hasherezade's 1001 nights

projects and tasks that [do in my free time

Starting with Windows Kernel Exploitation — part 2 — getting familiar with HackSys Extreme
Vulnerable Driver

Posted on June 5, 2017

Recently | started learning Windows Kernel Exploitation, so | decided to share some of my notes in form of a blog.

The previous part was about setting up the lab. Now, we will play a bit with HackSysExtremeVulnerableDriver by Ashfaq

Ansari in order to get comfortable with it. In the next parts | am planning to walk through the demonstrated vulnerabilities

and exploitation techniques.

What | use for this part:

The lab described in the previous part
= HackSys Extreme Vulnerable Driver (HEVD) - prebuild version + the source code
= OSR Driver Loader

= DebugView (from Sysinternals Suite)

= Visual Studio 2012 (you can use any version you like)

Installing and testing HEVD

First, | will show how to install HEVD. We will and configure Debugee and the Debugger in order to see the
Debug Strings and HEVD’s symbols. We will also play a bit with dedicated exploits. You can see the video and
read the explanations below:

Watching the DebugStrings

HEVD and the dedicated exploits prints a lot of information as DebugStrings. We can watch them from the

Debugger machine (using WinDbg) as well as from Debugee machine (using DebugView).

Before installing HEVD, we will set up everything in order to see the strings that are being printed during

driver’s initialization.

On the Debugger:

https://hshrzd.wordpress.com/2017/06/05/starting-with-windows-kernel-exploitation-part-2/
https://hshrzd.wordpress.com/2017/06/05/starting-with-windows-kernel-exploitation-part-2/
https://hshrzd.wordpress.com/2017/05/28/starting-with-windows-kernel-exploitation-part-1-setting-up-the-lab/
https://github.com/hacksysteam/HackSysExtremeVulnerableDriver
https://hshrzd.wordpress.com/2017/05/28/starting-with-windows-kernel-exploitation-part-1-setting-up-the-lab/
https://github.com/hacksysteam/HackSysExtremeVulnerableDriver/releases
https://github.com/hacksysteam/HackSysExtremeVulnerableDriver
https://www.osronline.com/article.cfm?article=157
https://technet.microsoft.com/en-us/sysinternals/debugview.aspx
https://technet.microsoft.com/en-us/sysinternals/bb842062
https://www.youtube.com/watch?v=0wWT-YovwgM
https://hshrzd.wordpress.com/

We need to break the execution of the Debugee in order to get the kd prompt (in WinDbg: Debug -> Break).

Then, we enable printing Debug Strings via command:

ed nt!Kd Default Mask 8

After that, we can let the Debugee run further by executing the command:

Warning: Enabling this slows down the Debugee. So, whenever possible, try to watch DebugStrings locally (on
the Debugee only).

On the Debugee:

We need to run DebugView as Administrator. Then we choose from the menu:
Capture -> Capture Kernel

& DebugView on \\TESTMACHINE (local)

File Edit [m Options Computer Help

|2 & @ v Capture Win32 Ctrl+W
Capture Global Win32

Tim
v Capture Kemnel Crl+K

Installing the driver

First, we will download the pre-build package (driver+exploit) on the Debugee (the victim machine), install
them and test. We can find it on the github of HackSysTeam, in section releases
(https://github.com/hacksysteam/HackSysExtremeVulnerableDriver/releases). The package contains two

version of driver - vulnerable and not. We will pick the vulnerable one, built for 32 bit (i386).

I QSR Driver Loader

(-2 el
Open Syztems Resources, Inc.
105 Route 1014 Suite 19
Amberst, NH 013031 £l
Ph: [E03] 595-6500
Fax: [E05) 5956503 ServiceGroupDrder
Yer W30 - Sept B, 2007
Fieqistry Key: HEWD
Diriveer Path: teskbophgl=,

Diriver Version:

Diiver Size: 14848 Bytes
Drriver File Time: Thursday, February 23, 2017 12:01:42
Dizplay M ame: HEWD
Service Start: [Automatic v]
Load Group: [None v] Group Load Order
Order In Group: 1 | Type: Error:
Depend On Group(s]: | audioGroup o~
Baze m
Boot Bus Extender =
Boat File System =
Last Shatus:
MiniFilter Settings
Default Instance: Altitude: |0
AltitudeandFlags:
Flags: |0

HegisterService] [UnregisterService] [StartService] [Stop Service

https://github.com/hacksysteam/HackSysExtremeVulnerableDriver/releases

We choose Service Start as Automatic. Then we click: [Register Service] and when it succeeded: [Start Service].

We should see the HEVD banner printed on WinDbg (on the Debugger machine) as well as on DbgView on
Debugee Machine.

Adding symbols

The precompiled package of HEVD comes with symbols (sdb file) that we can also add to our Debugger. First,
let’s stop the Debugee by sending it a break signal, and have a look at all the loaded modules.

1m

To find the HEVD module, we can set a filter:

Im m H*

We will see, that it does not have any symbols attached. Well, it can be easily fixed. First, turn on:

!'sym noisy

- in order to print all the information about the paths to which WinDbg referred in search for the symbol. Then,

try to reload the symbols:

.reload

...and try to refer to them again. You will see the path, where we can copy the pdb file. After moving the pdb file
to the appropriate location on the Debugger machine, reload the symbols again. You can test them by trying to
print all the functions from HEVD:

X HEVD!*

(See the details on the Video#1)

Testing the exploits

The same package contains also a set of the dedicated exploits. We can run each of them by executing an

appropriate command. Let’s try to deploy some of them and set cmd.exe as a program to be executed.

https://github.com/hacksysteam/HackSysExtremeVulnerableDriver/releases
https://youtu.be/0wWT-YovwgM?t=140
https://github.com/hacksysteam/HackSysExtremeVulnerableDriver/releases

@8 C\Windows\system32\cmd.exe of ===

L2 HE HEuRURRE By R

Hi wi He i PR i

it i Ha it i it

HUHHHHRHE BHBRa hu HE Wy nu =
LE nh L E i

it #it fi it it
LIRS) it HHuRREH

ploits

EUDExploit.exe —c cmd —p_

Pool Overflow Exploit deployed:

EX C\Windows\system32\cmd.exe - HackSysEVDExploit.exe -c cmd -p

i B nnRnanug 0n He munpngnn
i it it it it

nu " oun H Hu
RHEHHRHETE HHEHER i 1
1414

1414 a4 1414 13 .
i i un i
i Bt RHEBHHERHE o223 pidizbizies

[+] Starting Pool Overflow Exploitation
[+]1 Creating The Exploit Thread

[+]1 Setting Thread Priority

[+] Getting Device Driver Handle

[+]1 Setting Up Uulnerability Stage

[+]1 Triggering Pool Overf low

[+] Completed Pool Overflow Exploitation
[+]1 Checking Current Process Privileges
[+]1 Trying To Get Process ID Of: espss._exe

[+] Trying To Open csrss.exe With PROCESS _ALL_ACCESS

[+] Successfully Elevated Current Process Privileges
[+1 Enjoy As SYSTEM [B.0808080 1=

If the exploitation went successful, the requested application (cmd.exe) will be deployed with elevated

privileges.

By the command

whoami

we can confirm, that it is really run elevated:

B Administrator: C:\Windows\system32\cmd.exe = ||-= '

Microsoft Windows [Uersion 6.1.7601]
wpyright (c> 288 i soft Corporation. All rights reserved.

:xploit >whoami

At the same time, we can see on our Debugger machine the Debug Strings printed by the exploit:

BJc d - Kemel ‘com: ml,baud=115200' - WinDbg:10.0.15063.400 %86 = [[-E- =S

¥ HE rRpERREE 42 #2 pEERREER -
LS4 oy #2 £ E2
#H R #z HE g #r
FREFREERSE FREEHY E2 4 tF #r
& #E R #a
#a o i on ## ##
i HE FREEREEE Hre HEERRERS

HackSy= Extreme Vulnerable Driwer
Version: 1.20
[+] HackSys Extreme Vulnerable Driver Loaded
VBOENF: DLL unloaded.
swwenn HACKSYS_EVD IOCTL POOL_OVERFLOW sswewmw
+] Allocating Pool chunk
+] Pool Tag: “kcal’
+] Pool Type: HonPagedPool
4] Pool Size: 0x1F8
+] Pool Chunk: 0xB4A44488

m

+] UserBuffer: 0=003E0F40

+] UserBuffer Size: 0=x220

+] KernelBuffer: 0=x84444488 B
+] KernelBuffer Size: 0xlF8

+] Triggering Pool Overflow

+] Freeing Pool chunk

+] Pool Tag: "kcal'

+] Pool Chunk: 0=84444488

*xxxxx BACKSYS_EVD_I0CTL_POOL_OVERFLOW xxxexx -

‘ m 3

|[+2u2¥+ |Debuggees i= running. ..

All of the exploits, except the double fetch should run well on one core. If we want this exploit to work, we need
to enable two cores on the Debugee machine.

WARNING: Some of the exploits are not 100% reliable and we can encounter a system crash after deploying

them. Don’t worry, this is normal.

Hi driver, let’s talk!

Just like in case of the user land, in the kernel land exploitation begins from finding the points, where we can
supply an input to the program. Then, we need to find the input that can corrupt the execution (in contrary to
the user land - in kernel land a crash will directly result in having a blue screen!). Finally, we will be trying to
craft the input in a way that let us control the execution of the vulnerable program.

In order to communicate with a driver from user mode we will be sending it IOCTLs - Input-Output controls.
The IOCTL allows us to send from the user land some input buffer to the driver. This is the point from which we
can attempt the exploitation.

HEVD contains demos of various classes of vulnerabilities. Each of them can be triggered using a different

IOCTL and exploited by the supplied buffer. Some (but not all) will cause our system to crash when triggered.
Finding Device name & IOCTLs
Before we try to communicate with a driver, we need to know two things:

1. the device that the driver creates (if it doesn’t create any, we will not be able to communicate)
2. list of IOCTLs (Input-Output Controls) that the driver accepts

HEVD is open-source, so we can read all the necessary data directly from the source code. In real life, most of
the time we will have to reverse the driver in order to get it.

Let’s have a look at the fragment of code where HEVD creates a device.

https://github.com/hacksysteam/HackSysExtremeVulnerableDriver/blob/master/Driver/HackSysExtremeVulnerableDrive

https://github.com/hacksysteam/HackSysExtremeVulnerableDriver/blob/master/Driver/HackSysExtremeVulnerableDriver.c#L79

RtlInitUnicodeString(&DeviceName, L"“\\Device\‘\HackSysExtremeVulnerableDriver"”);
Rt1InitUnicodeString(&DosDeviceName, L"\“DosDevices\‘\HackSysExtremeVulnerableDriver");

reate the device

Status = IoCreateDevice(DriverObject,
8,
&DeviceName,
FILE_DEVICE_UNKNOWN,
FILE_DEVICE_SECURE_OPEN,
FALSE,
&Devicedbject);

The name of the device is mentioned above.
Now, let’s see find the list of IOCTLs. We will start from looking at the array of IRPs:
https://github.com/hacksysteam/HackSysExtremeVulnerableDriver/blob/master/Driver/HackSysExtremeVulnerableDriv

// Assign the IRP handlers for Create, Close and Device Control

DriverObject->MajorFunction[IRP_MJ_CREATE] = IrpCreateCloseHandler;
DriverObject->MajorFunction[IRP_MJ_CLOSE] = IrpCreateCloseHandler;
DriverObject-=MajorFunction[IRP_MJ_DEVICE_CONTROL] = IrpDeviceloCtlHandler;

The function linked to IRP_MJ_DEVICE_CONTOL will be dispatching IOCTLs sent to the driver. So, we need to
take a look inside this function.

https://github.com/hacksysteam/HackSysExtremeVulnerableDriver/blob/master/Driver/HackSysExtremeVulnerableDrive

NTSTATUS IrpDeviceIoCtlHandler(IN PDEVICE_OBJECT DeviceObject, IN PIRP Irp) {
ULONG IoControlCode = O
PIO_STACK_LOCATION IrpSp = NULL;
NTSTATUS Status = STATUS_NOT_SUPPORTED;

UNREFERENCED_PARAMETER(DeviceObject);
PAGED_CODE();

IrpSp = IoGetCurrentIrpStackLocation(Irp);
IoControlCode = IrpSp-=Parameters.DeviceloControl.IoControlCode;

if (IrpSp) {
switch (IoControlCode) {

case HACKSYS_EVD_IOCTL_STACK OVERFLOW:
DbgPrint("™****** HACKSYS_EVD_STACKOVERFLOW ******\n"j,
Status = StackOverflowIoctlHandler(Irp, IrpSp);
DbgPrint(™****** HACKSYS_EVD_STACKOVERFLOW ******\n"},
hreak;

case HACKSYS_EVD_IOCTL_STACK OVERFLOW_GS:
DbgPrint(™****** HACKSYS_EVD_IOCTL_STACK_OVERFLOW_GS ******\n"};
Status = StackOverflowGSIoctlHandler(Irp, IrpSp),
DbgPrint("™****** HACKSYS_EVD_IOCTL_STACK_OVERFLOW_GS ******\n"};

It contains a switch, that calls a handler function appropriate to handle a particular IOCTL. We can grab our
list of IOCTLs by coping the switch cases. The values of the constants are defied in a header:

https://github.com/hacksysteam/HackSysExtremeVulnerableDriver/blob/master/Driver/HackSysExtremeVulnerableDriv

#define HACKSYS EVD IOCTL _STACK OVERFLOW CTL_CODE(FILE DEVICE UNKNOWN, 9xBO0, METHOD WEITHER, FILE ANY ACCESS)
#iefine HACKSYS_EVD_TOCTL_STACK_OVERFLOW_GS CTL_COOE (FILE_DEVICE_UNKNOWN, GxBG1, METHOD_METTHER, FILE_ANY_ACCESS)
woefine HACKSYS_EVD_IOCTL_ARBITRARY_OVERWRITE CTL_COOE(FILE_DEVICE_UNKMOWN, GxB02, METHOD_WEITHER, FILE_ANY_ACCESS)
#dafine HACKSYS_EVD_IOCTL_POOL OVERELOW CTL_CODE(FILE_DEVICE UNKNOWN, @xB83, METHOD WELTHER, FILE_ANY ACCESS)
#iefine HACKSYS EVD_TOCTL_ALLOCATE UAF_ORIECT CTL_COOE(FILE_DEVICE UNKNOWN, GxB34, METHOD METTHER, FILE_ANY ACCESS)
wdafine HACKSYS EVD IOCTL_USE_UAF_0BJECT CTL_CODE(FILE_DEVICE_UNKMOWN, 8xBOS, METHOD_WEITHER, FILE_ANY_ACCESS)
#oafine HACKSYS_EVD_IOCTL_FREE_UAF_OBJECT CTL_CODE(FILE_DEVICE_UNKMOWN, OxBBS, METHOD MEITHER, FILE_ANY ACCESS)
#iefine HACKSYS EVD_TOCTL ALLOCATE FAKE OBJECT CTL_COOE(FILE_DEVICE UNKNOWN, 8xBE7, METHOD WEITHER, FILE ANY ACCESS)
#dafine HACKSYS_EWD_TOCTL_TYPE_CONFUSION CTL_CODE(FILE_DEVICE_UNKNOWN, GxBOE, METHOD_WEITHER, FILE_ANY_ACCESS)
#oafine HACKSYS_EVD_IOCTL_INTEGER OVERFLOW TL_CODE(FILE_DEVICE UNKNOWN, @xB89, METHOD_WELTHER, FILE_ANY_ACCESS)
#define HACKSYS EVD_IOCTL_WULL_POINTER_DEREFERENCE CTL_CODE(FILE_DEVICE UNKNOWN, @xBEA, METHOO WELTHER, FILE AMY ACCESS)
#define HACKSYS _EVD_TOCTL_UNINITIALIZED STACK_VARIABLE CTL_CODE(FILE_DEVICE_UNKNOWN, GxBAE, METHOD_MEITHER, FILE_ANY_ACCESS)
Wiefine HACKSYS_EVD_I0CTL_UNINITIALIZED HEAP VARIABLE CTL_COOE(FILE_DEVICE UNKNOWN, GxBBC, METHOD_WELTHER, FILE ANY_ACCESS)
#oefine HACKSYS EVD_IOCTL_DOUBLE FETCH CTL_CODE(FILE_DEVICE UNKMDWM, OxBGD, METHOD MEITHER, FILE_ANY ACCESS)

Writing a client application

https://github.com/hacksysteam/HackSysExtremeVulnerableDriver/blob/master/Driver/HackSysExtremeVulnerableDriver.c#L109
https://github.com/hacksysteam/HackSysExtremeVulnerableDriver/blob/master/Driver/HackSysExtremeVulnerableDriver.c#L193
https://github.com/hacksysteam/HackSysExtremeVulnerableDriver/blob/master/Driver/HackSysExtremeVulnerableDriver.h#L57

Ok, we got all the necessary data that we can use to communicate with the driver by our own program. We can

put it all together in a header file, i.e.: hevd_constants.h

#pragma once

#include <windows.h>

const char kDevName[] = "\\\\.\\HackSysExtremeVulnerableDriver";

#define HACKSYS_EVD_IOCTL_STACK_OVERFLOW CTL_CODE(FILE_DEVICE_UNKNOWN, ©0x800, METHOD_NEITHER, FILE_ANY_ACC
#define HACKSYS_EVD_IOCTL_STACK_OVERFLOW_GS CTL_CODE(FILE_DEVICE_UNKNOWN, ©0x801, METHOD_NEITHER, FILE_ANY_ACC
#define HACKSYS_EVD_IOCTL_ARBITRARY_OVERWRITE CTL_CODE(FILE_DEVICE_UNKNOWN, ©0x802, METHOD_NEITHER, FILE_ANY_ACC
#define HACKSYS_EVD_IOCTL_POOL_OVERFLOW CTL_CODE(FILE_DEVICE_UNKNOWN, ©0x803, METHOD_NEITHER, FILE_ANY_ACC
#define HACKSYS_EVD_IOCTL_ALLOCATE_UAF_OBJECT CTL_CODE(FILE_DEVICE_UNKNOWN, 0x804, METHOD_NEITHER, FILE_ANY_ACC
#define HACKSYS_EVD_IOCTL_USE_UAF_OBJECT CTL_CODE(FILE_DEVICE_UNKNOWN, 0x805, METHOD_NEITHER, FILE_ANY_ACCE
#define HACKSYS_EVD_IOCTL_FREE_UAF_OBJECT CTL_CODE(FILE_DEVICE_UNKNOWN, 0x806, METHOD_NEITHER, FILE_ANY_ACC
#define HACKSYS_EVD_IOCTL_ALLOCATE_FAKE_OBJECT CTL_CODE(FILE_DEVICE_UNKNOWN, ©0x807, METHOD_NEITHER, FILE_ANY_ACC
#define HACKSYS_EVD_IOCTL_TYPE_CONFUSION CTL_CODE(FILE_DEVICE_UNKNOWN, 0x808, METHOD_NEITHER, FILE_ANY_ACC
#define HACKSYS_EVD_IOCTL_INTEGER_OVERFLOW CTL_CODE(FILE_DEVICE_UNKNOWN, ©0x809, METHOD_NEITHER, FILE_ANY_ACC
#define HACKSYS_EVD_IOCTL_NULL_POINTER_DEREFERENCE CTL_CODE(FILE_DEVICE_UNKNOWN, ©0x80A, METHOD_NEITHER, FILE_ANY_ACC
#define HACKSYS_EVD_IOCTL_UNINITIALIZED_STACK_VARIABLE CTL_CODE(FILE_DEVICE_UNKNOWN, ©0x80B, METHOD_NEITHER, FILE_ANY_ACC
#define HACKSYS_EVD_IOCTL_UNINITIALIZED_HEAP_VARIABLE CTL_CODE(FILE_DEVICE_UNKNOWN, ©0x80C, METHOD_NEITHER, FILE_ANY_ACC
#define HACKSYS_EVD_IOCTL_DOUBLE_FETCH CTL_CODE(FILE_DEVICE_UNKNOWN, ©0x80D, METHOD_NEITHER, FILE_ANY_ACC

hevd_constants.h hosted with @ by GitHub view raw

Number of each IOCTL is created by a macro defined in a standard windows header winioctlh:

#define CTL_CODE(DeviceType, Function, Method, Access) \
(((DeviceType) =< 16) | ((Access) << 14} | !
((Function) == 2) | (Method))

If you include windows.h header, the above macro will be added automatically. For now, we not need to bother

about meaning of the particular constants - we will just use the defined elements as they are.

So, we are ready to write a simple user land application that will talk to the driver. First, we open the device

using function CreateFile. Then, we can send the IOCTL using DeviceloControl.

Below you can see a tiny example. This application sends the STACK_OVERFLOW IOCTL to the driver:
send_ioctl.cpp

#include <stdio.h>

#include <windows.h>
#define HACKSYS_EVD_IOCTL_STACK_OVERFLOW CTL_CODE(FILE_DEVICE_UNKNOWN, 0x800, METHOD_NEITHER, FILE_ANY_ACCESS)
const char kDevName[] = "\\\\.\\HackSysExtremeVulnerableDriver";

HANDLE open_device(const charx device_name)
{
HANDLE device = CreateFileA(device_name,
GENERIC_READ | GENERIC_WRITE,
NULL,
NULL,
OPEN_EXISTING,
NULL,
NULL
)i

return device;

void close_device (HANDLE device)
{

CloseHandle(device);

https://gist.github.com/hasherezade/c27af650fe210e3987ccfc0fb6bdbab5/raw/3fada72a2f7f6c5c5aaa1acd9504accd8bdc5508/hevd_constants.h
https://gist.github.com/hasherezade/c27af650fe210e3987ccfc0fb6bdbab5#file-hevd_constants-h
https://gist.github.com/hasherezade/c27af650fe210e3987ccfc0fb6bdbab5#file-hevd_constants-h
https://github.com/
https://github.com/openzfs/openzfs/blob/master/usr/src/uts/common/smbsrv/winioctl.h#L113
https://msdn.microsoft.com/en-us/library/windows/desktop/aa363858%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa363216%28v=vs.85%29.aspx
https://gist.github.com/hasherezade/ac5e54c3bb904dbb53338660249b2289#file-send_ioctl-cpp

BOOL send_ioct1(HANDLE device, DWORD ioctl_code)
{
//prepare input buffer:
DWORD bufSize = 0x4;
BYTEx inBuffer = (BYTEx) HeapAlloc(GetProcessHeap(), HEAP_ZERO_MEMORY, bufSize);

//fill the buffer with some content:
Rt1FilWMemory(inBuffer, bufSize, 'A');

DWORD size_returned = 0;
BOOL is_ok = DeviceIoControl(device,
ioctl_code,
inBuffer,
bufSize,
NULL, //outBuffer —> None
0, //outBuffer size —> 0@
&size_returned,
NULL
);
//release the input bufffer:
HeapFree(GetProcessHeap(), @, (LPVOID)inBuffer);

return is_ok;

int main()
{
HANDLE dev = open_device(kDevName);
if (dev == INVALID_HANDLE_VALUE) {
printf("Failed!\n");
system("pause");

return -1;

send_ioct1l(dev, HACKSYS_EVD_IOCTL_STACK_OVERFLOW);

close_device(dev);
system("pause");

return 0;

send_ioctl.cpp hosted with @ by GitHub view raw

Try to compile this program and deploy it on the Debugee machine. Start the DebugView and observe
DebugStrings printed by the driver.

& DebugView on \WTESTMACHINE (lecal)
File Edit Capture Options Computer Help

eEHdE | X |- (A EBBT| 9F | 44

% Time Debug Print

1233 7955.0122.., ****** HACKSYS EVD STACKOVERFLOW *=*%#%%
1234 7955.0908... [+] UserBuffer: 0x00222FB0

1235 7955.0942... [+] UserBuffer Size: 0Ox4

1236 7955.0991... [+] EernelBuffer: 0x98AT42B4

1237 7955.,1044,,. [+] EernelBuffer Size: 0x800

1238 7955.1137... [+] Triggering Stack Overflow

1239 7955.1337. .. ®**=x==&* HLCKSYS EVD STACKOVERFLOW *==#*&*x

N 1

If you enabled printing DebugStrings on the Debugger machine, you should see similar output:

https://gist.github.com/hasherezade/ac5e54c3bb904dbb53338660249b2289/raw/40b5b85e17179cef688511ad9bf42eab6230d725/send_ioctl.cpp
https://gist.github.com/hasherezade/ac5e54c3bb904dbb53338660249b2289#file-send_ioctl-cpp
https://github.com/

Command - Kemel 'com:port=coml, baud=115200, reconnect’ - WinDbg:10.0.15063.400 X85 1 o ==

nt |Et lpBreakWithStatusInstruction:
82864400 cc int 3

kd> ed nt|Kd_Default_Mask &

kd> g

*xxxnxx HACKSYS_EVD_STACKOVERFLOU =xexxx
[+] UserBuffer: 0=x00222FB0

[+] UserBuffer Size: (=4

[+] KernelBuffer: 0x984742B4

[+] KernelBuffer Size: 0x800

[+] Triggering Stack Overflow

*xxxxx HACKSYTS_EVD_STACKOVERFLOU *xexxx

[T

‘ m

‘BUSY*lDehuggee i= running. .

As we can see, the driver got our input and reported about it.
Exercise: let’s have a crash!

As an exercise, | created a small client for HEVD, that allows to send it various IOCTLs with the input buffer of
the requested length. You can find the source code here:

https://github.com/hasherezade/wke_exercises/tree/master/taski

.and the compiled 32 bit binary here.

Try to play with various IOCTLs, till you get the crash. Because the Debugee runs under the control of the
Debugger, you should not get a blue screen - instead, WinDbg will get triggered. Try to make a brief crash
analysis for every case. Start from printing the information by:

tanalyze -v
Some other helpful commands:

k - stack trace
kb - stack trace with parameters
r - registers

dd [address]- display data as DWORD starting from the address
For more, check the WinDbg help file:

.hh

In our sample application, the user buffer is filled with “A” -> ASCII 0x41

(https://github.com/hasherezade/wke_exercises/blob/master/taski/src/main.cpp#L34):

RtlFillMemory (inBuffer, bufSize, 'A');
So, wherever we see it in the crash analysis, it means the particular data can be filled by the user.

Example #1

https://github.com/hasherezade/wke_exercises/tree/master/task1
https://drive.google.com/open?id=0Bzb5kQFOXkiSNTlVSjMtZzRfZDg
https://github.com/hasherezade/wke_exercises/blob/master/task1/src/main.cpp#L34

Example #2

Mind the fact, that triggering the same vulnerability can give you a different output, depending on the
immediate source of the crash, that is related to i.e. size of the overflow, current layout of the memory, etc.

Part 3:
https://hshrzd.wordpress.com/2017/06/22/starting-with-windows-kernel-exploitation-

part-3-stealing-the-access-token/

Appendix

» http://expdev-kiuhnm.rhcloud.com/2015/05/17/windbg/ - introduction to WinDbg (by Massimiliano

Tomassoli)
» https://github.com/mwrlabs/win_driver_plugin - An IDA Pro plugin to help when working with I0CTL

codes or reversing Windows drivers (by Sam Brown)

hasherezade's 1001 nights
Blog at WordPress.com.

https://www.youtube.com/watch?v=lw7vMrkeTpY
https://www.youtube.com/watch?v=YV0IqXEUf5s
https://hshrzd.wordpress.com/2017/06/22/starting-with-windows-kernel-exploitation-part-3-stealing-the-access-token/
http://expdev-kiuhnm.rhcloud.com/2015/05/17/windbg/
https://github.com/mwrlabs/win_driver_plugin
https://hshrzd.wordpress.com/
https://wordpress.com/?ref=footer_blog

