Meltdown

Moritz Lipp!, Michael Schwarz!, Daniel Gruss', Thomas Prescher?, Werner Haas?,
Stefan Mangard', Paul Kocher?®, Daniel Genkin*, Yuval Yarom>, Mike Hamburg®
U Graz University of Technology
2 Cyberus Technology GmbH
3 Independent
4 University of Pennsylvania and University of Maryland
> University of Adelaide and Data61
6 Rambus, Cryptography Research Division

Abstract

The security of computer systems fundamentally relies
on memory isolation, e.g., kernel address ranges are
marked as non-accessible and are protected from user
access. In this paper, we present Meltdown. Meltdown
exploits side effects of out-of-order execution on mod-
ern processors to read arbitrary kernel-memory locations
including personal data and passwords. Out-of-order
execution is an indispensable performance feature and
present in a wide range of modern processors. The attack
is independent of the operating system, and it does not
rely on any software vulnerabilities. Meltdown breaks
all security assumptions given by address space isola-
tion as well as paravirtualized environments and, thus,
every security mechanism building upon this foundation.
On affected systems, Meltdown enables an adversary to
read memory of other processes or virtual machines in
the cloud without any permissions or privileges, affect-
ing millions of customers and virtually every user of a
personal computer. We show that the KAISER defense
mechanism for KASLR [8] has the important (but inad-
vertent) side effect of impeding Meltdown. We stress
that KAISER must be deployed immediately to prevent
large-scale exploitation of this severe information leak-
age.

1 Introduction

One of the central security features of today’s operating
systems is memory isolation. Operating systems ensure
that user applications cannot access each other’s memo-
ries and prevent user applications from reading or writ-
ing kernel memory. This isolation is a cornerstone of our
computing environments and allows running multiple ap-
plications on personal devices or executing processes of
multiple users on a single machine in the cloud.

On modern processors, the isolation between the ker-
nel and user processes is typically realized by a supervi-

sor bit of the processor that defines whether a memory
page of the kernel can be accessed or not. The basic
idea is that this bit can only be set when entering kernel
code and it is cleared when switching to user processes.
This hardware feature allows operating systems to map
the kernel into the address space of every process and
to have very efficient transitions from the user process
to the kernel, e.g., for interrupt handling. Consequently,
in practice, there is no change of the memory mapping
when switching from a user process to the kernel.

In this work, we present Meltdown!. Meltdown is a
novel attack that allows overcoming memory isolation
completely by providing a simple way for any user pro-
cess to read the entire kernel memory of the machine it
executes on, including all physical memory mapped in
the kernel region. Meltdown does not exploit any soft-
ware vulnerability, i.e., it works on all major operating
systems. Instead, Meltdown exploits side-channel infor-
mation available on most modern processors, €.g., mod-
ern Intel microarchitectures since 2010 and potentially
on other CPUs of other vendors.

While side-channel attacks typically require very spe-
cific knowledge about the target application and are tai-
lored to only leak information about its secrets, Melt-
down allows an adversary who can run code on the vul-
nerable processor to obtain a dump of the entire kernel
address space, including any mapped physical memory.
The root cause of the simplicity and strength of Melt-
down are side effects caused by out-of-order execution.

Out-of-order execution is an important performance
feature of today’s processors in order to overcome laten-
cies of busy execution units, e.g., a memory fetch unit
needs to wait for data arrival from memory. Instead of
stalling the execution, modern processors run operations
out-of-order i.e., they look ahead and schedule subse-
quent operations to idle execution units of the proces-
sor. However, such operations often have unwanted side-

IThis attack was independently found by the authors of this paper
and Jann Horn from Google Project Zero.

effects, e.g., timing differences [28, 35, 11] can leak in-
formation from both sequential and out-of-order execu-
tion.

From a security perspective, one observation is partic-
ularly significant: Out-of-order; vulnerable CPUs allow
an unprivileged process to load data from a privileged
(kernel or physical) address into a temporary CPU reg-
ister. Moreover, the CPU even performs further com-
putations based on this register value, e.g., access to an
array based on the register value. The processor ensures
correct program execution, by simply discarding the re-
sults of the memory lookups (e.g., the modified register
states), if it turns out that an instruction should not have
been executed. Hence, on the architectural level (e.g., the
abstract definition of how the processor should perform
computations), no security problem arises.

However, we observed that out-of-order memory
lookups influence the cache, which in turn can be de-
tected through the cache side channel. As a result, an
attacker can dump the entire kernel memory by reading
privileged memory in an out-of-order execution stream,
and transmit the data from this elusive state via a mi-
croarchitectural covert channel (e.g., Flush+Reload) to
the outside world. On the receiving end of the covert
channel, the register value is reconstructed. Hence, on
the microarchitectural level (e.g., the actual hardware im-
plementation), there is an exploitable security problem.

Meltdown breaks all security assumptions given by the
CPU’s memory isolation capabilities. We evaluated the
attack on modern desktop machines and laptops, as well
as servers in the cloud. Meltdown allows an unprivileged
process to read data mapped in the kernel address space,
including the entire physical memory on Linux and OS
X, and a large fraction of the physical memory on Win-
dows. This may include physical memory of other pro-
cesses, the kernel, and in case of kernel-sharing sand-
box solutions (e.g., Docker, LXC) or Xen in paravirtu-
alization mode, memory of the kernel (or hypervisor),
and other co-located instances. While the performance
heavily depends on the specific machine, e.g., processor
speed, TLB and cache sizes, and DRAM speed, we can
dump kernel and physical memory with up to 503 KB/s.
Hence, an enormous number of systems are affected.

The countermeasure KAISER [8], originally devel-
oped to prevent side-channel attacks targeting KASLR,
inadvertently protects against Meltdown as well. Our
evaluation shows that KAISER prevents Meltdown to a
large extent. Consequently, we stress that it is of ut-
most importance to deploy KAISER on all operating
systems immediately. Fortunately, during a responsible
disclosure window, the three major operating systems
(Windows, Linux, and OS X) implemented variants of
KAISER and will roll out these patches in the near fu-
ture.

Meltdown is distinct from the Spectre Attacks [19] in
several ways, notably that Spectre requires tailoring to
the victim process’s software environment, but applies
more broadly to CPUs and is not mitigated by KAISER.

Contributions. The contributions of this work are:

1. We describe out-of-order execution as a new, ex-
tremely powerful, software-based side channel.

2. We show how out-of-order execution can be com-
bined with a microarchitectural covert channel to
transfer the data from an elusive state to a receiver
on the outside.

3. We present an end-to-end attack combining out-of-
order execution with exception handlers or TSX, to
read arbitrary physical memory without any permis-
sions or privileges, on laptops, desktop machines,
and on public cloud machines.

4. We evaluate the performance of Meltdown and the
effects of KAISER on it.

Outline. The remainder of this paper is structured as
follows: In Section 2, we describe the fundamental prob-
lem which is introduced with out-of-order execution. In
Section 3, we provide a toy example illustrating the side
channel Meltdown exploits. In Section 4, we describe
the building blocks of the full Meltdown attack. In Sec-
tion 5, we present the Meltdown attack. In Section 6,
we evaluate the performance of the Meltdown attack on
several different systems. In Section 7, we discuss the ef-
fects of the software-based KAISER countermeasure and
propose solutions in hardware. In Section 8, we discuss
related work and conclude our work in Section 9.

2 Background

In this section, we provide background on out-of-order
execution, address translation, and cache attacks.

2.1 Out-of-order execution

Out-of-order execution is an optimization technique that
allows to maximize the utilization of all execution units
of a CPU core as exhaustive as possible. Instead of pro-
cessing instructions strictly in the sequential program or-
der, the CPU executes them as soon as all required re-
sources are available. While the execution unit of the
current operation is occupied, other execution units can
run ahead. Hence, instructions can be run in parallel as
long as their results follow the architectural definition.
In practice, CPUs supporting out-of-order execution
support running operations speculatively to the extent
that the processor’s out-of-order logic processes instruc-
tions before the CPU is certain whether the instruction

will be needed and committed. In this paper, we refer
to speculative execution in a more restricted meaning,
where it refers to an instruction sequence following a
branch, and use the term out-of-order execution to refer
to any way of getting an operation executed before the
processor has committed the results of all prior instruc-
tions.

In 1967, Tomasulo [33] developed an algorithm [33]
that enabled dynamic scheduling of instructions to al-
low out-of-order execution. Tomasulo [33] introduced
a unified reservation station that allows a CPU to use
a data value as it has been computed instead of storing
it to a register and re-reading it. The reservation sta-
tion renames registers to allow instructions that operate
on the same physical registers to use the last logical one
to solve read-after-write (RAW), write-after-read (WAR)
and write-after-write (WAW) hazards. Furthermore, the
reservation unit connects all execution units via a com-
mon data bus (CDB). If an operand is not available, the
reservation unit can listen on the CDB until it is available
and then directly begin the execution of the instruction.

On the Intel architecture, the pipeline consists of the
front-end, the execution engine (back-end) and the mem-
ory subsystem [14]. x86 instructions are fetched by
the front-end from the memory and decoded to micro-
operations (OPs) which are continuously sent to the ex-
ecution engine. Out-of-order execution is implemented
within the execution engine as illustrated in Figure 1.
The Reorder Buffer is responsible for register allocation,
register renaming and retiring. Additionally, other opti-
mizations like move elimination or the recognition of ze-
roing idioms are directly handled by the reorder buffer.
The pOPs are forwarded to the Unified Reservation Sta-
tion that queues the operations on exit ports that are con-
nected to Execution Units. Each execution unit can per-
form different tasks like ALU operations, AES opera-
tions, address generation units (AGU) or memory loads
and stores. AGUs as well as load and store execution
units are directly connected to the memory subsystem to
process its requests.

Since CPUs usually do not run linear instruction
streams, they have branch prediction units that are used
to obtain an educated guess of which instruction will be
executed next. Branch predictors try to determine which
direction of a branch will be taken before its condition
is actually evaluated. Instructions that lie on that path
and do not have any dependencies can be executed in ad-
vance and their results immediately used if the prediction
was correct. If the prediction was incorrect, the reorder
buffer allows to rollback by clearing the reorder buffer
and re-initializing the unified reservation station.

Various approaches to predict the branch exist: With
static branch prediction [12], the outcome of the branch
is solely based on the instruction itself. Dynamic branch

ITLB }4—

L1 Instruction Cache

Branch Instruction Fetch & PreDecode
E Predictor .
) Instruction Queue
=
=
é LOP Cache 4-Way Decode
l 1OPs l LOP l LOP. luop l HOP
MUX
¥
‘ Allocation Queue ‘
| HOP | nor LOP | HoP
¥ ¥
CDB ﬁ Reorder buffer ‘
luop lpop lyo? lpov luop luop
(D]
g -:j Scheduler ‘
50
: OP OP OP LOP OP OoP
U—] I u i u I u
g g sl [l =] [=
2 L REREEHEE
5
= S |4 B |B| |§| |=
SRIE = =) = = 2
— —
X = | =
(84 <
Execution Units
E Load Buffer| |Store Buffer
25 [Load Butter]
i
g > DTLB}«—» STLB (——
v & L1 Data Cache
E t?) L2 Cache ——

Figure 1: Simplified illustration of a single core of the In-
tel’s Skylake microarchitecture. Instructions are decoded
into 4 OPs and executed out-of-order in the execution en-
gine by individual execution units.

prediction [2] gathers statistics at run-time to predict the
outcome. One-level branch prediction uses a 1-bit or 2-
bit counter to record the last outcome of the branch [21].
Modern processors often use two-level adaptive predic-
tors [36] that remember the history of the last n outcomes
allow to predict regularly recurring patterns. More re-
cently, ideas to use neural branch prediction [34, 18, 32]
have been picked up and integrated into CPU architec-
tures [3].

2.2 Address Spaces

To isolate processes from each other, CPUs support vir-
tual address spaces where virtual addresses are translated
to physical addresses. A virtual address space is divided
into a set of pages that can be individually mapped to
physical memory through a multi-level page translation
table. The translation tables define the actual virtual
to physical mapping and also protection properties that
are used to enforce privilege checks, such as readable,

Physical memory

‘ 3 Kernel

0 04T ¥ ‘ ‘ 1

Figure 2: The physical memory is directly mapped in the
kernel at a certain offset. A physical address (blue) which
is mapped accessible for the user space is also mapped in
the kernel space through the direct mapping.

writable, executable and user-accessible. The currently
used translation table that is held in a special CPU reg-
ister. On each context switch, the operating system up-
dates this register with the next process’ translation table
address in order to implement per process virtual address
spaces. Because of that, each process can only reference
data that belongs to its own virtual address space. Each
virtual address space itself is split into a user and a kernel
part. While the user address space can be accessed by the
running application, the kernel address space can only be
accessed if the CPU is running in privileged mode. This
is enforced by the operating system disabling the user-
accessible property of the corresponding translation ta-
bles. The kernel address space does not only have mem-
ory mapped for the kernel’s own usage, but it also needs
to perform operations on user pages, e.g., filling them
with data. Consequently, the entire physical memory is
typically mapped in the kernel. On Linux and OS X, this
is done via a direct-physical map, i.e., the entire physi-
cal memory is directly mapped to a pre-defined virtual
address (cf. Figure 2).

Instead of a direct-physical map, Windows maintains
a multiple so-called paged pools, non-paged pools, and
the system cache. These pools are virtual memory re-
gions in the kernel address space mapping physical pages
to virtual addresses which are either required to remain
in the memory (non-paged pool) or can be removed from
the memory because a copy is already stored on the disk
(paged pool). The system cache further contains map-
pings of all file-backed pages. Combined, these memory
pools will typically map a large fraction of the physical
memory into the kernel address space of every process.

The exploitation of memory corruption bugs often re-
quires the knowledge of addresses of specific data. In
order to impede such attacks, address space layout ran-
domization (ASLR) has been introduced as well as non-
executable stacks and stack canaries. In order to protect
the kernel, KASLR randomizes the offsets where drivers
are located on every boot, making attacks harder as they
now require to guess the location of kernel data struc-
tures. However, side-channel attacks allow to detect the

exact location of kernel data structures [9, 13, 17] or de-
randomize ASLR in JavaScript [6]. A combination of a
software bug and the knowledge of these addresses can
lead to privileged code execution.

2.3 Cache Attacks

In order to speed-up memory accesses and address trans-
lation, the CPU contains small memory buffers, called
caches, that store frequently used data. CPU caches hide
slow memory access latencies by buffering frequently
used data in smaller and faster internal memory. Mod-
ern CPUs have multiple levels of caches that are either
private to its cores or shared among them. Address space
translation tables are also stored in memory and are also
cached in the regular caches.

Cache side-channel attacks exploit timing differences
that are introduced by the caches. Different cache attack
techniques have been proposed and demonstrated in the
past, including Evict+Time [28], Prime+Probe [28, 29],
and Flush+Reload [35]. Flush+Reload attacks work on
a single cache line granularity. These attacks exploit the
shared, inclusive last-level cache. An attacker frequently
flushes a targeted memory location using the c1flush
instruction. By measuring the time it takes to reload the
data, the attacker determines whether data was loaded
into the cache by another process in the meantime. The
Flush+Reload attack has been used for attacks on various
computations, e.g., cryptographic algorithms [35, 16, 1],
web server function calls [37], user input [11, 23, 31],
and kernel addressing information [9].

A special use case are covert channels. Here the at-
tacker controls both, the part that induces the side effect,
and the part that measures the side effect. This can be
used to leak information from one security domain to an-
other, while bypassing any boundaries existing on the ar-
chitectural level or above. Both Prime+Probe and Flush+
Reload have been used in high-performance covert chan-
nels [24, 26, 10].

3 A Toy Example

In this section, we start with a toy example, a simple
code snippet, to illustrate that out-of-order execution can
change the microarchitectural state in a way that leaks
information. However, despite its simplicity, it is used as
a basis for Section 4 and Section 5, where we show how
this change in state can be exploited for an attack.
Listing 1 shows a simple code snippet first raising an
(unhandled) exception and then accessing an array. The
property of an exception is that the control flow does not
continue with the code after the exception, but jumps to
an exception handler in the operating system. Regardless

| raise_exception();
2 // the line below ts never reached
3 access(probe_array[data * 4096]);

Listing 1: A toy example to illustrate side-effects of out-
of-order execution.

<instr.>
<instr.> 8
£
2
EXCEPTION 5
HANDLER <instr.>
<instr.> [Exception]
<instr.> <instr.> a
. £5 &
[Terminate] <instr.> ; 52
o C
<instr.> &

Figure 3: If an executed instruction causes an exception,
diverting the control flow to an exception handler, the
subsequent instruction must not be executed anymore.
Due to out-of-order execution, the subsequent instruc-
tions may already have been partially executed, but not
retired. However, the architectural effects of the execu-
tion will be discarded.

of whether this exception is raised due to a memory ac-
cess, e.g., by accessing an invalid address, or due to any
other CPU exception, e.g., a division by zero, the control
flow continues in the kernel and not with the next user
space instruction.

Thus, our toy example cannot access the array in the-
ory, as the exception immediately traps to the kernel and
terminates the application. However, due to the out-of-
order execution, the CPU might have already executed
the following instructions as there is no dependency on
the exception. This is illustrated in Figure 3. Due to the
exception, the instructions executed out of order are not
retired and, thus, never have architectural effects.

Although the instructions executed out of order do not
have any visible architectural effect on registers or mem-
ory, they have microarchitectural side effects. During the
out-of-order execution, the referenced memory is fetched
into a register and is also stored in the cache. If the out-
of-order execution has to be discarded, the register and
memory contents are never committed. Nevertheless, the
cached memory contents are kept in the cache. We can
leverage a microarchitectural side-channel attack such
as Flush+Reload [35], which detects whether a specific
memory location is cached, to make this microarchitec-
tural state visible. There are other side channels as well
which also detect whether a specific memory location
is cached, including Prime+Probe [28, 24, 26], Evict+
Reload [23], or Flush+Flush [10]. However, as Flush+
Reload is the most accurate known cache side channel

500
400
300
200

Access time
[cycles]

0 50 100 150 200 250
Page

Figure 4: Even if a memory location is only accessed
during out-of-order execution, it remains cached. Iterat-
ing over the 256 pages of probe_array shows one cache
hit, exactly on the page that was accessed during the out-
of-order execution.

and is simple to implement, we do not consider any other
side channel for this example.

Based on the value of data in this toy example, a dif-
ferent part of the cache is accessed when executing the
memory access out of order. As data is multiplied by
4096, data accesses to probe_array are scattered over
the array with a distance of 4kB (assuming an 1 B data
type for probe_array). Thus, there is an injective map-
ping from the value of data to a memory page, i.e., there
are no two different values of data which result in an ac-
cess to the same page. Consequently, if a cache line of a
page is cached, we know the value of data. The spread-
ing over different pages eliminates false positives due to
the prefetcher, as the prefetcher cannot access data across
page boundaries [14].

Figure 4 shows the result of a Flush+Reload measure-
ment iterating over all pages, after executing the out-of-
order snippet with data = 84. Although the array ac-
cess should not have happened due to the exception, we
can clearly see that the index which would have been ac-
cessed is cached. Iterating over all pages (e.g., in the
exception handler) shows only a cache hit for page 84
This shows that even instructions which are never actu-
ally executed, change the microarchitectural state of the
CPU. Section 4 modifies this toy example to not read a
value, but to leak an inaccessible secret.

4 Building Blocks of the Attack

The toy example in Section 3 illustrated that side-effects
of out-of-order execution can modify the microarchitec-
tural state to leak information. While the code snippet
reveals the data value passed to a cache-side channel, we
want to show how this technique can be leveraged to leak
otherwise inaccessible secrets. In this section, we want
to generalize and discuss the necessary building blocks
to exploit out-of-order execution for an attack.

The adversary targets a secret value that is kept some-
where in physical memory. Note that register contents
are also stored in memory upon context switches, i.e.,

Exception Handling/
Suppression

Transient Accessed

I

1

I

I

|

1

. Secret @ | |
Instructions |
I

I

1

I

I

I

1

1

Microarchitectural
State Change

Section 4.1

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Transfer|[(Covert Channel)

Recovered
Secret Q=

Architectural Recovery

State

Figure 5: The Meltdown attack uses exception handling
or suppression, e.g., TSX, to run a series of transient
instructions. These transient instructions obtain a (per-
sistent) secret value and change the microarchitectural
state of the processor based on this secret value. This
forms the sending part of a microarchitectural covert
channel. The receiving side reads the microarchitectural
state, making it architectural and recovering the secret
value.

they are also stored in physical memory. As described in
Section 2.2, the address space of every process typically
includes the entire user space, as well as the entire kernel
space, which typically also has all physical memory (in-
use) mapped. However, these memory regions are only
accessible in privileged mode (cf. Section 2.2).

In this work, we demonstrate leaking secrets by by-
passing the privileged-mode isolation, giving an attacker
full read access to the entire kernel space including any
physical memory mapped, including the physical mem-
ory of any other process and the kernel. Note that
Kocher et al. [19] pursue an orthogonal approach, called
Spectre Attacks, which trick speculative executed in-
structions into leaking information that the victim pro-
cess is authorized to access. As a result, Spectre Attacks
lack the privilege escalation aspect of Meltdown and re-
quire tailoring to the victim process’s software environ-
ment, but apply more broadly to CPUs that support spec-
ulative execution and are not stopped by KAISER.

The full Meltdown attack consists of two building
blocks, as illustrated in Figure 5. The first building block
of Meltdown is to make the CPU execute one or more
instructions that would never occur in the executed path.
In the toy example (cf. Section 3), this is an access to
an array, which would normally never be executed, as
the previous instruction always raises an exception. We
call such an instruction, which is executed out of order,
leaving measurable side effects, a transient instruction.

Furthermore, we call any sequence of instructions con-
taining at least one transient instruction a transient in-
struction sequence.

In order to leverage transient instructions for an attack,
the transient instruction sequence must utilize a secret
value that an attacker wants to leak. Section 4.1 describes
building blocks to run a transient instruction sequence
with a dependency on a secret value.

The second building block of Meltdown is to transfer
the microarchitectural side effect of the transient instruc-
tion sequence to an architectural state to further process
the leaked secret. Thus, the second building described
in Section 4.2 describes building blocks to transfer a mi-
croarchitectural side effect to an architectural state using
a covert channel.

4.1 Executing Transient Instructions

The first building block of Meltdown is the execution
of transient instructions. Transient instructions basically
occur all the time, as the CPU continuously runs ahead
of the current instruction to minimize the experienced
latency and thus maximize the performance (cf. Sec-
tion 2.1). Transient instructions introduce an exploitable
side channel if their operation depends on a secret value.
We focus on addresses that are mapped within the at-
tacker’s process, i.e., the user-accessible user space ad-
dresses as well as the user-inaccessible kernel space ad-
dresses. Note that attacks targeting code that is executed
within the context (i.e., address space) of another process
are possible [19], but out of scope in this work, since all
physical memory (including the memory of other pro-
cesses) can be read through the kernel address space any-
way.

Accessing user-inaccessible pages, such as kernel
pages, triggers an exception which generally terminates
the application. If the attacker targets a secret at a user-
inaccessible address, the attacker has to cope with this
exception. We propose two approaches: With excep-
tion handling, we catch the exception effectively occur-
ring after executing the transient instruction sequence,
and with exception suppression, we prevent the excep-
tion from occurring at all and instead redirect the control
flow after executing the transient instruction sequence.
We discuss these approaches in detail in the following.

Exception handling. A trivial approach is to fork the
attacking application before accessing the invalid mem-
ory location that terminates the process, and only access
the invalid memory location in the child process. The
CPU executes the transient instruction sequence in the
child process before crashing. The parent process can
then recover the secret by observing the microarchitec-
tural state, e.g., through a side-channel.

It is also possible to install a signal handler that will
be executed if a certain exception occurs, in this specific
case a segmentation fault. This allows the attacker to
issue the instruction sequence and prevent the application
from crashing, reducing the overhead as no new process
has to be created.

Exception suppression. A different approach to deal
with exceptions is to prevent them from being raised in
the first place. Transactional memory allows to group
memory accesses into one seemingly atomic operation,
giving the option to roll-back to a previous state if an er-
ror occurs. If an exception occurs within the transaction,
the architectural state is reset, and the program execution
continues without disruption.

Furthermore, speculative execution issues instructions
that might not occur on the executed code path due to
a branch misprediction. Such instructions depending on
a preceding conditional branch can be speculatively ex-
ecuted. Thus, the invalid memory access is put within
a speculative instruction sequence that is only executed
if a prior branch condition evaluates to true. By making
sure that the condition never evaluates to true in the ex-
ecuted code path, we can suppress the occurring excep-
tion as the memory access is only executed speculatively.
This technique may require a sophisticated training of the
branch predictor. Kocher et al. [19] pursue this approach
in orthogonal work, since this construct can frequently
be found in code of other processes.

4.2 Building a Covert Channel

The second building block of Meltdown is the transfer
of the microarchitectural state, which was changed by
the transient instruction sequence, into an architectural
state (cf. Figure 5). The transient instruction sequence
can be seen as the sending end of a microarchitectural
covert channel. The receiving end of the covert channel
receives the microarchitectural state change and deduces
the secret from the state. Note that the receiver is not
part of the transient instruction sequence and can be a
different thread or even a different process e.g., the parent
process in the fork-and-crash approach.

We leverage techniques from cache attacks, as the
cache state is a microarchitectural state which can be re-
liably transferred into an architectural state using vari-
ous techniques [28, 35, 10]. Specifically, we use Flush+
Reload [35], as it allows to build a fast and low-noise
covert channel. Thus, depending on the secret value, the
transient instruction sequence (cf. Section 4.1) performs
a regular memory access, €.g., as it does in the toy exam-
ple (cf. Section 3).

After the transient instruction sequence accessed an
accessible address, i.e., this is the sender of the covert

channel; the address is cached for subsequent accesses.
The receiver can then monitor whether the address has
been loaded into the cache by measuring the access time
to the address. Thus, the sender can transmit a ‘1’-bit by
accessing an address which is loaded into the monitored
cache, and a ‘0’-bit by not accessing such an address.
Using multiple different cache lines, as in our toy ex-
ample in Section 3, allows to transmit multiple bits at
once. For every of the 256 different byte values, the
sender accesses a different cache line. By performing
a Flush+Reload attack on all of the 256 possible cache
lines, the receiver can recover a full byte instead of just
one bit. However, since the Flush+Reload attack takes
much longer (typically several hundred cycles) than the
transient instruction sequence, transmitting only a single
bit at once is more efficient. The attacker can simply do
that by shifting and masking the secret value accordingly.
Note that the covert channel is not limited to microar-
chitectural states which rely on the cache. Any microar-
chitectural state which can be influenced by an instruc-
tion (sequence) and is observable through a side channel
can be used to build the sending end of a covert channel.
The sender could, for example, issue an instruction (se-
quence) which occupies a certain execution port such as
the ALU to send a ‘1’-bit. The receiver measures the la-
tency when executing an instruction (sequence) on the
same execution port. A high latency implies that the
sender sends a ‘1’-bit, whereas a low latency implies
that sender sends a ‘0’-bit. The advantage of the Flush+
Reload cache covert channel is the noise resistance and
the high transmission rate [10]. Furthermore, the leakage
can be observed from any CPU core [35], i.e., reschedul-
ing events do not significantly affect the covert channel.

5 Meltdown

In this section, present Meltdown, a powerful attack
allowing to read arbitrary physical memory from an
unprivileged user program, comprised of the building
blocks presented in Section 4. First, we discuss the attack
setting to emphasize the wide applicability of this attack.
Second, we present an attack overview, showing how
Meltdown can be mounted on both Windows and Linux
on personal computers as well as in the cloud. Finally,
we discuss a concrete implementation of Meltdown al-
lowing to dump kernel memory with up to 503 KB/s.

Attack setting. In our attack, we consider personal
computers and virtual machines in the cloud. In the
attack scenario, the attacker has arbitrary unprivileged
code execution on the attacked system, i.e., the attacker
can run any code with the privileges of a normal user.
However, the attacker has no physical access to the ma-

1 ; rcx = kernel address

2 ; rbxz = probe array

3 retry:

4 mov al, byte [rcx]

5 shl rax, Oxc

6 jz retry

7 mov rbx, qword [rbx + rax]

Listing 2: The core instruction sequence of Meltdown.
An inaccessible kernel address is moved to a register,
raising an exception. The subsequent instructions are
already executed out of order before the exception is
raised, leaking the content of the kernel address through
the indirect memory access.

chine. Further, we assume that the system is fully pro-
tected with state-of-the-art software-based defenses such
as ASLR and KASLR as well as CPU features like
SMAP, SMEP, NX, and PXN. Most importantly, we as-
sume a completely bug-free operating system, thus, no
software vulnerability exists that can be exploited to gain
kernel privileges or leak information. The attacker tar-
gets secret user data, e.g., passwords and private keys, or
any other valuable information.

5.1 Attack Description

Meltdown combines the two building blocks discussed

in Section 4. First, an attacker makes the CPU execute

a transient instruction sequence which uses an inacces-

sible secret value stored somewhere in physical memory

(cf. Section 4.1). The transient instruction sequence acts

as the transmitter of a covert channel (cf. Section 4.2),

ultimately leaking the secret value to the attacker.

Meltdown consists of 3 steps:

Step 1 The content of an attacker-chosen memory loca-
tion, which is inaccessible to the attacker, is loaded
into a register.

Step 2 A transient instruction accesses a cache line
based on the secret content of the register.

Step 3 The attacker uses Flush+Reload to determine the
accessed cache line and hence the secret stored at the
chosen memory location.

By repeating these steps for different memory locations,

the attacker can dump the kernel memory, including the

entire physical memory.

Listing 2 shows the basic implementation of the tran-
sient instruction sequence and the sending part of the
covert channel, using x86 assembly instructions. Note
that this part of the attack could also be implemented en-
tirely in higher level languages like C. In the following,
we will discuss each step of Meltdown and the corre-
sponding code line in Listing 2.

Step 1: Reading the secret. To load data from the
main memory into a register, the data in the main mem-
ory is referenced using a virtual address. In parallel to
translating a virtual address into a physical address, the
CPU also checks the permission bits of the virtual ad-
dress, i.e., whether this virtual address is user accessible
or only accessible by the kernel. As already discussed in
Section 2.2, this hardware-based isolation through a per-
mission bit is considered secure and recommended by the
hardware vendors. Hence, modern operating systems al-
ways map the entire kernel into the virtual address space
of every user process.

As a consequence, all kernel addresses lead to a valid
physical address when translating them, and the CPU can
access the content of such addresses. The only differ-
ence to accessing a user space address is that the CPU
raises an exception as the current permission level does
not allow to access such an address. Hence, the user
space cannot simply read the contents of such an address.
However, Meltdown exploits the out-of-order execution
of modern CPUs, which still executes instructions in the
small time window between the illegal memory access
and the raising of the exception.

In line 4 of Listing 2, we load the byte value located
at the target kernel address, stored in the RCX register,
into the least significant byte of the RAX register repre-
sented by AL. As explained in more detail in Section 2.1,
the MOV instruction is fetched by the core, decoded into
UOPs, allocated, and sent to the reorder buffer. There, ar-
chitectural registers (e.g., RAX and RCX in Listing 2) are
mapped to underlying physical registers enabling out-of-
order execution. Trying to utilize the pipeline as much as
possible, subsequent instructions (lines 5-7) are already
decoded and allocated as uOPs as well. The uOPs are
further sent to the reservation station holding the ©OPs
while they wait to be executed by the corresponding ex-
ecution unit. The execution of a tOP can be delayed if
execution units are already used to their corresponding
capacity or operand values have not been calculated yet.

When the kernel address is loaded in line 4, it is likely
that the CPU already issued the subsequent instructions
as part of the out-or-order execution, and that their cor-
responding 4 OPs wait in the reservation station for the
content of the kernel address to arrive. As soon as the
fetched data is observed on the common data bus, the
UOPs can begin their execution.

When the pOPs finish their execution, they retire in-
order, and, thus, their results are committed to the archi-
tectural state. During the retirement, any interrupts and
exception that occurred during the execution of the in-
struction are handled. Thus, if the MOV instruction that
loads the kernel address is retired, the exception is reg-
istered and the pipeline is flushed to eliminate all results
of subsequent instructions which were executed out of

order. However, there is a race condition between raising
this exception and our attack step 2 which we describe
below.

As reported by Gruss et al. [9], prefetching kernel ad-
dresses sometimes succeeds. We found that prefetching
the kernel address can slightly improve the performance
of the attack on some systems.

Step 2: Transmitting the secret. The instruction se-
quence from step 1 which is executed out of order has to
be chosen in a way that it becomes a transient instruction
sequence. If this transient instruction sequence is exe-
cuted before the MOV instruction is retired (i.e., raises the
exception), and the transient instruction sequence per-
formed computations based on the secret, it can be uti-
lized to transmit the secret to the attacker.

As already discussed, we utilize cache attacks that al-
low to build fast and low-noise covert channel using the
CPU’s cache. Thus, the transient instruction sequence
has to encode the secret into the microarchitectural cache
state, similarly to the toy example in Section 3.

We allocate a probe array in memory and ensure that
no part of this array is cached. To transmit the secret, the
transient instruction sequence contains an indirect mem-
ory access to an address which is calculated based on the
secret (inaccessible) value. In line 5 of Listing 2 the se-
cret value from step 1 is multiplied by the page size, i.e.,
4 KB. The multiplication of the secret ensures that ac-
cesses to the array have a large spatial distance to each
other. This prevents the hardware prefetcher from load-
ing adjacent memory locations into the cache as well.
Here, we read a single byte at once, hence our probe ar-
ray is 256 x 4096 bytes, assuming 4 KB pages.

Note that in the out-of-order execution we have a
noise-bias towards register value ‘0’. We discuss the rea-
sons for this in Section 5.2. However, for this reason, we
introduce a retry-logic into the transient instruction se-
quence. In case we read a ‘0’, we try to read the secret
again (step 1). In line 7, the multiplied secret is added to
the base address of the probe array, forming the target ad-
dress of the covert channel. This address is read to cache
the corresponding cache line. Consequently, our tran-
sient instruction sequence affects the cache state based
on the secret value that was read in step 1.

Since the transient instruction sequence in step 2 races
against raising the exception, reducing the runtime of
step 2 can significantly improve the performance of the
attack. For instance, taking care that the address trans-
lation for the probe array is cached in the TLB increases
the attack performance on some systems.

Step 3: Receiving the secret. In step 3, the attacker
recovers the secret value (step 1) by leveraging a mi-
croarchitectural side-channel attack (i.e., the receiving

end of a microarchitectural covert channel) that transfers
the cache state (step 2) back into an architectural state.
As discussed in Section 4.2, Meltdown relies on Flush+
Reload to transfer the cache state into an architectural
state.

When the transient instruction sequence of step 2 is
executed, exactly one cache line of the probe array is
cached. The position of the cached cache line within the
probe array depends only on the secret which is read in
step 1. Thus, the attacker iterates over all 256 pages of
the probe array and measures the access time for every
first cache line (i.e., offset) on the page. The number of
the page containing the cached cache line corresponds
directly to the secret value.

Dumping the entire physical memory. By repeating
all 3 steps of Meltdown, the attacker can dump the entire
memory by iterating over all different addresses. How-
ever, as the memory access to the kernel address raises an
exception that terminates the program, we use one of the
methods described in Section 4.1 to handle or suppress
the exception.

As all major operating systems also typically map the
entire physical memory into the kernel address space
(cf. Section 2.2) in every user process, Meltdown is not
only limited to reading kernel memory but it is capable
of reading the entire physical memory of the target ma-
chine.

5.2 Optimizations and Limitations

The case of 0. If the exception is triggered while trying
to read from an inaccessible kernel address, the register
where the data should be stored, appears to be zeroed out.
This is reasonable because if the exception is unhandled,
the user space application is terminated, and the value
from the inaccessible kernel address could be observed
in the register contents stored in the core dump of the
crashed process. The direct solution to fix this problem
is to zero out the corresponding registers. If the zeroing
out of the register is faster than the execution of the sub-
sequent instruction (line 5 in Listing 2), the attacker may
read a false value in the third step. To prevent the tran-
sient instruction sequence from continuing with a wrong
value, i.e., ‘0’, Meltdown retries reading the address until
it encounters a value different from ‘0’ (line 6). As the
transient instruction sequence terminates after the excep-
tion is raised, there is no cache access if the secret value
is 0. Thus, Meltdown assumes that the secret value is
indeed ‘0’ if there is no cache hit at all.

The loop is terminated by either the read value not be-
ing ‘0’ or by the raised exception of the invalid mem-
ory access. Note that this loop does not slow down

the attack measurably, since, in either case, the proces-
sor runs ahead of the illegal memory access, regardless
of whether ahead is a loop or ahead is a linear control
flow. In either case, the time until the control flow re-
turned from exception handling or exception suppression
remains the same with and without this loop. Thus, cap-
turing read ‘0’s beforehand and recovering early from a
lost race condition vastly increases the reading speed.

Single-bit transmission In the attack description in
Section 5.1, the attacker transmitted 8 bits through the
covert channel at once and performed 2% = 256 Flush+
Reload measurements to recover the secret. However,
there is a clear trade-off between running more tran-
sient instruction sequences and performing more Flush+
Reload measurements. The attacker could transmit an
arbitrary number of bits in a single transmission through
the covert channel, by either reading more bits using a
MOV instruction for a larger data value. Furthermore, the
attacker could mask bits using additional instructions in
the transient instruction sequence. We found the number
of additional instructions in the transient instruction se-
quence to have a negligible influence on the performance
of the attack.

The performance bottleneck in the generic attack de-
scription above is indeed, the time spent on Flush+
Reload measurements. In fact, with this implementation,
almost the entire time will be spent on Flush+Reload
measurements. By transmitting only a single bit, we
can omit all but one Flush+Reload measurement, i.e., the
measurement on cache line 1. If the transmitted bit was
a ‘1’, then we observe a cache hit on cache line 1. Oth-
erwise, we observe no cache hit on cache line 1.

Transmitting only a single bit at once also has draw-
backs. As described above, our side channel has a bias
towards a secret value of ‘0’. If we read and transmit
multiple bits at once, the likelihood that all bits are ‘0’
may quite small for actual user data. The likelihood that
a single bit is ‘0’ is typically close to 50 %. Hence, the
number of bits read and transmitted at once is a trade-
off between some implicit error-reduction and the overall
transmission rate of the covert channel.

However, since the error rates are quite small in either
case, our evaluation (cf. Section 6) is based on the single-
bit transmission mechanics.

Exception Suppression using Intel TSX. In Sec-
tion 4.1, we discussed the option to prevent that an ex-
ception is raised due an invalid memory access in the first
place. Using Intel TSX, a hardware transactional mem-
ory implementation, we can completely suppress the ex-
ception [17].

With Intel TSX, multiple instructions can be grouped
to a transaction, which appears to be an atomic opera-

10

tion, i.e., either all or no instruction is executed. If one
instruction within the transaction fails, already executed
instructions are reverted, but no exception is raised.

If we wrap the code from Listing 2 with such a TSX
instruction, any exception is suppressed. However, the
microarchitectural effects are still visible, i.e., the cache
state is persistently manipulated from within the hard-
ware transaction [7]. This results in a higher channel ca-
pacity, as suppressing the exception is significantly faster
than trapping into the kernel for handling the exception,
and continuing afterwards.

Dealing with KASLR. In 2013, kernel address space
layout randomization (KASLR) had been introduced to
the Linux kernel (starting from version 3.14 [4]) allow-
ing to randomize the location of the kernel code at boot
time. However, only as recently as May 2017, KASLR
had been enabled by default in version 4.12 [27]. With
KASLR also the direct-physical map is randomized and,
thus, not fixed at a certain address such that the attacker
is required to obtain the randomized offset before mount-
ing the Meltdown attack. However, the randomization is
limited to 40 bit.

Thus, if we assume a setup of the target machine with
8GB of RAM, it is sufficient to test the address space
for addresses in 8 GB steps. This allows to cover the
search space of 40 bit with only 128 tests in the worst
case. If the attacker can successfully obtain a value
from a tested address, the attacker can proceed dump-
ing the entire memory from that location. This allows to
mount Meltdown on a system despite being protected by
KASLR within seconds.

6 Evaluation

In this section, we evaluate Meltdown and the perfor-
mance of our proof-of-concept implementation 2. Sec-
tion 6.1 discusses the information which Meltdown can
leak, and Section 6.2 evaluates the performance of Melt-
down, including countermeasures. Finally, we discuss
limitations for AMD and ARM in Section 6.4.

Table 1 shows a list of configurations on which we
successfully reproduced Meltdown. For the evaluation of
Meltdown, we used both laptops as well as desktop PCs
with Intel Core CPUs. For the cloud setup, we tested
Meltdown in virtual machines running on Intel Xeon
CPUs hosted in the Amazon Elastic Compute Cloud as
well as on DigitalOcean. Note that for ethical reasons we
did not use Meltdown on addresses referring to physical
memory of other tenants.

“https://github.com/IAIK/meltdown

https://github.com/IAIK/meltdown

Table 1: Experimental setups.

Environment CPU model Cores
Lab Celeron G540 2
Lab Core i15-3230M 2
Lab Core i15-3320M 2
Lab Core 17-4790 4
Lab Core 15-6200U 2
Lab Core i7-6600U 2
Lab Core i7-6700K 4

Cloud Xeon E5-2676 v3 12
Cloud Xeon E5-2650 v4 12

6.1 Information Leakage and Environ-
ments

We evaluated Meltdown on both Linux (cf. Section 6.1.1)
and Windows 10 (cf. Section 6.1.3). On both operating
systems, Meltdown can successfully leak kernel mem-
ory. Furthermore, we also evaluated the effect of the
KAISER patches on Meltdown on Linux, to show that
KAISER prevents the leakage of kernel memory (cf. Sec-
tion 6.1.2). Finally, we discuss the information leakage
when running inside containers such as Docker (cf. Sec-
tion 6.1.4).

6.1.1 Linux

We successfully evaluated Meltdown on multiple ver-
sions of the Linux kernel, from 2.6.32 to 4.13.0. On
all these versions of the Linux kernel, the kernel address
space is also mapped into the user address space. Thus,
all kernel addresses are also mapped into the address
space of user space applications, but any access is pre-
vented due to the permission settings for these addresses.
As Meltdown bypasses these permission settings, an at-
tacker can leak the complete kernel memory if the vir-
tual address of the kernel base is known. Since all major
operating systems also map the entire physical memory
into the kernel address space (cf. Section 2.2), all physi-
cal memory can also be read.

Before kernel 4.12, kernel address space layout ran-
domization (KASLR) was not active by default [30]. If
KASLR is active, Meltdown can still be used to find the
kernel by searching through the address space (cf. Sec-
tion 5.2). An attacker can also simply de-randomize the
direct-physical map by iterating through the virtual ad-
dress space. Without KASLR, the direct-physical map
starts at address Oxffff 8800 0000 0000 and linearly
maps the entire physical memory. On such systems, an
attacker can use Meltdown to dump the entire physical
memory, simply by reading from virtual addresses start-
ing at Oxffff 8800 0000 0000.

11

On newer systems, where KASLR is active by default,
the randomization of the direct-physical map is limited
to 40 bit. It is even further limited due to the linearity of
the mapping. Assuming that the target system has at least
8 GB of physical memory, the attacker can test addresses
in steps of 8 GB, resulting in a maximum of 128 memory
locations to test. Starting from one discovered location,
the attacker can again dump the entire physical memory.

Hence, for the evaluation, we can assume that the ran-
domization is either disabled, or the offset was already
retrieved in a pre-computation step.

6.1.2 Linux with KAISER Patch

The KAISER patch by Gruss et al. [8] implements
a stronger isolation between kernel and user space.
KAISER does not map any kernel memory in the user
space, except for some parts required by the x86 archi-
tecture (e.g., interrupt handlers). Thus, there is no valid
mapping to either kernel memory or physical memory
(via the direct-physical map) in the user space, and such
addresses can therefore not be resolved. Consequently,
Meltdown cannot leak any kernel or physical memory
except for the few memory locations which have to be
mapped in user space.

We verified that KAISER indeed prevents Meltdown,
and there is no leakage of any kernel or physical memory.

Furthermore, if KASLR is active, and the few re-
maining memory locations are randomized, finding these
memory locations is not trivial due to their small size of
several kilobytes. Section 7.2 discusses the implications
of these mapped memory locations from a security per-
spective.

6.1.3 Microsoft Windows

We successfully evaluated Meltdown on an up-to-date
Microsoft Windows 10 operating system. In line with
the results on Linux (cf. Section 6.1.1), Meltdown also
can leak arbitrary kernel memory on Windows. This is
not surprising, since Meltdown does not exploit any soft-
ware issues, but is caused by a hardware issue.

In contrast to Linux, Windows does not have the con-
cept of an identity mapping, which linearly maps the
physical memory into the virtual address space. Instead,
a large fraction of the physical memory is mapped in
the paged pools, non-paged pools, and the system cache.
Furthermore, Windows maps the kernel into the address
space of every application too. Thus, Meltdown can read
kernel memory which is mapped in the kernel address
space, i.e., any part of the kernel which is not swapped
out, and any page mapped in the paged and non-paged
pool, and the system cache.

Note that there likely are physical pages which are
mapped in one process but not in the (kernel) address
space of another process, i.e., physical pages which can-
not be attacked using Meltdown. However, most of the
physical memory will still be accessible through Melt-
down.

We were successfully able to read the binary of the
Windows kernel using Meltdown. To verify that the
leaked data is actual kernel memory, we first used the
Windows kernel debugger to obtain kernel addresses
containing actual data. After leaking the data, we again
used the Windows kernel debugger to compare the leaked
data with the actual memory content, confirming that
Meltdown can successfully leak kernel memory.

6.1.4 Containers

We evaluated Meltdown running in containers sharing a
kernel, including Docker, LXC, and OpenVZ, and found
that the attack can be mounted without any restrictions.
Running Meltdown inside a container allows to leak in-
formation not only from the underlying kernel, but also
from all other containers running on the same physical
host.

The commonality of most container solutions is that
every container uses the same kernel, i.e., the kernel is
shared among all containers. Thus, every container has
a valid mapping of the entire physical memory through
the direct-physical map of the shared kernel. Further-
more, Meltdown cannot be blocked in containers, as it
uses only memory accesses. Especially with Intel TSX,
only unprivileged instructions are executed without even
trapping into the kernel.

Thus, the isolation of containers sharing a kernel can
be fully broken using Meltdown. This is especially crit-
ical for cheaper hosting providers where users are not
separated through fully virtualized machines, but only
through containers. We verified that our attack works in
such a setup, by successfully leaking memory contents
from a container of a different user under our control.

6.2 Meltdown Performance

To evaluate the performance of Meltdown, we leaked
known values from kernel memory. This allows us to
not only determine how fast an attacker can leak mem-
ory, but also the error rate, i.e., how many byte errors
to expect. We achieved average reading rates of up to
503 KB/s with an error rate as low as 0.02 % when using
exception suppression. For the performance evaluation,
we focused on the Intel Core i7-6700K as it supports In-
tel TSX, to get a fair performance comparison between
exception handling and exception suppression.

12

For all tests, we use Flush+Reload as a covert channel
to leak the memory as described in Section 5. We evalu-
ated the performance of both exception handling and ex-
ception suppression (cf. Section 4.1). For exception han-
dling, we used signal handlers, and if the CPU supported
it, we also used exception suppression using Intel TSX.
An extensive evaluation of exception suppression using
conditional branches was done by Kocher et al. [19] and
is thus omitted in this paper for the sake of brevity.

6.2.1 Exception Handling

Exception handling is the more universal implementa-
tion, as it does not depend on any CPU extension and can
thus be used without any restrictions. The only require-
ment for exception handling is operating system support
to catch segmentation faults and continue operation af-
terwards. This is the case for all modern operating sys-
tems, even though the specific implementation differs be-
tween the operating systems. On Linux, we used signals,
whereas, on Windows, we relied on the Structured Ex-
ception Handler.

With exception handling, we achieved average reading
speeds of 123 KB /s when leaking 12 MB of kernel mem-
ory. Out of the 12 MB kernel data, only 0.03 % were read
incorrectly. Thus, with an error rate of 0.03 %, the chan-
nel capacity is 122 KB/s.

6.2.2 Exception Suppression

Exception suppression can either be achieved using
conditional branches or using Intel TSX. Conditional
branches are covered in detail in Kocher et al. [19], hence
we only evaluate Intel TSX for exception suppression.
In contrast to exception handling, Intel TSX does not re-
quire operating system support, as it is an instruction-set
extension. However, Intel TSX is a rather new extension
and is thus only available on recent Intel CPUs, i.e., since
the Broadwell microarchitecture.

Again, we leaked 12 MB of kernel memory to mea-
sure the performance. With exception suppression, we
achieved average reading speeds of 503 KB/s. More-
over, the error rate of 0.02 % with exception suppression
is even lower than with exception handling. Thus, the
channel capacity we achieve with exception suppression
is 502KB/s.

6.3 Meltdown in Practice

Listing 3 shows a memory dump using Meltdown on
an Intel Core i7-6700K running Ubuntu 16.10 with the
Linux kernel 4.8.0. In this example, we can identify
HTTP headers of arequest to a web server running on the
machine. The XX cases represent bytes where the side

79cbb30: 616f 61 4e 6b 32 38 46 31 34 67 65 68 61 7a 34 |aoaNk28Fl4gehaz4|
79cbb40: 5a74 4d 79 78 68 76 41 57 69 69 63 77 59 62 61 |ZtMyxhvAWiicwYba
79cbb50: 356a 4c 76 4d 70 4b 56 56 32 4b 6a 37 4b 5a 4e |5jLvMpKVV2Kj7KZN|
79cbb60: 6655 6¢c 6e 72 38 64 74 35 54 62 43 63 7a 6f 44 |fUlnr8dt5TbCczoD|
79cbb70: 494e 46 71 58 6d 4a 69 34 58 50 39 62 43 53 47 |INFqXmJi4XP9bCSG|
79cbb80: 6cdc 48 32 5a 78 66 56 44 73 4b 57 39 34 68 6d |1LH2ZxfVDsKW94hm
79cbb90: 3364 2f 41 4d 41 45 44 41 41 41 41 41 51 45 42 |3d/AMAEDAAAAAQEB|
79cbbal: 4141 41 41 41 41 3d 3d XX XX XX XX XX XX XX XX

79cbbb0: XXXX XX XX XX XX XX XX XX XX XX XX XX XX XX XX ..
79cbbcO: XXXX XX 65 2d 68 65 61 64 XX XX XX XX XX XX XX

79cbbd0: XXXX XX XX XX XX XX XX XX XX XX XX XX XX XX XX

79cbbe0: XXXX XX XX XX XX XX XX XX XX XX XX XX XX XX XX ..
79cbbf0: XXXX XX XX XX XX XX XX XX XX XX XX XX XX XX XX ..
79cbc00: XXXX XX XX XX XX XX XX XX XX XX XX XX XX XX XX .
79cbc10: XXXX XX XX XX XX XX XX XX XX XX XX XX XX XX XX

79cbc20: XXXX XX XX XX XX XX XX XX XX XX XX XX XX XX XX

79cbc30: XXXX XX XX XX XX XX XX XX XX XX XX XX XX XX XX |....... ..
79cbc40: XXXX XX XX XX XX XX XX XX XX XX XX XX XX XX XX |... ..
79cbc50: XXXX XX XX 0d Oa XX 6f 72 69 67 69 6e 61 6¢c 2d original-
79cbc60: 7265 73 70 6f 6e 73 65 2d 68 65 61 64 65 72 73 |response-headers
79cbc70: XX44 61 74 65 3a 20 53 61 74 2c 20 30 39 20 44 |.Date: Sat, 09 DI|
79cbc80: 6563 20 32 30 31 37 20 32 32 3a 32 39 3a 32 35 |ec 2017 22:29:25]|
79cbc90: 2047 4d 54 0d Oa 43 6f 6e 74 65 6e 74 2d 4c 65 | GMT..Content-Le
79cbcal: 6e67 74 68 3a 20 31 0d O0a 43 6f 6e 74 65 6e 74 |ngth: 1..Content|
79cbcb0: 2d54 79 70 65 3a 20 74 65 78 74 2f 68 74 6d 6¢c |-Type: text/html|
79cbccO: 3b20 63 68 61 72 73 65 74 3d 75 74 66 2d 38 0d |; charset=utf-8.|
79cbcd0: 0ab3 65 72 76 65 72 3a 20 54 77 69 73 74 65 64 |.Server: Twisted|
79cbce0: 5765 62 2f 31 36 2e 33 2¢ 30 0d Oa XX 75 6e 63 |Web/16.3.0...unc|
79cbcf0: 6f6d 70 72 65 73 73 65 64 2d 6c 65 6e XX XX XX |ompressed-len...|

Listing 3: Memory dump showing HTTP Headers on
Ubuntu 16.10 on a Intel Core 17-6700K

£94b7690: e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 eb
£94b76a0: e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 eb
£94b76b0: 70 52 b8 6b 96 7f XX XX XX XX XX XX XX XX XX XX
£94b76c0: 09 XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX
£94b76d0: XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX
£94b76e0: XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX 81
£94b76£0: 12 XX e0 81 19 XX e0 81 44 6f 6¢c 70 68 69 6e 31
£94b7700: 38 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 eb
£94b7710: 70 52 b8 6b 96 7f XX XX XX XX XX XX XX XX XX XX
£94b7720: XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX
£94b7730: XX XX XX XX 4a XX XX XX XX XX XX XX XX XX XX XX
£94b7740: XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX
£94b7750: XX XX XX XX XX XX XX XX XX XX e0 81 69 6e 73 74
£94b7760: 61 5f 30 32 30 33 e5 e5 e5 e5 e5 e5 e5 e5 e5 eb
£94b7770: 70 52 18 7d 28 7f XX XX XX XX XX XX XX XX XX XX
£94b7780: XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX
£94b7790: XX XX XX XX 54 XX XX XX XX XX XX XX XX XX XX XX
£94b77a0: XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX
£94b77b0: XX XX XX XX XX XX XX XX XX XX XX XX 73 65 63 72
£94b77c0: 65 74 70 77 64 30 e5 e5 €5 e5 e5 e5 e5 e5 e5 e5 |etpwd0.
£94b77d0: 30 b4 18 7d 28 7f XX XX XX XX XX XX XX XX XX XX [0..}(
£94b77e0: XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX |.
£94b77£0: XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX |.
£94b7800: e5 e5 e5 eb e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 |
£94b7810: 68 74 74 70 73 3a 2f 2f 61 64 64 6f 6e 73 2e 63 |https://addons.c/
£94b7820: 64 6e 2e 6d 6f 7a 69 6c 6c 61 2e 6e 65 74 2f 75 |dn.mozilla.net/ul
£94b7830: 73 65 72 2d 6d 65 64 69 61 2f 61 64 64 6f 6e 5f |ser-media/addon_

£94b7840: 69 63 6f 6e 73 2f 33 35 34 2f 33 35 34 33 39 39 |icons/354/354399]
£94b7850: 2d 36 34 2e 70 6e 67 3f 6d 6f 64 69 66 69 65 64 |-64.png?modified|
£94b7860: 3d 31 34 35 32 32 34 34 38 31 35 XX XX XX XX XX [|=1452244815.....

Listing 4: Memory dump of Firefox 56 on Ubuntu 16.10
on a Intel Core 17-6700K disclosing saved passwords (cf.
Figure 6).

13

Saved Logins x

a

Logins for the following sites are stored on your computer:

Username Password

Last Changed el

% https:/faccounts.go.. meltdown@gmail.com secretpwd0 28. Dez. 2017
@ https://signin.ebay... meltdown@gmail.com Dolphin18 28 Dez. 2017
a hitps://www.amaz.. meltdown@gmail.com hunter2 28. Dez. 2017
i https://www.faceb... meltdown@facebook... fb1234! 28. Dez. 2017
@ https://www.instag... meltdown@gmail.com insta_0203 28. Dez. 2017

Remove Remove All Hide Passwords

Close

Figure 6: Firefox 56 password manager showing the
stored passwords that are leaked using Meltdown in List-
ing 4.

channel did not yield any results, i.e., no Flush+Reload
hit. Additional repetitions of the attack may still be able
to read these bytes.

Listing 4 shows a memory dump of Firefox 56 using
Meltdown on the same machine. We can clearly iden-
tify some of the passwords that are stored in the internal
password manager shown in Figure 6, i.e., Dolphin18,
insta_0203, and secretpwd0. The attack also recov-
ered a URL which appears to be related to a Firefox ad-
don.

6.4 Limitations on ARM and AMD

We also tried to reproduce the Meltdown bug on several
ARM and AMD CPUs. However, we did not manage
to successfully leak kernel memory with the attack de-
scribed in Section 5, neither on ARM nor on AMD. The
reasons for this can be manifold. First of all, our im-
plementation might simply be too slow and a more opti-
mized version might succeed. For instance, a more shal-
low out-of-order execution pipeline could tip the race
condition towards against the data leakage. Similarly,
if the processor lacks certain features, e.g., no re-order
buffer, our current implementation might not be able to
leak data. However, for both ARM and AMD, the toy
example as described in Section 3 works reliably, indi-
cating that out-of-order execution generally occurs and
instructions past illegal memory accesses are also per-
formed.

7 Countermeasures

In this section, we discuss countermeasures against the
Meltdown attack. At first, as the issue is rooted in the
hardware itself, we want to discuss possible microcode
updates and general changes in the hardware design.

Second, we want to discuss the KAISER countermeasure
that has been developed to mitigate side-channel attacks
against KASLR which inadvertently also protects against
Meltdown.

7.1 Hardware

Meltdown bypasses the hardware-enforced isolation of
security domains. There is no software vulnerability in-
volved in Meltdown. Hence any software patch (e.g.,
KAISER [8]) will leave small amounts of memory ex-
posed (cf. Section 7.2). There is no documentation
whether such a fix requires the development of com-
pletely new hardware, or can be fixed using a microcode
update.

As Meltdown exploits out-of-order execution, a triv-
ial countermeasure would be to completely disable out-
of-order execution. However, the performance impacts
would be devastating, as the parallelism of modern CPUs
could not be leveraged anymore. Thus, this is not a vi-
able solution.

Meltdown is some form of race condition between the
fetch of a memory address and the corresponding per-
mission check for this address. Serializing the permis-
sion check and the register fetch can prevent Meltdown,
as the memory address is never fetched if the permission
check fails. However, this involves a significant overhead
to every memory fetch, as the memory fetch has to stall
until the permission check is completed.

A more realistic solution would be to introduce a hard
split of user space and kernel space. This could be en-
abled optionally by modern kernels using a new hard-
split bit in a CPU control register, e.g., CR4. If the hard-
split bit is set, the kernel has to reside in the upper half
of the address space, and the user space has to reside in
the lower half of the address space. With this hard split,
a memory fetch can immediately identify whether such a
fetch of the destination would violate a security bound-
ary, as the privilege level can be directly derived from
the virtual address without any further lookups. We ex-
pect the performance impacts of such a solution to be
minimal. Furthermore, the backwards compatibility is
ensured, since the hard-split bit is not set by default and
the kernel only sets it if it supports the hard-split feature.

Note that these countermeasures only prevent Melt-
down, and not the class of Spectre attacks described by
Kocher et al. [19]. Likewise, several countermeasures
presented by Kocher et al. [19] have no effect on Melt-
down. We stress that it is important to deploy counter-
measures against both attacks.

14

7.2 KAISER

As hardware is not as easy to patch, there is a need for
software workarounds until new hardware can be de-
ployed. Gruss et al. [8] proposed KAISER, a kernel mod-
ification to not have the kernel mapped in the user space.
This modification was intended to prevent side-channel
attacks breaking KASLR [13, 9, 17]. However, it also
prevents Meltdown, as it ensures that there is no valid
mapping to kernel space or physical memory available
in user space. KAISER will be available in the upcom-
ing releases of the Linux kernel under the name kernel
page-table isolation (KPTI) [25]. The patch will also
be backported to older Linux kernel versions. A simi-
lar patch was also introduced in Microsoft Windows 10
Build 17035 [15]. Also, Mac OS X and iOS have similar
features [22].

Although KAISER provides basic protection against
Meltdown, it still has some limitations. Due to the design
of the x86 architecture, several privileged memory loca-
tions are required to be mapped in user space [8]. This
leaves a residual attack surface for Meltdown, i.e., these
memory locations can still be read from user space. Even
though these memory locations do not contain any se-
crets, such as credentials, they might still contain point-
ers. Leaking one pointer can be enough to again break
KASLR, as the randomization can be calculated from the
pointer value.

Still, KAISER is the best short-time solution currently
available and should therefore be deployed on all sys-
tems immediately. Even with Meltdown, KAISER can
avoid having any kernel pointers on memory locations
that are mapped in the user space which would leak in-
formation about the randomized offsets. This would re-
quire trampoline locations for every kernel pointer, i.e.,
the interrupt handler would not call into kernel code di-
rectly, but through a trampoline function. The trampo-
line function must only be mapped in the kernel. It must
be randomized with a different offset than the remaining
kernel. Consequently, an attacker can only leak pointers
to the trampoline code, but not the randomized offsets of
the remaining kernel. Such trampoline code is required
for every kernel memory that still has to be mapped in
user space and contains kernel addresses. This approach
is a trade-off between performance and security which
has to be assessed in future work.

8 Discussion

Meltdown fundamentally changes our perspective on the
security of hardware optimizations that manipulate the
state of microarchitectural elements. The fact that hard-
ware optimizations can change the state of microar-
chitectural elements, and thereby imperil secure soft-

ware implementations, is known since more than 20
years [20]. Both industry and the scientific community
so far accepted this as a necessary evil for efficient com-
puting. Today it is considered a bug when a crypto-
graphic algorithm is not protected against the microar-
chitectural leakage introduced by the hardware optimiza-
tions. Meltdown changes the situation entirely. Melt-
down shifts the granularity from a comparably low spa-
tial and temporal granularity, e.g., 64-bytes every few
hundred cycles for cache attacks, to an arbitrary granu-
larity, allowing an attacker to read every single bit. This
is nothing any (cryptographic) algorithm can protect it-
self against. KAISER is a short-term software fix, but the
problem we uncovered is much more significant.

We expect several more performance optimizations in
modern CPUs which affect the microarchitectural state
in some way, not even necessarily through the cache.
Thus, hardware which is designed to provide certain se-
curity guarantees, e.g., CPUs running untrusted code, re-
quire a redesign to avoid Meltdown- and Spectre-like at-
tacks. Meltdown also shows that even error-free soft-
ware, which is explicitly written to thwart side-channel
attacks, is not secure if the design of the underlying hard-
ware is not taken into account.

With the integration of KAISER into all major oper-
ating systems, an important step has already been done
to prevent Meltdown. KAISER is also the first step of
a paradigm change in operating systems. Instead of al-
ways mapping everything into the address space, map-
ping only the minimally required memory locations ap-
pears to be a first step in reducing the attack surface.
However, it might not be enough, and an even stronger
isolation may be required. In this case, we can trade flex-
ibility for performance and security, by e.g., forcing a
certain virtual memory layout for every operating sys-
tem. As most modern operating system already use basi-
cally the same memory layout, this might be a promising
approach.

Meltdown also heavily affects cloud providers, espe-
cially if the guests are not fully virtualized. For per-
formance reasons, many hosting or cloud providers do
not have an abstraction layer for virtual memory. In
such environments, which typically use containers, such
as Docker or OpenVZ, the kernel is shared among all
guests. Thus, the isolation between guests can simply be
circumvented with Meltdown, fully exposing the data of
all other guests on the same host. For these providers,
changing their infrastructure to full virtualization or us-
ing software workarounds such as KAISER would both
increase the costs significantly.

Even if Meltdown is fixed, Spectre [19] will remain
an issue. Spectre [19] and Meltdown need different de-
fenses. Specifically mitigating only one of them will
leave the security of the entire system at risk. We expect

15

that Meltdown and Spectre open a new field of research
to investigate in what extent performance optimizations
change the microarchitectural state, how this state can be
translated into an architectural state, and how such at-
tacks can be prevented.

9 Conclusion

In this paper, we presented Meltdown, a novel software-
based side-channel attack exploiting out-of-order execu-
tion on modern processors to read arbitrary kernel- and
physical-memory locations from an unprivileged user
space program. Without requiring any software vulner-
ability and independent of the operating system, Melt-
down enables an adversary to read sensitive data of other
processes or virtual machines in the cloud with up to
503 KB/s, affecting millions of devices. We showed that
the countermeasure KAISER [8], originally proposed to
protect from side-channel attacks against KASLR, in-
advertently impedes Meltdown as well. We stress that
KAISER needs to be deployed on every operating sys-
tem as a short-term workaround, until Meltdown is fixed
in hardware, to prevent large-scale exploitation of Melt-
down.

Acknowledgment

We would like to thank Anders Fogh for fruitful dis-
cussions at BlackHat USA 2016 and BlackHat Europe
2016, which ultimately led to the discovery of Meltdown.
Fogh [5] already suspected that it might be possible to
abuse speculative execution in order to read kernel mem-
ory in user mode but his experiments were not success-
ful. We would also like to thank Jann Horn for comments
on an early draft. Jann disclosed the issue to Intel in
June. The subsequent activity around the KAISER patch
was the reason we started investigating this issue. Fur-
thermore, we would like Intel, ARM, Qualcomm, and
Microsoft for feedback on an early draft.

We would also like to thank Intel for awarding us with
a bug bounty for the responsible disclosure process, and
their professional handling of this issue through commu-
nicating a clear timeline and connecting all involved re-
searchers. Furthermore, we would also thank ARM for
their fast response upon disclosing the issue.

This work was supported in part by the European
Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme (grant
agreement No 681402).

References

[1]

[2]

[3]

[4]
[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

(13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

BENGER, N., VAN DE POL, J., SMART, N. P., AND YAROM, Y.
“Ooh Aah... Just a Little Bit”: A small amount of side channel
can go a long way. In CHES 14 (2014).

CHENG, C.-C. The schemes and performances of dynamic
branch predictors. Berkeley Wireless Research Center, Tech. Rep
(2000).

DEVIES, A. M. AMD Takes Computing to a New Horizon with
RyzenTMProcessors, 2016.

EDGE, J. Kernel address space layout randomization, 2013.

FOGH, A. Negative Result: Reading Kernel Memory From User
Mode, 2017.

GRAS, B., RAzAvIl, K., BOsMAN, E., Bos, H., AND GIUF-
FRIDA, C. ASLR on the Line: Practical Cache Attacks on the
MMU. In NDSS (2017).

GRUSS, D., LETTNER, J., SCHUSTER, F., OHRIMENKO, O.,
HALLER, I., AND COSTA, M. Strong and Efficient Cache Side-
Channel Protection using Hardware Transactional Memory. In
USENIX Security Symposium (2017).

GRuss, D., Lipp, M., SCHWARZ, M., FELLNER, R., MAU-
RICE, C., AND MANGARD, S. KASLR is Dead: Long Live
KASLR. In International Symposium on Engineering Secure
Software and Systems (2017), Springer, pp. 161-176.

GRuUsS, D., MAURICE, C., FOGH, A., LIPP, M., AND MAN-
GARD, S. Prefetch Side-Channel Attacks: Bypassing SMAP and
Kernel ASLR. In CCS (2016).

GRuUSS, D., MAURICE, C., WAGNER, K., AND MANGARD,
S. Flush+Flush: A Fast and Stealthy Cache Attack. In DIMVA
(2016).

GRuUSS, D., SPREITZER, R., AND MANGARD, S. Cache
Template Attacks: Automating Attacks on Inclusive Last-Level
Caches. In USENIX Security Symposium (2015).

HENNESSY, J. L., AND PATTERSON, D. A. Computer architec-
ture: a quantitative approach. Elsevier, 2011.

HUND, R., WILLEMS, C., AND HoLZ, T. Practical Timing Side
Channel Attacks against Kernel Space ASLR. In S&P (2013).

INTEL. Intel®) 64 and IA-32 Architectures Optimization Refer-
ence Manual, 2014.

IoNEscu, A. Windows 17035 Kernel ASLR/VA Isolation In
Practice (like Linux KAISER)., 2017.

IRAZOQUI, G., INCI, M. S., EISENBARTH, T., AND SUNAR, B.
Wait a minute! A fast, Cross-VM attack on AES. In RAID’14
(2014).

JANG, Y., LEE, S., AND KiM, T. Breaking Kernel Address
Space Layout Randomization with Intel TSX. In CCS (2016).

JIMENEZ, D. A., AND LIN, C. Dynamic branch prediction with
perceptrons. In High-Performance Computer Architecture, 2001.
HPCA. The Seventh International Symposium on (2001), IEEE,
pp. 197-206.

KOCHER, P., GENKIN, D., GRUSS, D., HAAS, W., HAMBURG,
M., LiPP, M., MANGARD, S., PRESCHER, T., SCHWARZ, M.,
AND YAROM, Y. Spectre Attacks: Exploiting Speculative Exe-
cution.

KOCHER, P. C. Timing Attacks on Implementations of Diffe-
Hellman, RSA, DSS, and Other Systems. In CRYPTO (1996).

LEE, B., MALISHEVSKY, A., BECK, D., SCHMID, A., AND
LANDRY, E. Dynamic branch prediction. Oregon State Univer-
sity.

16

[22]

[23]

[24]

[25]
[26]

[27]
[28]

[29]

[30]
[31]

[32]

[33]

[34]

[35]

[36]

[37]

LEVIN, J. Mac OS X and I0S Internals: To the Apple’s Core.
John Wiley & Sons, 2012.

Lipp, M., GRUSS, D., SPREITZER, R., MAURICE, C., AND
MANGARD, S. ARMageddon: Cache Attacks on Mobile De-
vices. In USENIX Security Symposium (2016).

Liu, F., YAROM, Y., GE, Q., HEISER, G., AND LEE, R. B.
Last-Level Cache Side-Channel Attacks are Practical. In /IEEE
Symposium on Security and Privacy — SP (2015), IEEE Computer
Society, pp. 605-622.

LWN. The current state of kernel page-table isolation, Dec. 2017.

MAURICE, C., WEBER, M., SCHWARZ, M., GINER, L.,
GRUSS, D., ALBERTO BOANO, C., MANGARD, S., AND
ROMER, K. Hello from the Other Side: SSH over Robust Cache
Covert Channels in the Cloud. In NDSS (2017).

MOLNAR, I. x86: Enable KASLR by default, 2017.

OsVIK, D. A., SHAMIR, A., AND TROMER, E. Cache Attacks
and Countermeasures: the Case of AES. In CT-RSA (2006).

PERCIVAL, C. Cache missing for fun and profit. In Proceedings
of BSDCan (2005).

PHORONIX. Linux 4.12 To Enable KASLR By Default, 2017.

SCHWARZ, M., LipP, M., GRUSS, D., WEISER, S., MAURICE,
C., SPREITZER, R., AND MANGARD, S. KeyDrown: Eliminat-
ing Software-Based Keystroke Timing Side-Channel Attacks. In
NDSS’18 (2018).

TERAN, E., WANG, Z., AND JIMENEZ, D. A. Perceptron learn-
ing for reuse prediction. In Microarchitecture (MICRO), 2016
49th Annual IEEE/ACM International Symposium on (2016),
IEEE, pp. 1-12.

TOMASULO, R. M. An efficient algorithm for exploiting multi-
ple arithmetic units. IBM Journal of research and Development
11,1 (1967), 25-33.

VINTAN, L. N., AND IRIDON, M. Towards a high performance
neural branch predictor. In Neural Networks, 1999. IJCNN’99.
International Joint Conference on (1999), vol. 2, IEEE, pp. 868—
873.

YAROM, Y., AND FALKNER, K. Flush+Reload: a High Reso-
lution, Low Noise, L3 Cache Side-Channel Attack. In USENIX
Security Symposium (2014).

YEH, T.-Y., AND PATT, Y. N. Two-level adaptive training
branch prediction. In Proceedings of the 24th annual interna-
tional symposium on Microarchitecture (1991), ACM, pp. 51-61.

ZHANG, Y., JUELS, A., REITER, M. K., AND RISTENPART, T.
Cross-Tenant Side-Channel Attacks in PaaS Clouds. In CCS’14
(2014).

	Introduction
	Background
	Out-of-order execution
	Address Spaces
	Cache Attacks

	A Toy Example
	Building Blocks of the Attack
	Executing Transient Instructions
	Building a Covert Channel

	Meltdown
	Attack Description
	Optimizations and Limitations

	Evaluation
	Information Leakage and Environments
	Linux
	Linux with KAISER Patch
	Microsoft Windows
	Containers

	Meltdown Performance
	Exception Handling
	Exception Suppression

	Meltdown in Practice
	Limitations on ARM and AMD

	Countermeasures
	Hardware
	KAISER

	Discussion
	Conclusion

