hasherezade's 1001 nights

projects and tasks that | do in my free time

Starting with Windows Kernel Exploitation — part 1 — setting up the lab

Posted on May 28, 2017

Recently | started learning Windows Kernel Exploitation, so | decided to share some of my notes in form of a blog.

This part will be about setting up the lab. In further parts | am planning to describe how to do some of the exercises from
HackSysExtremeVulnerableDriver by Ashfaq Ansari.

I hope someone will find this useful!
What | use for this part:

= Kali Linux - as a host system (you can use anything you like)

= VirtualBox

= 2 Virtual Machines: Windows 7 32 bit (with VirtualBox Guest Additions installed) - one will be used as a
Debugger and another as a Debugee

= WinDbg (you can find it in Windows SDK)

When we do userland debugging, we can have a debugger and a debuggee on the same machine. In case of
kernel debugging it is no longer possible - we need a full control over the debugee operating system. Also,
when we will interrupt the execution, full operating system will freeze. That’s why we need two virtual
machines with separate roles.

Setting up the Debugger

Debugger is the machine form where we will be watching the Debugee. That’s why, we need to install WinDbg
there, along with symbols, that will allow us to interpret system structures.

In order to install WinDbg we need to download Windows SDK (depending on the version of Windows,

sometimes we will also need to install some required updates).

It is important to choose Debugging Tools from the installer options:


https://hshrzd.wordpress.com/2017/05/28/starting-with-windows-kernel-exploitation-part-1-setting-up-the-lab/
https://hshrzd.wordpress.com/2017/05/28/starting-with-windows-kernel-exploitation-part-1-setting-up-the-lab/
https://github.com/hacksysteam/HackSysExtremeVulnerableDriver
https://www.virtualbox.org/
https://developer.microsoft.com/en-us/windows/downloads/windows-10-sdk
https://developer.microsoft.com/en-us/windows/downloads/windows-10-sdk
https://hshrzd.wordpress.com/

ﬁ Windows Software Development Kit - Windows 10.0.15063.400 =-||- =
Select the features you want to install
Click a feature name for more information
v Debugging Tools for Windows
Application Verifier For Windows Size: 277 6 MB
tware Development Kit Kernel and user-mode debuggers as well as help and tips
far using Debugging Tools for Windows.
M3l Teols
Windows SDK Signing Tools for Deskiop Apps
Estimated disk space required: 2776 MB
Disk space available: 134 GB
Back “! Install Cancel

Once we have WinDbg installed. we should add Symbols. In order to do this, we just need to add an

environment variable, to which WinDbg will automatically refer:

_NT SYMBOL_PATH

... and fill it with the link from where it can download symbols.

https://msdl.microsoft.com/download/symbols

Full variable content may look like this (downloaded symbols will be stored in C:\Symbols):

SRV*C:\Symbols*https://msdl.microsoft.com/download/symbols



https://www.youtube.com/watch?v=S0xEHSl3YV8

Setting up the Debugee

We need to enable Debugee to let it be controlled from outside. In order to do this, we are adding one more
option in a boot menu - if we start the machine with this configuration, it is enabled for debugging.

We need to use a tool bcdedit. First we copy the current settings into a new entry, titled i.e. “Debug me”:

bcdedit /copy {current} /d "Debug me"

It gives us in return a GUID of the new entry. We need to copy it and use to enable debugging on this entry:

bcdedit /debug {MY GUID} on

At the end we can see the settings where the debugging interface will be available:

bcdedit /dbgsettings

Setting up the connection between the Debugger and the Debuggee

Debugger and Debugge will be communicating via Serial Port COM1, that will be emulated in the host system
by a Named Pipe. It is very simple to configure, we just have to make sure that the debugger and the
debuggee have the same pipe name set. Debugger will be creating the pipe, while the Debuggee will be
connecting to the existing one (that’s why we always have to run Debugger first):


https://www.youtube.com/watch?v=Nk59YUMscH0
https://en.wikipedia.org/wiki/Named_pipe

| use Linux as my host system, so | chose as a pipe name:

/tmp/wke pipe

Note that if you are using Windows as your host system, your pipe name will have to follow different

convention. Example:

\\.\pipe\wke pipe

Read more: https://en.wikipedia.org/wiki/Named_ pipe

Testing the connection

We have everything set up, now we just need to test if it works correctly! Let’s start the Debugger first, run

WinDbg, and make it wait for the connection from the Debugee. Example:

File->Kernel Debug

2 WinDbg:10.0.15063.400 X86

Edit View Debug Window Help

Open Source File... Ctrl+0
Close Current Window Ctrl+F4
Open Executable... Ctri+E
Attach to a Process... F&
Open Crash Dump... Ctrl+D
Connect to Remote Session... Ctrl+R
Connect to Remote Stub...

Kernel Debug... Ctrl+K

We are choosing COM as an interface:


https://www.youtube.com/watch?v=YpYSSQESX0s
https://en.wikipedia.org/wiki/Named_pipe

Kernel Debugging [y

[NET [usB [1394 [Local | COM |
Kemel debugging over a COM port or virtual seral device
Baud Rate: )
115200 Fipe
Port: Reconnect
com Resets:
0
[ ok || cancel || Hep

Then we will run the Debugee machine, and when we see that it got connected to the pipe, we will send it
interrupt. Example:

The Debugee is connected to the pipe:

-
Command - Kernel ‘com:port=coml, baud=115200' - WinDbg:10.0.15063 400 XB6 o [@]=

Hicrosoft (R) Windows Debugger Version 10.0.15063_ 400 X&s
Copyright (o) Microsoft Corporation. All rights reserved.

Opsned . “coml

Waiting to reconnect. . .
Connected to Windows 7 7
EKern=]l Debugger connectio:

1 %86 compatible target at (Tue Hay 30 09:43 [l

n sstablished.

02 461 2017

axnxnxannnsnn Synbol Path validation SURRSTY 80 EEEESKE

Response Time (m=s) Location

leferred SEV*C “Symbols*https:  “n=dl microsoft.
Symbol search path is: SREV=C “Symbols*https:~“msdl microscft com download<symbols
Executable search path is:

Vindows 7 Hernel Version 7601 HP {1 procs) Free =86 compatible

Built by: 7601 .17514 =86fre win7=pl vtm 101119-1850

Machine Name:

Kernel base = 0282844000 PsloadedModuleList = 0x829845b0

Sy=ztem Uptims: not available

| |Dehuggaa not connected

Now we can interrupt it, clicking Debug->Break:

[Debug | Window Help
Go F5
Go Unhandled Exception
Go Handled Exception

Restart Ctrl+5hift+F5
Stop Debugging Shift+F5
Detach Debuggee

Break Ctrl+Break

If we get the kd prompt, it means we are in control of the Debugee:



e weme g u A . AR A s

Break instruction exception - code 80000003 (first chance)
* *3%% ®%%

»
*

You are =eeing this message because vou pressed either
CTRL+C (if wou run console kernel debugger) or.
CTREL+EREAE (if wou zrun GUI kernel debugger).

on your debugger machine's keyboard

THIS IS HOT A EUG OR A& SYSTEM CRASH

If wou did not intend to bresk into the debugger. press the "g" key. then
press the "Enter® key now. Thisz message might immediately reappear. If it

does, press "g" and "Enter® again

ok ok kX K Xk Kk K Kk % %

EIE N BB B R B N O B B

*
*

nt |EtlpBreaklVithStatusInstruction:

[xa>

See the full process on the video:

The Debugee frozen, waiting for the instructions form the Debugger. By a ‘g’ command we can release the
Debugee and let it run further:
nt |FEtlpBreakWithStatusInstruction:

8289cdi0 cc int
kd: g

|"3U3‘f" |Debuggee iz running. ..

Part 2:
https://hshrzd.wordpress.com/2017/06/05/starting-with-windows-kernel-exploitation-

part-2/

hasherezade's 1001 nights
Blog at WordPress.com.


https://www.youtube.com/watch?v=vlJ8nlZjCfY
https://hshrzd.wordpress.com/2017/06/05/starting-with-windows-kernel-exploitation-part-2/
https://hshrzd.wordpress.com/
https://wordpress.com/?ref=footer_blog




