver.Appl....trackpad.plist.lockfile

<key=yRelative</key=

<integer>—170</integer=
</dict>
|<key=BOOTCAMP_-Ax1.d27e44p+29</key> |
<dict>

<key=AnchorRelativeTo</key:=

. . <integer>1</integer>
com.apple.faceur.ne.plls.t) KeysScreenIDe/keys
M com.apple.FaceTime.plist.lockfile <integers8</integer>

B com.apple.finder.plist

com.apple.finder.plist.lockfile
com.apple.FolderActions.plist
com.apple.FolderActions.plist.lockfile
com.apple.FolderActionsSetup.plist

<key=xRe lative</key=
<integer>—77</integer=
<key=yRe lative</key=
<integer>288</integer=

</dict>

| Kkey=Citrix Receiver_@x1.330352bp+28</key=|

Figure 17: Data collection in USB devices connected to OS X systems

2.6. Mitigation

One way to prevent this “Pollination” between computers in a corporate network is to
restrict the use of USB devices in computers. Mitigation or prevention through the
forced use due to Active Directory policies, which restrict connection in a user
computer to devices only approved by one user. The implementation of the safety
policy along with a white list of approved devices for each user allows to avoid this
kind of Hidden Links, but it is complex and expensive to maintain.

(™= | a politica de la empresa no permite esta accion
== No esta permitido instalar dispositivos externos, por favor pongase
en contacto con un administrador

Figure 18: The use of the USB device is forbidden on this computer due to company policy

3. Conclusions

Beyond the possible leakage of corporate information, a Hidden Network is also a
problem for our computer’s integrity. Such USB devices may spread a malware
towards different sections within the infrastructure, where, in theory, the security is
higher. Having networks disconnected from the Internet provides this false security
feeling regarding a higher level of protection before any incident, which increases the
system vulnerability.

The malware infection through USB devices is a real and underlying problem, not only
regarding the historic Stuxnet case, but with others of greatest relevance such as
Brutal Kangaroo used by the CIA.

Due to the major impact such infections and information leakage may have in our
infrastructure, we have created this paper to help in identifying these hidden networks
and to offer a tool for their control. Thus, it will be easier to prevent incidents and also
to provide a utility containing useful information for forensic analysis cases.

References

https://blogs.technet.microsoft.com/heyscriptingguy/2012/05/18/use-powershell-to-find-the-
history-of-usb-flash-drive-usage/

http://www.elladodelmal.com/2017/06/brutal-kangaroo-y-la-infeccion-por-usb.html

https://github.com/ElevenPaths/USBHiddenNetworks

